Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.5555/3199700.3199747acmconferencesArticle/Chapter ViewAbstractPublication PagesiccadConference Proceedingsconference-collections
research-article

Enabling exact delay synthesis

Published: 13 November 2017 Publication History

Abstract

Given (i) a Boolean function, (ii) a set of arrival times at the inputs, and (iii) a gate library with associated delay values, the exact delay synthesis problem asks for a circuit implementation which minimizes the arrival time at the output(s). The exact delay synthesis problem, with given input arrival times, relates to computing the communication complexity of a Boolean function, which is an intractable problem. Input arrival times are variable and can take any value, thereby making the exact delay synthesis search space infinite. This paper presents theory and algorithms for exact delay synthesis. We introduce the theory of equioptimizable arrival times, which allows us to partition all arrival time patterns into a finite set of equivalence classes. Thanks to this new theory, we create for the first time exact delay circuit databases covering all Boolean functions up to 5 variables and all possible arrival time patterns. We describe further arrival time compression techniques which enable the creation of larger databases. We propose an enhanced delay synthesis flow capable of dealing with large circuits, combining exact delay logic rewriting and Boolean optimization techniques, attaining unprecedented results. We improve 9/10 of the best known results in the EPFL arithmetic delay synthesis competition, outperforming previous best results up to 3x. Embedded in a commercial EDA flow for ASICs, our exact delay synthesis techniques reduce the total negative slack by 12.17%, after physical implementation, at negligible area and runtime costs.

References

[1]
M. Karchmer, A. Wigderson, "Monotone circuits for connectivity require super-logarithmic depth", SLAM J. Discrete Math., 3(2):255--265, 1990.
[2]
A. Mishchenko, et al. "Delay optimization using SOP balancing", Proc. ICCAD, 2011.
[3]
W. Yang, L. Wang, A. Mishchenko, Lazy mans logic synthesis, ICCAD, 2012, pp. 597604.
[4]
R.K. Brayton, G.D. Hachtel, A.L. Sangiovanni-Vincentelli, "Multilevel logic synthesis", Proc. IEEE 78.2 (1990): 264--300.
[5]
C. L. Berman, D. J. Hathaway, A. S. LaPaugh, L. Trevillyan. "Efficient techniques for timing correction", ISCAS, pp. 415419, 1990.
[6]
N. Vemuri, et al., "BDD-based logic synthesis for LUT-based FPGAs", ACM TODAES 7.4 (2002): 501--525.
[7]
L. Amaru, P.-E. Gaillardon, G. De Micheli, "Majority-inverter graph: A new paradigm for logic optimization", IEEE TCAD-IC 35.5 (2016): 806--819.
[8]
G. De Micheli, "Synthesis and Optimization of Digital Circuits", McGraw-Hill, New York, 1994.
[9]
V. Bertacco and M. Damiani, "The disjunctive decomposition of logic functions", ICCAD 1997.
[10]
V. N. Kravets and P. Kudva, "Implicit enumeration of structural changes in circuit optimization", DAC 2004.
[11]
M. Elbayoumi, M. Choudhury, V. N. Kravets, A. Sullivan, M. S. Hsiao, and M. Y. ElNainay, TACUE: A timing-aware cuts enumeration algorithm for parallel synthesis, DAC 2014.
[12]
L. Amaru, P.-E. Gaillardon, G. De Micheli, "The EPFL Combinational Benchmark Suite" International Workshop on Logic & Synthesis (IWLS), 2015.
[13]
L. Amaru, et al., "Multi-level logic benchmarks: An exactness study", ASPDAC'17, Tokyo, Japan, January 2017.
[14]
E. A. Ernst, Optimal combinational multi-level logic synthesis, PhD thesis, The University of Michigan, 2009.
[15]
R. M. Karp, F. E. McFarlin, J. P. Roth, J. R. Wilts, A computer program for the synthesis of combinational switching circuits, in Symp. on Switching Circuit Theory and Logical Design, 1961, pp. 182194.
[16]
J. P. Roth, R. M. Karp, Minimization over Boolean graphs, IBM Journal of Research and Development, vol. 6, no. 2, pp. 227238, 1962.
[17]
D. Knuth, "The Art of Computer Programming", Volume 4A, Part 1
[18]
S. Muroga, T. Ibaraki, Design of optimal switching networks by integer programming, IEEE Trans. on Computers, vol. 21, no. 6, pp. 573582, 1972.
[19]
A. Kojevnikov, A. S. Kulikov, G. Yaroslavtsev, Finding efficient circuits using SAT-solvers, in Intl Conf. on Theory and Applications of Satisfiability Testing, 2009, pp. 3244.
[20]
E. S. Davidson, An algorithm for NAND decomposition under network constraints, IEEE Trans. on Computers, vol. 18, no. 12, pp. 10981109, 1969.
[21]
J. N. Culliney, M. H. Young, T. Nakagawa, S. Muroga, Results of the synthesis of optimal networks of AND and OR gates for four-variable switching functions, IEEE Trans. on Computers, vol. 28, no. 1, pp. 7685, 1979.
[22]
M. Soeken, L. Amaru, P.-E. Gaillardon, G. De Micheli, "Exact Synthesis of Majority-Inverter Graphs and Its Applications", IEEE TCAD-IC, 2017.
[23]
M. Soeken, G. De Micheli, A. Mishchenko, "Busy Mans Synthesis: Combinational Delay Optimization With SAT," Design, Automation & Test in Europe Conference (DATE), Lausanne, Switzerland, 2017.
[24]
A. Mishchenko, S. Chatterjee, R. Brayton, DAG-aware AIG rewriting a fresh look at combinational logic synthesis, Proc. DAC 2006.
[25]
S. Hassoun, T. Sasao. Logic Synthesis and Verification, Springer, 2001
[26]
Randal E. Bryant. "Graph-Based Algorithms for Boolean Function Manipulation". IEEE Transactions on Computers, C-35(8):677691, 1986.
[27]
V. Correia, A. Reis. "Classifying n-input Boolean functions", Proc. IWLS 2001.
[28]
M. Harrison, "The number of equivalence classes of Boolean functions under groups containing negation", IEEE Transactions on Electronic Computers 5 (1963): 559--561.
[29]
ABC synthesis tool: https://bitbucket.org/alanmi/abc.
[30]
L. Amaru, P. Vuillod, J. Luo, J. Olson, "Logic Optimization and Synthesis: Trends and Directions in Industry", Design, Automation & Test in Europe Conference (DATE), Lausanne, Switzerland, 2017.
[31]
B. Schmitt, A. Mishchenko, R. Brayton, "SAT-based area recovery in technology mapping", IWLS'17.
[32]
A. Mishchenko, R. Brayton, A. Petkovska, M. Soeken, "SAT-based optimization with don't-cares revisited", IWLS'17.
[33]
http://lsi.epfl.ch/benchmarks

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
ICCAD '17: Proceedings of the 36th International Conference on Computer-Aided Design
November 2017
1077 pages

Sponsors

In-Cooperation

  • IEEE-EDS: Electronic Devices Society

Publisher

IEEE Press

Publication History

Published: 13 November 2017

Check for updates

Qualifiers

  • Research-article

Conference

ICCAD '17
Sponsor:

Acceptance Rates

Overall Acceptance Rate 457 of 1,762 submissions, 26%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)2
  • Downloads (Last 6 weeks)0
Reflects downloads up to 11 Jan 2025

Other Metrics

Citations

Cited By

View all

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media