Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

The local standard of rest and the well in the velocity distribution

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

It is now recognised that the traditional method of calculating the LSR fails. We find an improved estimate of the LSR by making use of the larger and more accurate database provided by XHIP and repeating our preferred analysis from Francis and Anderson (New Astron 14:615–629, 2009a). We confirm an unexpected high value of \(U_0\) by calculating the mean for stars with orbits sufficiently inclined to the galactic plane that they do not participate in bulk streaming motions. Our best estimate of the solar motion with respect to the LSR \((U_0, V_0, W_0) = (14.1\, \pm \, 1.1, 14.6\, \pm \, 0.4, 6.9\, \pm \, 0.1)\) km s\(^{-1}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Anderson, E., Francis, C.: XHIP: an extended Hipparcos compilation. Astron. Lett. 5, 374–392 (2012)

    Google Scholar 

  • Arnold, V.I.: Mathematical Methods of Classical Mechanics, 2nd edn. Springer, New York (1989)

    Book  Google Scholar 

  • Binney, J.J., Tremaine, S.: Galactic Dynamics. Princeton University Press, Princeton (1987)

    MATH  Google Scholar 

  • Bobylev, V.V.: Estimation of the solar galactocentric distance and galactic rotation velocity from near-solar-circle objects. Astron. Lett. 39(2), 95–103 (2013)

    Article  ADS  Google Scholar 

  • Bovy, J., Rix, H.-W., Hogg, M.W.: The milky way has no distinct thick disk. Astrophys. J. 751, 131 (2012)

    Article  ADS  Google Scholar 

  • Clemens, D.P.: Massachusetts-Stony brook galactic plane CO survey—the galactic disk rotation curve. Astrophys. J. 295, 422 (1985)

    Article  ADS  Google Scholar 

  • Coşkunoğlu, B., Ak, S., Bilir, S., et al.: Local stellar kinematics from RAVE data—I. Local standard of rest. Mon. Notices Roy. Astron. Soc. 412(2), 1237–1245 (2011)

    ADS  Google Scholar 

  • Dehnen, W.: The distribution of nearby stars in velocity space inferred from HIPPARCOS data. Astrophys. J. 115, 2384 (1998)

    ADS  Google Scholar 

  • Dehnen, W., Binney, J.J.: Local stellar kinematics from HIPPARCOS data. Mon. Notices Roy. Astron. Soc. 298, 387 (1998)

    Article  ADS  Google Scholar 

  • Delhaye, J.: Solar motion and velocity distribution of common stars. In: Blaauw, A., Schmidt, M. (eds.) Galactic Structure. Stars and Stellar Systems, vol. 5, pp. 61–84. University of Chicago Press, Chicago (1965)

  • Dommanget, J., Nys, O.: Visual double stars in Hipparcos. Obs. Travaux, 54, 5 [CDS Catalog I/274] (2002)

  • Eggen, O.J.: Stellar groups. I. The Hyades and Sirius groups. Mon. Notices Roy. Astron. Soc. 118, 65 (1958)

    ADS  Google Scholar 

  • Famaey, B., Jorissen, A., Luri, X., Mayor, M., Udry, S., Dejonghe, H., et al.: Local kinematics of K and M giants from CORAVEL/Hipparcos/Tycho-2 data. Revisiting the concept of superclusters. A&A 430, 165 (2005)

    Article  ADS  Google Scholar 

  • Francis, C.: Calibration of RAVE distances to a large sample of Hipparcos stars. Mon. Notices Roy. Astron. Soc. 436, 1343–1361 (2013)

    Article  ADS  Google Scholar 

  • Francis, C., Anderson, E.: Calculation of the local standard of rest from 20 574 local stars in the new Hipparcos reduction with known radial velocities. New Astron. 14, 615–629 (2009a, FA09a)

  • Francis, C., Anderson, E.: Galactic spiral structure. Proc. R. Soc. A. 465, 3401–3423 18 (2009b, FA09b)

  • Francis, C., Anderson, E.: Evidence of a bisymmetric spiral in the milky way. MNRAS. 422, 2, 1283–1293 (2012a, FA12)

  • Francis, C., Anderson, E.: XHIP-II: clusters and associations. Astron. Lett. 38(11), 763–775 (2012b)

    Article  Google Scholar 

  • Francis, C., Anderson, E.: Two estimates of the distance to the galactic centre. [arXiv:1309.2629 astro-ph.GA] (2013)

  • Gillessen, S., Eisenhauer, F., Fritz, T.K., Bartko, H., Dodds-Eden, K., Pfuhl, O., Ott, T., Genzel, R.: The orbit of the star S2 around Sgr A* from Very Large Telescope and Keck data. Astrophys. J. Lett. 707, L114–L117 (2009)

    Google Scholar 

  • Gilmore, G., Reid, N.: New light on faint stars. III—galactic structure towards the south pole and the galactic thick disc. Mon. Notices Roy. Astron. Soc. 202, 1025 (1983)

    ADS  Google Scholar 

  • Girardi, L., Salaris, M.: Population effects on the red giant clump absolute magnitude, and distance determinations to nearby galaxies. Mon. Notices Roy. Astron. Soc. 323, 109 (2001)

    Article  ADS  Google Scholar 

  • Goldstein, H.: Classical Mechanics, 2nd ed., pp. 102–105, 421–422. Addison Wesley, Boston (1980)

  • Gontcharov, G.A.: AstL., 32, 759–771, Pulkovo compilation of radial velocities for 35 495 Hipparcos stars in a common system. [CDS Catalog: III/252] (2006)

  • Gontcharov, G.A.: Spatial distribution and kinematics of OB stars. Astron. Lett. 38(11), 694–706 (2012a)

    Article  ADS  Google Scholar 

  • Gontcharov, G.A.: Dependence of kinematics on the age of stars in the solar neighborhood. Astron. Lett. 38(12), 771–782 (2012b)

    Article  ADS  Google Scholar 

  • Holmberg, J., Nordstrm, B., Andersen, J.: The Geneva-Copenhagen survey of the solar neighbourhood II. New uvby calibrations and rediscussion of stellar ages, the G dwarf problem, age-metallicity diagram, and heating mechanisms of the disk. A&A 475, 519–537 (2007)

    Article  ADS  Google Scholar 

  • Klement, R.J., Bailer-Jones, C.A.L., Fuchs, B., Rix, H.-W., Smith, K.W.: Classification of field dwarfs and giants in RAVE and its use in stellar stream detection. Astrophys. J. 726(2), 103 (2011)

    Article  ADS  Google Scholar 

  • Jenkins, A.: Heating of galactic discs with realistic vertical potentials. Mon. Notices Roy. Astron. Soc. 257, 620 (1992)

    ADS  Google Scholar 

  • Lépine, J.R.D., Acharova, I.A., Mishurov, Y.N.: Corotation, stellar wandering, and fine structure of the galactic abundance pattern. Astrophys. J. 589, 210 (2003)

    Article  ADS  Google Scholar 

  • Mason, B.D., Wycoff, G.L., Hartkopf, W.I., Douglass, G.G., Worley, C.E.: The 2001 US naval observatory double star CD-ROM. I. The Washington double star catalog. AJ., 122, 3466. [CDS Catalog: B/wds] (2001)

  • Mihalas, D., Binney, J.: Galactic Astronomy, 2nd edn. W H Freeman Co, New York (1981)

    Google Scholar 

  • Parenago, P.P.: Uber die Massen von Bedeckungsveranderlichen mit bekannter Radialgeschwindigkeit nur des Hauptsterns. Astronomicheskii Zhurnal 27, 150 (1950)

    Google Scholar 

  • Reid, M.J., Brunthaler, A.: The proper motion of sagittarius A*. II. The mass of sagittarius A*. Astrophys. J. 616, 872–884 (2004)

    Article  ADS  Google Scholar 

  • Robin, A.C., Reylé, C., Derrire, S., Picaud, S.: A synthetic view on structure and evolution of the milky way. A&A 409, 523 (2003)

    Article  ADS  Google Scholar 

  • Sellwood, J.A., Binney, J.J.: Radial mixing in galactic discs. Mon. Notices Roy. Astron. Soc. 336, 785 (2002)

    Article  ADS  Google Scholar 

  • Schönrich, R., Binney, J., Dehnen, W.: Local kinematics and the local standard of rest. Mon. Notices Roy. Astron. Soc. 403, 1829–1833 (2010)

    Article  ADS  Google Scholar 

  • Schönrich, R.: Galactic rotation and solar motion from stellar kinematics. Mon. Notices Roy. Astron. Soc. 427, 274–287 (2012)

    Article  ADS  Google Scholar 

  • Sofue, Y., Nagayama, T., Matsui, M., Nakagawa, A.: Near-Solar-Circle Method for Determining the Galactic Constants. Publ. Astron. Soc. Jpn. 63, 867 (2011)

    Article  ADS  Google Scholar 

  • Strömberg, G.B.: The asymmetry in stellar motions and the existence of a velocity-restriction in space. Astrophys. J. 59, 228–252 (1924)

    Article  ADS  Google Scholar 

  • Strömberg, G.B.: The asymmetry in stellar motions as determined from radial velocities. Astrophys. J. 61, 363–388 (1925)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles Francis.

Appendices

Appendix A: Estimate of dispersion and eccentricity

Kepler’s second law is an expression of conservation of angular momentum, and holds for planar orbits in any axisymmetric potential. Assuming a well-mixed distribution in which orbital eccentricities are low, the greater density of stars towards the centre of the Galaxy will not greatly affect calculation. If the number of stars on the outer part of the orbit (lagging the LSR) outnumbers the number on the inner part (leading the LSR) by 70:30, it is because the time on the outer part of the orbit is greater by roughly this ratio, so the velocity is less and the radial distance is greater by the square root of this ratio, i.e. by a factor greater than 1.5 (contradicting the assumption that orbital eccentricities are low). Then, for galactic rotation \(\theta _0 \approx 200 \) km s\(^{-1}\), azimuthal velocities will range from \(\sim \!160 \) to \(\sim \!240 \) km s\(^{-1}\) and dispersion in \( V \) will be about 40 km s\(^{-1}\), around twice the observed value of 21 km s\(^{-1}\) for disc stars.

If eccentricity, \( e \), is defined such that the ratio of distance to apocentre to distance to pericentre is given, as for a Keplerian orbit, by

$$\begin{aligned} \frac{1+e}{1-e} = \frac{R_{\mathrm {max}}}{R_{\mathrm {min}}}>\sim 1.5 \end{aligned}$$
(7.1)

from which

$$\begin{aligned} e> \sim 0.2 \end{aligned}$$
(7.2)

But modal value of eccentricity in the solar neighbourhood is \( \sim 0.11 \) (Fig. 6). The modal value of eccentricity is insensitive to the figure used for the LSR.

Appendix B: Significance of the well

A simple estimate of the probability that the well at \( (U, V) = (-12.5, -14) \) km s\(^{-1}\) seen in Fig. 2 could arise by chance can be found by defining one hundred \(2\times 2\) km\(^2\) s\(^{-2}\) bins centred at even integer velocities in the ranges \( -24\le U \le -6\), \(-24\le V \le -6 \) km s\(^{-1}\). The bins contain 3 824 stars. The bin centred at (\(-\)12, \(-\)14) km s\(^{-1}\) contains only 21 stars. For a uniform distribution (the null hypothesis) the number of stars in each bin is given by a binomial distribution \( \mathsf {B} (3 824, 0.01) \), for which the probability of finding 21 or fewer stars in a bin is 0.0017, giving a 99.8 % significance level. The use of a uniform probability distribution underestimates the statistical significance of the well, because there is generally a greater probability of finding data towards the centre of a distribution.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Francis, C., Anderson, E. The local standard of rest and the well in the velocity distribution. Celest Mech Dyn Astr 118, 399–413 (2014). https://doi.org/10.1007/s10569-014-9541-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-014-9541-z

Keywords