離散数理工学 第 8 回 離散代数:有限体の応用

岡本 吉央 okamotoy@uec.ac.jp

電気通信大学

2015年12月8日

最終更新: 2015年12月9日 08:17

スケジュール 前半 (予定)

■ 数え上げの基礎: 二項係数と二項定理

★ 休講 (体育祭)	(10/13)
2 数え上げの基礎:漸化式の立て方	(10/20)
₃ 数え上げの基礎:漸化式の解き方 (基礎)	(10/27)
★ 祝日で休み	(11/3)
4 数え上げの基礎:漸化式の解き方 (発展)	(11/10)
5 離散代数:整数と有限体	(11/17)
6 離散代数:多項式環	(11/24)
7 離散代数:多項式環による有限体の構成	(12/1)
8 離散代数:有限体の応用	(12/8)

注意:予定の変更もありうる

(10/6)

スケジュール 後半 (予定)

g 離散確率論:確率の復習と確率不等式	(12/15)
★ 中間試験	(12/22)
🔟 離散確率論:確率的離散システムの解析	(1/5)
💵 離散確率論:乱択データ構造とアルゴリズム (基礎)	(1/12)
№ 離散確率論:乱択データ構造とアルゴリズム (発展)	(1/19)
№ 離散確率論:マルコフ連鎖 (基礎)	(1/26)
🔟 離散確率論:マルコフ連鎖 (発展)	(2/2)
★ 予備日	(2/9)
★ 期末試験	(2/16?)

注意:予定の変更もありうる

今日の目標

今日の目標

- ▶ 有限体を用いて射影平面を構成する
- ▶ 射影平面を用いて組合せデザインの問題を解く

目次

- ① 組合せデザイン:考えたい問題
- 2 射影平面:例
- 3 有限体から作られる射影平面:定義
- 4 有限射影平面
- 6 今日のまとめ

考えたい問題の種類

7種類のワインを7人のスタッフで品評したい

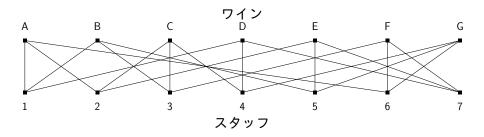
公平にするため、次を満たすようにしたい

- ▶ どのワインも、3人のスタッフが品評する
- ▶ どの2つのワインも、あるスタッフが同時に品評する

問題

このような品評の仕方は可能か?

答:可能

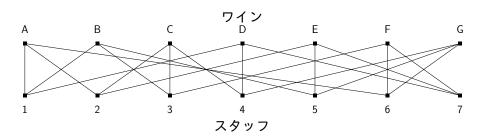


つまり, 各スタッフ 1, 2, ..., 7 は次のワインを品評する

- ▶ 1: A, B, D
- ▶ 2: A, C, E
- ▶ 3: B, C, F
- ▶ 4: C, D, G

- ▶ 5: B, E, G
- ▶ 6: A, F, G
- ▶ 7: D, E, F

疑問



次の問い

どうやって見つけるのか?

この問いに対する回答:「射影平面」を用いる

- ① 組合せデザイン:考えたい問題
- 2 射影平面:例
- 3 有限体から作られる射影平面:定義
- 4 有限射影平面
- 5 今日のまとめ

射影平面:例 — 考える空間は ℤ3

▶ Z₂³ を考える

$$\mathbb{Z}_2^3 = \{(0,0,0), (1,0,0), (0,1,0), (0,0,1), (1,1,0), (1,0,1), (0,1,1), (1,1,1)\}$$

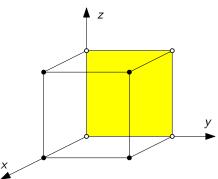
▼ Z₂³ は線形空間

▶ \mathbb{Z}_2^3 において,原点 (0,0,0) を通る平面は, $(a,b,c)\in\mathbb{Z}_2^3-\{\mathbf{0}\}$ を使って

$$\{(x, y, z) \mid ax + by + cz = 0\}$$

と書ける

▶ 異なる (a, b, c) に対して,異なる平面が得られる



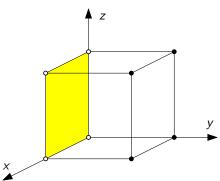
 $\{(x, y, z) \mid x = 0\}$

▶ \mathbb{Z}_2^3 において,原点 (0,0,0) を通る平面は, $(a,b,c)\in\mathbb{Z}_2^3-\{\mathbf{0}\}$ を使って

$$\{(x, y, z) \mid ax + by + cz = 0\}$$

と書ける

▶ 異なる (a, b, c) に対して、異なる平面が得られる



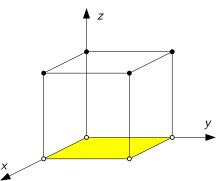
 $\{(x, y, z) \mid y = 0\}$

▶ \mathbb{Z}_2^3 において,原点 (0,0,0) を通る平面は, $(a,b,c)\in\mathbb{Z}_2^3-\{\mathbf{0}\}$ を使って

$$\{(x, y, z) \mid ax + by + cz = 0\}$$

と書ける

▶ 異なる (a, b, c) に対して、異なる平面が得られる



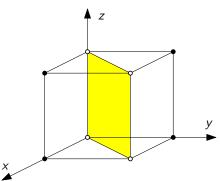
 $\{(x, y, z) \mid z = 0\}$

▶ \mathbb{Z}_2^3 において,原点 (0,0,0) を通る平面は, $(a,b,c)\in\mathbb{Z}_2^3-\{\mathbf{0}\}$ を使って

$$\{(x, y, z) \mid ax + by + cz = 0\}$$

と書ける

▶ 異なる (a, b, c) に対して、異なる平面が得られる



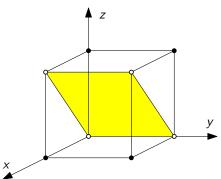
 $\{(x, y, z) \mid x + y = 0\}$

▶ \mathbb{Z}_2^3 において,原点 (0,0,0) を通る平面は, $(a,b,c)\in\mathbb{Z}_2^3-\{\mathbf{0}\}$ を使って

$$\{(x, y, z) \mid ax + by + cz = 0\}$$

と書ける

▶ 異なる (a, b, c) に対して,異なる平面が得られる



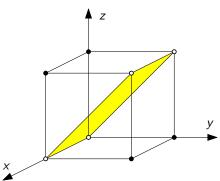
 $\{(x, y, z) \mid x + z = 0\}$

▶ \mathbb{Z}_2^3 において,原点 (0,0,0) を通る平面は, $(a,b,c)\in\mathbb{Z}_2^3-\{\mathbf{0}\}$ を使って

$$\{(x, y, z) \mid ax + by + cz = 0\}$$

と書ける

▶ 異なる (a, b, c) に対して、異なる平面が得られる



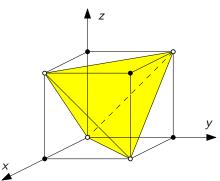
 $\{(x, y, z) \mid y + z = 0\}$

▶ \mathbb{Z}_2^3 において,原点 (0,0,0) を通る平面は, $(a,b,c)\in\mathbb{Z}_2^3-\{\mathbf{0}\}$ を使って

$$\{(x, y, z) \mid ax + by + cz = 0\}$$

と書ける

▶ 異なる (a, b, c) に対して、異なる平面が得られる



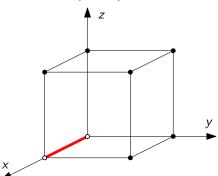
 $\{(x, y, z) \mid x + y + z = 0\}$

▶ \mathbb{Z}_2^3 において,原点 (0,0,0) を通る直線は, $(a,b,c)\in\mathbb{Z}_2^3-\{\mathbf{0}\}$ を使って

$$\{(x,y,z) \mid$$
ある $k \in \mathbb{Z}_2$ が存在して、 $x = ka, y = kb, z = kc\}$

と書ける

▶ 異なる (a, b, c) に対して、異なる直線が得られる



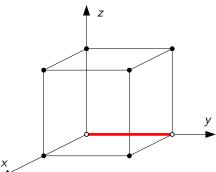
 $\{(k,0,0) \mid k \in \mathbb{Z}_2\}$

▶ \mathbb{Z}_2^3 において,原点 (0,0,0) を通る直線は, $(a,b,c)\in\mathbb{Z}_2^3-\{\mathbf{0}\}$ を使って

$$\{(x,y,z) \mid$$
ある $k \in \mathbb{Z}_2$ が存在して、 $x = ka, y = kb, z = kc\}$

と書ける

▶ 異なる (a, b, c) に対して、異なる直線が得られる



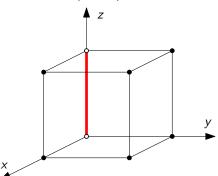
 $\{(0, k, 0) \mid k \in \mathbb{Z}_2\}$

▶ \mathbb{Z}_2^3 において,原点 (0,0,0) を通る直線は, $(a,b,c)\in\mathbb{Z}_2^3-\{\mathbf{0}\}$ を使って

$$\{(x,y,z) \mid$$
ある $k \in \mathbb{Z}_2$ が存在して、 $x = ka, y = kb, z = kc\}$

と書ける

▶ 異なる (a, b, c) に対して、異なる直線が得られる



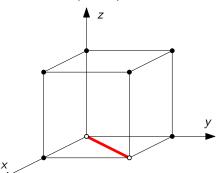
 $\{(0,0,k) \mid k \in \mathbb{Z}_2\}$

▶ \mathbb{Z}_2^3 において,原点 (0,0,0) を通る直線は, $(a,b,c)\in\mathbb{Z}_2^3-\{\mathbf{0}\}$ を使って

$$\{(x,y,z) \mid$$
ある $k \in \mathbb{Z}_2$ が存在して、 $x = ka, y = kb, z = kc\}$

と書ける

▶ 異なる (a, b, c) に対して、異なる直線が得られる



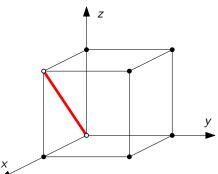
 $\{(k,k,0)\mid k\in\mathbb{Z}_2\}$

▶ \mathbb{Z}_2^3 において,原点 (0,0,0) を通る直線は, $(a,b,c)\in\mathbb{Z}_2^3-\{\mathbf{0}\}$ を使って

$$\{(x,y,z) \mid$$
ある $k \in \mathbb{Z}_2$ が存在して、 $x = ka, y = kb, z = kc\}$

と書ける

▶ 異なる (a, b, c) に対して、異なる直線が得られる



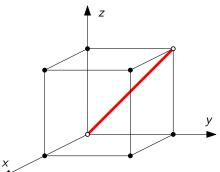
 $\{(k,0,k) \mid k \in \mathbb{Z}_2\}$

▶ \mathbb{Z}_2^3 において,原点 (0,0,0) を通る直線は, $(a,b,c)\in\mathbb{Z}_2^3-\{\mathbf{0}\}$ を使って

$$\{(x,y,z) \mid$$
ある $k \in \mathbb{Z}_2$ が存在して、 $x = ka, y = kb, z = kc\}$

と書ける

▶ 異なる (a, b, c) に対して、異なる直線が得られる



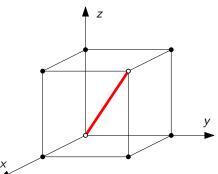
 $\{(0, k, k) \mid k \in \mathbb{Z}_2\}$

▶ \mathbb{Z}_2^3 において,原点 (0,0,0) を通る直線は, $(a,b,c)\in\mathbb{Z}_2^3-\{\mathbf{0}\}$ を使って

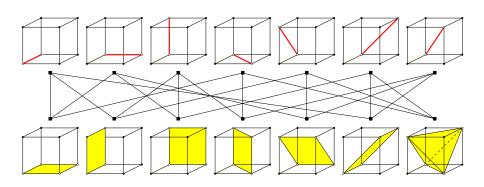
$$\{(x,y,z) \mid$$
ある $k \in \mathbb{Z}_2$ が存在して、 $x = ka, y = kb, z = kc\}$

と書ける

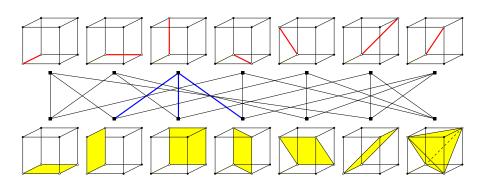
▶ 異なる (a, b, c) に対して、異なる直線が得られる



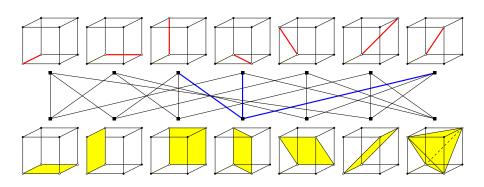
 $\{(k,k,k)\mid k\in\mathbb{Z}_2\}$



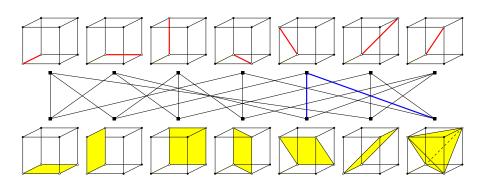
- ▶ どの直線も3つの平面に含まれる
- どの平面も3つの直線を含む
- ▶ 2つの平面に含まれる直線はちょうど1つ
- ▶ 2つの直線を含む平面はちょうど1つ



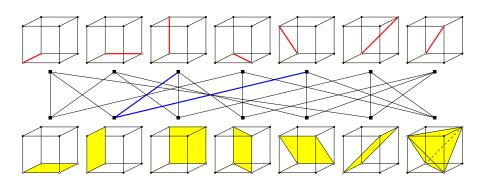
- ▶ どの直線も3つの平面に含まれる
- どの平面も3つの直線を含む
- ▶ 2つの平面に含まれる直線はちょうど1つ
- ▶ 2つの直線を含む平面はちょうど1つ



- ▶ どの直線も3つの平面に含まれる
- どの平面も3つの直線を含む
- ▶ 2つの平面に含まれる直線はちょうど1つ
- ▶ 2つの直線を含む平面はちょうど1つ



- ▶ どの直線も3つの平面に含まれる
- どの平面も3つの直線を含む
- ▶ 2つの平面に含まれる直線はちょうど1つ
- ▶ 2つの直線を含む平面はちょうど1つ



- ▶ どの直線も3つの平面に含まれる
- ▶ どの平面も3つの直線を含む
- ▶ 2つの平面に含まれる直線はちょうど1つ
- ▶ 2つの直線を含む平面はちょうど1つ

ワイン品評の問題との対応

ワイン品評	\mathbb{Z}_2^3 における対象
ワインの種類	原点を通る直線ℓ
品評スタッフ	原点を通る平面 <i>P</i>
ワインを品評するスタッフ	ℓ を含む <i>P</i>
どのワインも3人が批評	どの平面も3つの直線を含む
どの2つのワインも	どの2つの平面も
あるスタッフが批評	ある直線を含む

目次

- ① 組合せデザイン:考えたい問題
- 2 射影平面:例
- 3 有限体から作られる射影平面:定義
- 4 有限射影平面
- 5 今日のまとめ

有限体:復習と記法

位数 q の有限体の構成

- ▶ q が素数べきのときのみ構成できる (つまり、素数 p, 正整数 m を用いて, q = p^m と書けるとき)
- ▶ q = pのときは、Z_qを考えればよい
- ▶ $q = p^m$ のときは, $g(x) \in \mathbb{Z}_p[x]$ を次数 m の既約多項式として, $\mathbb{Z}_p[x]/(g(x))$ を考えればよい

位数 q の有限体は (本質的に) 唯一であることが知られているので、それを \mathbb{F}_q と書くことにする

▶ 要素 $a \in \mathbb{F}_q$ の乗算に関する逆元を a^{-1} と書くことにする (つまり、 \mathbb{F}_q において、 $aa^{-1} = a^{-1}a = 1$)

\mathbb{F}_a 上の射影平面: \mathbb{F}_a^3 における直線

▶ \mathbb{F}_q^3 において,原点 (0,0,0) を通る直線は, $(a,b,c) \in \mathbb{F}_q^3 - \{\mathbf{0}\}$ を使って

$$\{(x,y,z) \mid$$
ある $k \in \mathbb{F}_q$ が存在して、 $x = ka, y = kb, z = kc\}$

と書ける (これを L(a, b, c) とする)

▶ 異なる (a, b, c) に対して、異なる直線が得られるか?

\mathbb{F}_q 上の射影平面: \mathbb{F}_q^3 における直線 (2)

 $\underline{M}:q=3$ のとき $(\mathbb{F}_q=\mathbb{Z}_3$ と見なして考え), \mathbb{Z}_3 において

$$L(2,1,1) = \{(x,y,z) \mid$$
ある $k \in \mathbb{Z}_3$ が存在して、 $x=2k,y=k,z=k\}$
$$= \{(0,0,0),(2,1,1),(1,2,2)\}$$
$$= \{(x,y,z) \mid$$
ある $k \in \mathbb{Z}_3$ が存在して、 $x=k,y=2k,z=2k\}$

 $\underline{M}:q=5$ のとき $(\mathbb{F}_q=\mathbb{Z}_5$ と見なして考え), \mathbb{Z}_5 において

$$L(4,1,3) = \{(x,y,z) \mid$$
ある $k \in \mathbb{Z}_5$ が存在して、 $x = 4k, y = k, z = 3k\}$ $= \{(0,0,0),(4,1,3),(3,2,1),(2,3,4),(1,4,2)\}$ $= \{(x,y,z) \mid$ ある $k \in \mathbb{Z}_5$ が存在して、 $x = k, y = 4k, z = 2k\}$ $= \{(x,y,z) \mid$ ある $k \in \mathbb{Z}_5$ が存在して、 $x = 2k, y = 3k, z = 4k\}$ $= \{(x,y,z) \mid$ ある $k \in \mathbb{Z}_5$ が存在して、 $x = 3k, y = 2k, z = 1k\}$

つまり、同じ直線がちょうど q-1 個だけ現れる

 \mathbb{F}_q 上の射影平面: \mathbb{F}_q^3 における直線の数

\mathbb{F}_q^3 における原点を通る直線の数は?

$$\frac{q^3-1}{q-1}$$
 (すなわち、 q^2+q+1)

例

$$p q = 2 : q^2 + q + 1 = 7$$

$$q = 3 : q^2 + q + 1 = 13$$

$$q = 4 : q^2 + q + 1 = 21$$

$$price q = 5 : q^2 + q + 1 = 31$$

\mathbb{F}_q 上の射影平面: \mathbb{F}_q^3 における直線の数 (補題)

まず,次の補題を証明する

補題 P

任意の
$$(a,b,c) \in \mathbb{F}_q^3 - \{\mathbf{0}\}$$
 に対して $|\{(a',b',c') \in \mathbb{F}_q^3 - \{\mathbf{0}\} \mid L(a,b,c) = L(a',b',c')\}| = q-1$

補題 P の証明:左辺の集合を A とする

- ▶ 定義より、任意の $k \in \mathbb{F}_q \{0\}$ に対して、L(a,b,c) = L(ka,kb,kc)
- ▶ したがって, $|A| \ge |\mathbb{F}_q \{0\}| = q 1$
- ullet 一方,L(a,b,c)=L(a',b',c') ならば,ある $k,k'\in\mathbb{F}_q-\{0\}$ に対して

$$ka = k'a'$$
, $kb = k'b'$, $kc = k'c'$

- ▶ したがって, $a = k^{-1}k'a', b = k^{-1}k'b', c = k^{-1}k'c'$
- ▶ ここで, $k^{-1}k' \in \mathbb{F}_q \{0\}$ に注意
- $|A| \leq |\mathbb{F}_q \{0\}| = q 1$

 \mathbb{F}_q 上の射影平面: \mathbb{F}_q^3 における直線 (証明)

\mathbb{F}_q^3 における原点を通る直線の数は?

$$\frac{q^3-1}{q-1}$$
 (すなわち、 q^2+q+1)

証明: $\mathbb{F}_a^3 - \{\mathbf{0}\}$ 上の同値関係 \sim を以下のように定義

- $(a,b,c) \sim (a',b',c') \Leftrightarrow L(a,b,c) = L(a',b',c')$
- ▶ これは確かに同値関係である

(簡単な演習問題)

- ▶ 補題 P より、この同値関係による同値類の要素数 = q-1
- lack したがって,異なる直線の数は $|\mathbb{F}_q^3/{\sim}|=(q^3-1)/(q-1)$

\mathbb{F}_a 上の射影平面: \mathbb{F}_a^3 における平面

▶ \mathbb{F}_q^3 において,原点 (0,0,0) を通る平面は, $(a,b,c) \in \mathbb{F}_q^3 - \{\mathbf{0}\}$ を使って

$$\{(x, y, z) \mid ax + by + cz = 0\}$$

と書ける (これを P(a, b, c) をする)

▶ 異なる (a, b, c) に対して、異なる平面が得られるか?

 \mathbb{F}_q 上の射影平面: \mathbb{F}_q^3 における平面 (2)

 $\underline{M}: q=3$ のとき ($\mathbb{F}_q=\mathbb{Z}_3$ と見なして考え), \mathbb{Z}_3 において

$$2x + y + z = 0 \Leftrightarrow 2 \cdot (2x + y + z) = 2 \cdot 0$$
$$\Leftrightarrow x + 2y + 2z = 0$$

 $\underline{M}:q=5$ のとき $(\mathbb{F}_q=\mathbb{Z}_5$ と見なして考え), \mathbb{Z}_5 において

$$4x + y + 3z = 0 \Leftrightarrow 2 \cdot (4x + y + 3z) = 2 \cdot 0 \Leftrightarrow 3x + 2y + z = 0$$

$$\Leftrightarrow 3 \cdot (4x + y + 3z) = 3 \cdot 0 \Leftrightarrow 2x + 3y + 4z = 0$$

$$\Leftrightarrow 4 \cdot (4x + y + 3z) = 4 \cdot 0 \Leftrightarrow x + 4y + 2z = 0$$

つまり、同じ平面がちょうど q-1 個だけ現れる

 \mathbb{F}_q 上の射影平面: \mathbb{F}_q^3 における平面の数

\mathbb{F}_q^3 における原点を通る平面の数は?

$$\frac{q^3-1}{q-1}$$
 (すなわち、 q^2+q+1)

例

$$p q = 2 : q^2 + q + 1 = 7$$

$$q = 3 : q^2 + q + 1 = 13$$

$$q = 4 : q^2 + q + 1 = 21$$

$$price q = 5 : q^2 + q + 1 = 31$$

 \mathbb{F}_q 上の射影平面: \mathbb{F}_q^3 における平面の数 (補題 1)

まず、次の補題を証明する

補題 L1

任意の
$$(a,b,c)\in \mathbb{F}_q^3-\{\mathbf{0}\}$$
 に対して $|\{(x,y,z)\mid ax+by+cz=0\}-\{\mathbf{0}\}|=q^2-1$

補題 L1 の証明:左辺の集合を B とする

- $(a,b,c) \neq 0$ より, a,b,c のどれかは非ゼロ
- a ≠ 0 の場合を考える (他の場合も同様)
- ▶ このとき, $x = -a^{-1}by a^{-1}cz$
- ▶ ∴ 任意の $(y,z) \in \mathbb{F}_q^2$ に対して ax + by + cz = 0 を満たす $x \in \mathbb{F}_q$ が一意に定まる
- したがって、 $|B| = |\mathbb{F}_q^2 \{\mathbf{0}\}| = q^2 1$

 \mathbb{F}_q 上の射影平面: \mathbb{F}_q^3 における平面の数 (補題 2)

補題 L2

任意の
$$(a,b,c), (a',b',c') \in \mathbb{F}_q^3 - \{\mathbf{0}\}$$
 に対して、 $L(a',b',c') \subseteq P(a,b,c) \Leftrightarrow (a',b',c') \in P(a,b,c)$

証明:演習問題

 \mathbb{F}_q 上の射影平面: \mathbb{F}_q^3 における平面の数 (補題 3)

原点を通る平面は、原点を通る直線を q+1 個含む

補題 L3

任意の
$$(a,b,c) \in \mathbb{F}_q^3 - \{\mathbf{0}\}$$
 に対して
$$|\{L(a',b',c') \mid (a',b',c') \in \mathbb{F}_q^3 - \{\mathbf{0}\}, L(a',b',c') \subseteq P(a,b,c)\}| = q+1$$

<u>補題 L3 の証明</u>:補題 L2 より, $L(a',b',c') \subseteq P(a,b,c)$ と $(a',b',c') \in P(a,b,c)$ は同値

- ▶ $P(a,b,c) \{\mathbf{0}\}$ 上の同値関係 \sim を以下のように定義 $(a',b',c') \sim (a'',b'',c'') \Leftrightarrow L(a',b',c') = L(a'',b'',c'')$
- ▶ これは確かに同値関係である (前と同様)
- ▶ 補題 P より、この同値関係による同値類の要素数 = q-1
- ▶ したがって、補題 L1 より、異なる直線の数は

$$|(P(a,b,c)-\{\mathbf{0}\})/\sim|=(q^2-1)/(q-1)=q+1$$

\mathbb{F}_q 上の射影平面: \mathbb{F}_q^3 における平面の数 (補題 4)

原点を通る直線は、原点を通る q+1 個の平面に含まれる

補題 L4

任意の
$$(a',b',c') \in \mathbb{F}_q^3 - \{\mathbf{0}\}$$
 に対して $|\{P(a,b,c) \mid (a,b,c) \in \mathbb{F}_q^3 - \{\mathbf{0}\}, L(a',b',c') \subseteq P(a,b,c)\}| = q+1$

補題 L4 の証明:任意の (a',b',c') を考える

- ▶ 原点を通る直線で L(a',b',c') と異なるものの数 $= q^2 + q$
- ▶ 補題 L3 より,原点を通り L(a',b',c') を含む平面は L(a',b',c') の他に q 個の直線を含む
- ▶ そのような2つの平面の共通部分は L(a', b', c')
- ightharpoonup ∴ L(a',b',c') を含む平面の数 $=(q^2+q)/q=q+1$

 \mathbb{F}_a 上の射影平面: \mathbb{F}_a^3 における平面の数

\mathbb{F}_q^3 における原点を通る平面の数は?

$$\frac{q^3-1}{q-1}$$
 (すなわち、 q^2+q+1)

証明:原点を通る異なる平面の数を m として,次を計算する

$$M = \left| \left\{ (P(a, b, c), L(a', b', c')) \middle| \begin{array}{l} (a, b, c), (a', b', c') \in \mathbb{F}_q^3 - \{\mathbf{0}\}, \\ L(a', b', c') \subseteq P(a, b, c) \end{array} \right\} \right|$$

つまり、 M は包含関係を持つ平面と直線の 2 個組の総数

- ightharpoonup 補題 L3 より, $M=m\cdot(q+1)$
- ightharpoonup 補題 L4 より, $M=(q^2+q+1)\cdot (q+1)$
- ▶ したがって, $m = q^2 + q + 1$

\mathbb{F}_a 上の射影平面:まとめ

\mathbb{F}_q^3 において

- ▶ 原点を通る直線の数 = q² + q + 1
- ▶ 原点を通る平面の数 = q² + q + 1
- ▶ 原点を通る1直線を含む、原点を通る平面の数 = q+1
- ▶ 原点を通る1平面が含む、原点を通る直線の数 = q+1
- ▶ 原点を通る2平面が含む、原点を通る直線の数 = 1

ここで作った直線と平面の集合を \mathbb{F}_q 上の射影平面と呼ぶ

考えたい問題の種類:変種

 q^2+q+1 種類のワインを q^2+q+1 人のスタッフで品評したい

公平にするため,次を満たすようにしたい

- \triangleright どのワインも、q+1人のスタッフが品評する
- ▶ どの2つのワインも、あるスタッフが同時に品評する

問題

このような品評の仕方は可能か?

解: \mathbb{F}_q 上の射影平面を考えればよい

- ① 組合せデザイン:考えたい問題
- 2 射影平面:例
- 3 有限体から作られる射影平面:定義
- 4 有限射影平面
- 5 今日のまとめ

有限射影平面:定義

有限射影平面は,有限個の「点」と「直線」の集合として定義される

有限射影平面とは?

正整数 q に対して、位数 q の射影平面とは、次のような 2 個組 (X, \mathcal{L})

- ▶ X は有限集合で, $|X| = q^2 + q + 1$
- ▶ $\mathcal{L} \subseteq 2^X$ は X の部分集合の集合で次を満たす
 - 1 任意の $\ell \in \mathcal{L}$ に対して, $|\ell| = q+1$
 - 2 任意の異なる $x, y \in X$ に対して, $x, y \in \ell$ となる $\ell \in \mathcal{L}$ がただ 1 つ存在する

有限射影平面:いままでの議論の帰結

有限射影平面は、有限個の「点」と「直線」の集合として定義される

有限射影平面とは?

正整数 q に対して、位数 q の射影平面とは、次のような 2 個組 (X,\mathcal{L})

- ▶ X は有限集合で, $|X| = q^2 + q + 1$
- ▶ $\mathcal{L} \subseteq 2^X$ は X の部分集合の集合で次を満たす
 - 1 任意の $\ell \in \mathcal{L}$ に対して, $|\ell| = q+1$
 - 2 任意の異なる $x, y \in X$ に対して, $x, y \in \ell$ となる $\ell \in \mathcal{L}$ がただ 1 つ存在する

いままでの議論の帰結

q が素数べきのとき、位数 q の射影平面は存在する

証明:X を \mathbb{F}_a^3 において原点を通る直線の集合として,

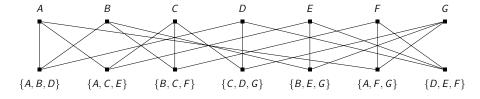
 $\overline{\mathcal{L}}$ を \mathbb{F}^3_a において原点を通る平面が含む直線の集合の集合とすればよい

有限射影平面:いままでの議論の帰結 (例)

$$q=2$$
 のとき: X と \mathcal{L} を次のように置く

$$X = \{A, B, C, D, E, F, G\}$$

$$\mathcal{L} = \{\{A, B, D\}, \{A, C, E\}, \{B, C, F\}, \{C, D, G\}, \{B, E, G\}, \{A, F, G\}, \{D, E, F\}\}$$

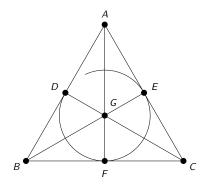


位数2の射影平面はファノ平面と呼ばれることが多い

有限射影平面:いままでの議論の帰結 (例:別の表現)

$$q = 2$$
 のとき: X と \mathcal{L} を次のように置く
$$X = \{A, B, C, D, E, F, G\}$$

$$\mathcal{L} = \{\{A, B, D\}, \{A, C, E\}, \{B, C, F\}, \{C, D, G\}, \{B, E, G\}, \{A, F, G\}, \{D, E, F\}\}$$



位数2の射影平面はファノ平面と呼ばれることが多い

有限射影平面:知られていること

- ▶ 位数 q の有限射影平面が存在 ⇒「ワイン品評の問題」に解がある
- ▶ q が素数べきのとき、位数 q の有限射影平面は存在する
- ightharpoonup q = 6 のとき、位数 q の有限射影平面は存在しない
 - ▶ 注:これは位数6の有限体が存在しないこととは別のはなし
- ▶ q = 9のとき、先の構成法によらない有限射影平面が(3つ)存在する
- price q = 10 のとき、位数 q の有限射影平面は存在しない
 - ▶ 注:これも位数 10 の有限体が存在しないこととは別のはなし

未解決問題

位数が素数べきでない有限射影平面は存在するか?

「存在しない」と予想されている

- ① 組合せデザイン:考えたい問題
- 2 射影平面:例
- 3 有限体から作られる射影平面:定義
- 4 有限射影平面
- 5 今日のまとめ

今日のまとめ

今日のまとめ

- ▶ 有限体を用いて射影平面を構成する
- ▶ 射影平面を用いて組合せデザインの問題を解く

今日の内容に関するキーワード

有限幾何、組合せデザイン、デザイン理論

これらはどれも大きな分野

残った時間の使い方

- ▶ 演習問題をやる
 - ▶ 相談推奨 (ひとりでやらない)
- ▶ 質問をする
 - ▶ 教員と TA は巡回
- ▶ 退室時, 小さな紙に感想など書いて提出する ← 重要
 - ▶ 内容は何でも OK
 - ▶ 匿名で OK

- ① 組合せデザイン:考えたい問題
- 2 射影平面:例
- 3 有限体から作られる射影平面:定義
- 4 有限射影平面
- 5 今日のまとめ