離散数理工学 第 10 回

離散確率論:確率的離散システムの解析

岡本 吉央 okamotoy@uec.ac.jp

電気通信大学

2016年1月5日

最終更新: 2016年1月4日 15:11

スケジュール 前半

1 数え上げの基礎:二項係数と二項定理	(10/6)
★ 休講 (体育祭)	(10/13)
2 数え上げの基礎:漸化式の立て方	(10/20)
3 数え上げの基礎:漸化式の解き方 (基礎)	(10/27)
★ 祝日で休み	(11/3)
4 数え上げの基礎:漸化式の解き方 (発展)	(11/10)
5 離散代数:整数と有限体	(11/17)
6 離散代数:多項式環	(11/24)
🔽 離散代数:多項式環による有限体の構成	(12/1)
8 離散代数:有限体の応用	(12/8)

スケジュール 後半 (予定)

9	離散確率論:確率の復習と確率不等式	(12/15)
*	中間試験	(12/22)
10	離散確率論:確率的離散システムの解析	(1/5)
11	離散確率論:乱択データ構造とアルゴリズム (基礎)	(1/12)
12	離散確率論:乱択データ構造とアルゴリズム (発展)	(1/19)
13	離散確率論:マルコフ連鎖 (基礎)	(1/26)
14	離散確率論:マルコフ連鎖 (発展)	(2/2)
*	予備日	(2/9)
*	期末試験	(2/16?)

注意:予定の変更もありうる

今日の目標

今日の目標

典型的な確率的離散システムの解析ができるようになる

- 不公平な硬貨投げ
- ▶ クーポン収集問題
- ▶ 誕生日のパラドックス

目次

① 不公平な硬貨投げ

2 クーポン収集問題

3 誕生日のパラドックス

4 今日のまとめ

不公平な硬貨投げ:設定

不公平な硬貨投げ

次のような硬貨 (コイン)を1つ投げる

- ▶ 表の出る確率 = p
- ▶ 裏の出る確率 = 1 p

ただし、0

典型的な問題:この硬貨を続けて何回か独立に投げる

- n回投げて、表が n回出る確率は?
- 2 n回投げて,表が一度も出ない確率は?
- 3 n回投げて,表が一度は出る確率は?
- 4 n回投げて,表が出る回数の期待値は?
- **5** 表が出るまで投げ続けるとき、投げる回数の期待値は?

不公平な硬貨投げ:表が出続ける確率は?

- ► E_i = i 回目に表が出る (事象)
- ▶ このとき, E_1, \ldots, E_n は互いに独立なので

$$\Pr($$
表が n 回出る $)$ = $\Pr(E_1 \text{ かつ } E_2 \text{ かつ } \cdots \text{ かつ } E_n)$
 = $\Pr(E_1) \cdot \Pr(E_2) \cdot \cdots \cdot \Pr(E_n)$
 = $p \cdot p \cdot \cdots \cdot p$
 = p^n

不公平な硬貨投げ:表が一度も出ない確率は?

- ► E_i = i回目に裏が出る(事象)
- ▶ このとき, $\overline{E_1}, \ldots, \overline{E_n}$ は互いに独立なので

$$\Pr(n \ \Box p, \ \overline{a})$$
 要も出ない) = $\Pr(\overline{E_1})$ かつ \cdots かつ $\overline{E_n}$) = $\Pr(\overline{E_1}) \cdots \Pr(\overline{E_n})$ = $(1-p) \cdots (1-p)$ = $(1-p)^n$

不公平な硬貨投げ:表が一度は出る確率は?

- ▶ 「表が一度は出る」という事象は 「表が一度も出ない」という事象の余事象
- ▶ したがって,

$$Pr(n 回 + n, 表が一度は出る) = 1 - Pr(n 回 + n, 表が一度も出ない)$$

= $1 - (1 - p)^n$

不公平な硬貨投げ:表が出る回数の期待値は?

▶ 次の確率変数を考える (事象 E; の標示確率変数と呼ばれる)

$$X_i = \begin{cases} 1 & (E_i \text{ が生起する, つまり, } i \text{ 回目に表が出る)} \\ 0 & (E_i \text{ が生起しない, つまり, } i \text{ 回目に裏が出る)} \end{cases}$$

- ▶ このとき, $E[X_i] = 1 \cdot p + 0 \cdot (1 p) = p$
- ▶ したがって,

$$\mathsf{E}[n$$
回中,表が出る回数] $= \mathsf{E}[X_1 + \cdots + X_n]$
 $= \mathsf{E}[X_1] + \cdots + \mathsf{E}[X_n] = \mathsf{pn}$

不公平な硬貨投げ:表が出るまで投げ続けるとき、投げる回数の期待値は?

- ▶ $A_i = 1$ 回目から i-1 回目まですべて裏で、i 回目で表が出る (事象)
- ▶ このとき.

$$\Pr(A_i) = \Pr(\overline{E_1} \text{ ind } \dots \text{ ind } \overline{E_{i-1}} \text{ ind } E_i)$$

$$= \Pr(\overline{E_1}) \cdot \dots \cdot \Pr(\overline{E_{i-1}}) \cdot \Pr(E_i)$$

$$= (1-p)^{i-1}p$$

▶ したがって,

求める期待値
$$=\sum_{i=1}^{\infty}i\cdot \Pr(A_i)$$
 $=\sum_{i=1}^{\infty}i\cdot (1-p)^{i-1}p$ $=\frac{1}{p}$ (詳細は演習問題)

不公平な硬貨投げ:表が出る回数が期待値から離れる確率は?

▶ 次の確率変数を考える (事象 E; の標示確率変数と呼ばれる)

$$X_i = \begin{cases} 1 & (E_i \text{ が生起する, つまり, } i \text{ 回目に表が出る)} \\ 0 & (E_i \text{ が生起しない, つまり, } i \text{ 回目に裏が出る)} \end{cases}$$

▶ このとき,

$$\mathsf{E}[n$$
回中,表が出る回数] = $\mathsf{E}[X_1+\cdots+X_n]$
 = $\mathsf{E}[X_1]+\cdots+\mathsf{E}[X_n]=pn$

次の確率はどれくらい小さいか? (または大きいか?)

$$\Pr(X_1 + \cdots + X_n \ge 2pn)$$

不公平な硬貨投げ:マルコフの不等式

マルコフの不等式より

$$\Pr(X_1 + \dots + X_n \ge 2pn) \le \frac{E[X_1 + \dots + X_n]}{2pn} = \frac{pn}{2pn} = \frac{1}{2}$$

「とても小さい」ということが証明できない

マルコフの不等式

(復習)

自然数値確率変数 $X \ge 0$ と正実数 t > 0 に対して,E[X] が存在するとき

$$\Pr(X \ge t) \le \frac{\mathsf{E}[X]}{t}$$

不公平な硬貨投げ:チェルノフ上界の技法

マルコフの不等式より

$$\Pr(X_1 + \dots + X_n \ge 2pn) = \Pr(2^{X_1 + \dots + X_n} \ge 2^{2pn})$$

 $\le \frac{E[2^{X_1 + \dots + X_n}]}{2^{2pn}}$

よって, $E[2^{X_1+\cdots+X_n}]$ を知りたい

不公平な硬貨投げ:チェルノフ上界の技法 (2)

 X_1,\ldots,X_n は互いに独立なので、 $2^{X_1},\ldots,2^{X_n}$ も互いに独立であり、

$$\mathsf{E}[2^{X_1+\cdots+X_n}] = \mathsf{E}\left[\prod_{i=1}^n 2^{X_i}\right]$$

$$= \prod_{i=1}^n \mathsf{E}\left[2^{X_i}\right] \qquad \leftarrow 独立性を利用$$

ここで,任意の i に対して

$$\mathsf{E}\left[2^{X_{i}}\right] = 2^{1} \cdot p + 2^{0} \cdot (1-p) = 2p + (1-p) = 1+p$$

ゆえに,

$$\mathsf{E}\left[2^{X_1+\cdots+X_n}\right] = \prod_{i=1}^n \mathsf{E}\left[2^{X_i}\right] = (1+p)^n$$

不公平な硬貨投げ:チェルノフ上界の技法 (3)

まとめると,

$$\Pr(X_1 + \dots + X_n \ge 2pn) \le \frac{\mathbb{E}\left[2^{X_1 + \dots + X_n}\right]}{2^{2pn}}$$

$$= \frac{(1+p)^n}{2^{2pn}} = \left(\frac{1+p}{4^p}\right)^n$$

- ▶ 右辺は n が大きくなるにつれて小さくなる
- p = 1/2 のとき,右辺 $= (3/4)^n$

不公平な硬貨投げ:チェルノフ上界の技法 (4)

疑問

- ▶ 疑問:*X_i* から 2^{*X_i*} を作ったが,「2」でないといけないのか?
- ▶ 回答:「2」でなくてもよい. 1より大きければよい

例えば,2ではなく,3にすると,

$$\Pr(X_1 + \dots + X_n \ge 2pn) \le \frac{\mathbb{E}\left[3^{X_1 + \dots + X_n}\right]}{3^{2pn}}$$

$$= \frac{(1+2p)^n}{3^{2pn}} = \left(\frac{1+2p}{9^p}\right)^n$$

p=1/2 のとき,この右辺は $(2/3)^n$

チェルノフ上界の技法:Xが独立確率変数の和であるとき

- ▶ E[X] の代わりに E[c^X] を考えて、マルコフの不等式 (など) を適用
- ▶ 上界ができる限り小さくなるように、定数 c を定める

目次

① 不公平な硬貨投げ

2 クーポン収集問題

③ 誕生日のパラドックス

4 今日のまとめ

クーポン収集問題

クーポン収集問題

設定

- ▶ 商品を買うと n 種類の景品 (クーポン) の中の1つが当たる
- ▶ 景品の集合 N = {1,...,n}
- ▶ どの景品 i に対しても, $Pr(景品 i が当たる) = \frac{1}{n}$ で, これらは商品の間で同一であり,互いに独立

問題

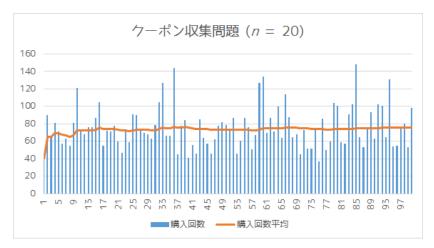
▶ 全種類の景品を集め切るまで、何個商品を購入すればよいか?

注意:購入商品数は確率変数なので,答えたいものは

- ▶ 購入商品数の期待値
- ▶ 高確率で購入する商品数 (の上界)

クーポン収集問題:シミュレーション

景品数 20 の場合



10000 回の試行:購入商品数平均 = 72.0825

クーポン収集問題:期待値

考え方:商品を次々と買うとき、既にいくつ景品を持っているか考慮する

▶ $Pr(新しい景品が当たる | 既に景品を j 個所持) = \frac{n-J}{n}$ ここで、次の確率変数を考える

 $X_j =$ 景品をj種類所持した瞬間から、 新しい景品が当たるまでに購入した商品の数

- ▶ 景品をj種類所持しているとき、新しい景品が当たることは 表が出る確率が $\frac{n-j}{n}$ である硬貨を投げて表が出ることとみなせる
- ト したがって, $\mathrm{E}[X_j] = \frac{n}{n-j}$

クーポン収集問題:期待値(続き)

▶ 購入商品数 = $X_0 + X_1 + \cdots + X_{n-1}$ なので,

$$E[購入商品数] = E[X_0 + X_1 + \dots + X_{n-1}]$$

$$= E[X_0] + E[X_1] + \dots + E[X_{n-1}]$$

$$= \frac{n}{n} + \frac{n}{n-1} + \dots + \frac{n}{1}$$

$$= n \sum_{k=1}^{n} \frac{1}{k}$$

調和数とは?

第n調和数とは、次で定義される数 H_n のこと

$$H_n = \sum_{k=1}^n \frac{1}{k}$$

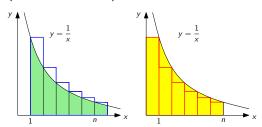
調和数の性質

調和数の上界と下界

任意の整数 n > 1 に対して

$$\ln(n+1) \le H_n \le 1 + \ln n$$

証明:演習問題 (ヒントは次の図)



帰結

$$H_n = \ln n + O(1)$$

クーポン収集問題:期待値から確率へ

▶ すなわち,

$$E[$$
購入商品数 $] = nH_n = n \ln n + O(n)$

▶ マルコフの不等式より

$$\Pr($$
購入商品数 $\geq 2nH_n) \leq \frac{\mathsf{E}[$ 購入商品数]}{2nH_n} = \frac{1}{2}

購入商品数が大きくなる確率に対して、もっと「きつい」上界が欲しい

クーポン収集問題:期待値から確率へ -- 合併上界の利用 (1)

- ▶ E_i = 2nH_n 回の商品購入で景品 i が得られない (事象)
- ▶ このとき、任意の i ∈ {1,...,n} に対して、

$$\Pr(E_i) = \left(\frac{n-1}{n}\right)^{2nH_n} = \left(1 - \frac{1}{n}\right)^{2nH_n}$$

$$\leq \left(e^{-\frac{1}{n}}\right)^{2nH_n} = e^{-2H_n}$$

$$\leq e^{-2\ln(n+1)} = \frac{1}{(n+1)^2}$$

事実:有用な不等式

(第1回講義より)

任意の実数 x に対して

$$1 + x < e^{x}$$

クーポン収集問題:期待値から確率へ -- 合併上界の利用 (2)

▶ したがって,

$$\Pr($$
購入商品数 $> 2nH_n)$ $=$ $\Pr(E_1$ または E_2 または \cdots または $E_n)$ $\leq \sum_{i=1}^n \Pr(E_i)$ $\leq n \cdot \frac{1}{(n+1)^2} \leq \frac{n+1}{(n+1)^2} = \frac{1}{n+1}$

つまり、 $\lim_{n\to\infty} \Pr(購入商品数 > 2nH_n) = 0$

合併上界

事象 A, B に対して

$$\Pr(A \cup B) \leq \Pr(A) + \Pr(B)$$

クーポン収集問題:期待値から確率へ(続)

次が知られている(証明は省略:ポアソン近似とチェルノフ技法を使う)

エルデシュとレニィによる 1961 年の結果

任意の正実数 c > 0 に対して,

$$\lim_{n \to \infty} \Pr($$
購入商品数 $> n \ln n + cn) = 1 - e^{-e^{-c}},$ $\lim_{n \to \infty} \Pr($ 購入商品数 $< n \ln n + cn) = 1 - e^{-e^{-c}}$

つまり購入商品数 (確率変数) は、その期待値の周りに集中している

クーポン収集問題:まとめ

クーポン収集問題

設定

- ▶ 商品を買うと n 種類の景品 (クーポン) の中の1つが当たる
- ▶ 景品の集合 N = {1,...,n}
- ▶ どの景品 i に対しても,Pr(景品 i) が当たる) = $\frac{1}{n}$ で, これらは商品の間で同一であり,互いに独立

問題

▶ すべての景品を集め切るまで、何個商品を購入すればよいか?

回答

- ▶ 購入商品数の期待値は nH_nであり,
- ▶ $n \to \infty$ のとき,購入商品数は高い確率で nH_n になる

目次

① 不公平な硬貨投げ

② クーポン収集問題

3 誕生日のパラドックス

4 今日のまとめ

誕生日のパラドックス:例

誕生日問題

10人いる部屋の中に、誕生日が同じ2人はいるか? そのような2人がいる確率は?

仮定

- ▶ 1年は366日
- ▶ 人の誕生日がそれら366日の間に等確率で分布する

$$Pr(i$$
 さんの誕生日が j) = $\frac{1}{366}$

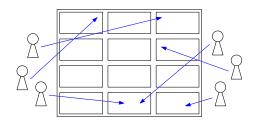
誕生日のパラドックス:計算

まず、10人の誕生日がすべて異なる確率を計算する

ightharpoonup 10 人の誕生日がすべて異なる確率 $=rac{366\cdot 365\cdot \dots \cdot 357}{366^{10}}pprox 0.883$

したがって

- ▶ 10 人の中に誕生日の同じ人がいる確率 ≈ 1 0.883 = 0.117 つまり,
 - ▶ 11 % ぐらいの確率で同じ誕生日の2人がいる



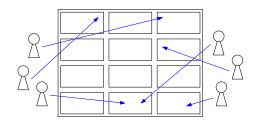
誕生日のパラドックス:計算 - 30 人の場合

まず、30人の誕生日がすべて異なる確率を計算する

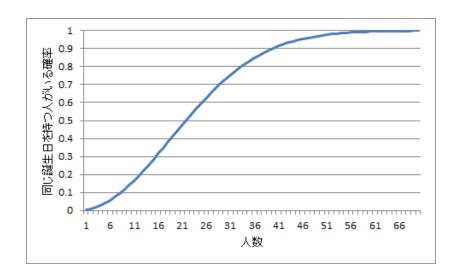
ightharpoonup 30 人の誕生日がすべて異なる確率 = $\frac{366 \cdot 365 \cdot \dots \cdot 337}{366^{30}} \approx 0.295$

したがって

- ▶ 30 人の中に誕生日の同じ人がいる確率 ≈ 1 0.295 = 0.705 つまり,
 - ▶ 70 % ぐらいの確率で同じ誕生日の2人がいる



誕生日のパラドックス:計算してみた



誕生日のパラドックス:一般化

設定

- ▶ k = 1年の日数
- ▶ m = 部屋の人数
- ▶ $Pr(i \circ \lambda o$ 誕生日が $j) = \frac{1}{k}$

問題

- 1 部屋の中に同じ誕生日の2人がいる確率は?
- 2 同じ誕生日の2人がいる確率が ⅓ を超えるのはいつ?

誕生日のパラドックス:一般化

まず、 m 人の誕生日がすべて異なる確率を計算する

- ightharpoonup m人の誕生日がすべて異なる確率 $=rac{k\cdot(k-1)\cdot\dots\cdot(k-m+1)}{k^m}$
- ▶ ここで、

$$\frac{k \cdot (k-1) \cdot \dots \cdot (k-m+1)}{k^m} = \prod_{i=0}^{m-1} \frac{k-i}{k} = \prod_{i=0}^{m-1} \left(1 - \frac{i}{k}\right)$$

$$\leq \prod_{i=0}^{m-1} e^{-\frac{i}{k}} = e^{\sum_{i=0}^{m-1} - \frac{i}{k}} = e^{-\frac{m(m-1)}{2k}}$$

事実:有用な不等式

(第1回講義の復習)

任意の実数 x に対して

$$1 + x < e^x$$

誕生日のパラドックス:一般化 (2)

したがって,

- ightharpoons m 人の中に誕生日が同じ 2 人がいる確率 $\geq 1 e^{-\frac{m(m-1)}{2k}}$
- $ightharpoonup m \geq \sqrt{(2\ln 2)k} + 1$ のとき,この右辺が $\frac{1}{2}$ 以上になる

なぜならば、
$$m \geq \sqrt{(2\ln 2)k} + 1$$
 であるとき、 $(m-1)^2 \geq (2\ln 2)k$ $\therefore m(m-1) \geq (2\ln 2)k$ $\therefore -\ln 2 \geq -\frac{m(m-1)}{2k}$ $\therefore \frac{1}{2} \geq e^{-\frac{m(m-1)}{2k}}$ $\therefore 1 - e^{-\frac{m(m-1)}{2k}} \geq \frac{1}{2}$ となるから

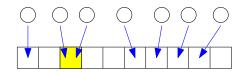
誕生日のパラドックス:ハッシュ値の衝突との関係

ハッシュ

(アルゴリズム論第一の復習)

ハッシュ関数は $N = \{1, \ldots, n\}$ から $K = \{1, \ldots, k\}$ への関数 h (典型的には k < n)

- ▶ 性質:h が「よくかき混ぜる」関数であるとき h(x) = h(y) であるならば,x = y である可能性が高い
- $x \neq y$ であるのに h(x) = h(y) であるとき, $x \geq y$ のハッシュ値が衝突 (好ましくない)



誕生日のパラドックス:ハッシュ値の衝突との関係 (続)

ハッシュ

(アルゴリズム論第一の復習)

ハッシュ関数は $N = \{1, \ldots, n\}$ から $K = \{1, \ldots, k\}$ への関数 h (典型的には k < n)

- ▶ 性質:h が「よくかき混ぜる」関数であるとき h(x) = h(y) であるならば,x = y である可能性が高い
- $x \neq y$ であるのに h(x) = h(y) であるとき, $x \geq y$ のハッシュ値が衝突 (好ましくない)

次の2つは同じであると見なせる

- ▶ 要素数 m の部分集合 $S \subseteq N$ にハッシュ値の衝突する 2 要素があるか?
- ▶ 1年が k 日の場合, m 人の部屋の中に誕生日の同じ 2 人がいるか?
- $\therefore m \ge \sqrt{(2\ln 2)k} + 1$ のとき,そのような 2 要素の存在確率は $\frac{1}{2}$ 以上

目次

① 不公平な硬貨投げ

2 クーポン収集問題

3 誕生日のパラドックス

4 今日のまとめ

今日の目標

今日の目標

典型的な確率的離散システムの解析ができるようになる

- ▶ 不公平な硬貨投げ
- ▶ クーポン収集問題
- ▶ 誕生日のパラドックス

残った時間の使い方

- ▶ 演習問題をやる
 - ▶ 相談推奨 (ひとりでやらない)
- ▶ 質問をする
 - ▶ 教員と TA は巡回
- ▶ 退室時, 小さな紙に感想など書いて提出する ← 重要
 - ▶ 内容は何でも OK
 - ▶ 匿名で OK

目次

① 不公平な硬貨投げ

2 クーポン収集問題

3 誕生日のパラドックス

4 今日のまとめ