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MUCH OF THE ELECTRIC SYSTEM IS WEATHER
dependent; thus, our ability to forecast the weather con-
tributes to its efficient and economical operation. Clima-
tological forecasts of meteorological variables are used 
for long-term planning, capturing changing frequencies of 
extreme events, such as cold and hot periods, and identify-
ing suitable locations for deploying new resources. Plan-
ning for fuel delivery and maintenance relies on subsea-
sonal to seasonal forecasts. On shorter  timescales of days, 
the weather affects both energy demand and supply. Elec-
trical load depends critically on weather because electricity 
is used for heating and cooling. As more renewable energy 
is deployed, it becomes increasingly important to under-
stand how these energy sources vary with atmospheric con-
ditions; thus, predictions are necessary for planning unit 
commitments. On the scales of minutes to hours, short-
term nowcasts aid in the real-time grid integration of these 
variable energy resources (VERs).

Meteorologists use the dynamical equations of fl uid 
motion to forecast the weather by numerically integrat-
ing those equations forward in time in numerical weather 
prediction (NWP) models. The weather is both variable 
and uncertain. Because the equations are nonlinear, they 
are inherently chaotic. Thus, slight changes in initial or 
boundary conditions, or changes to the representation of 
physical processes, can lead to large changes in the fore-
casts. Meteorologists have learned to deal with the result-
ing uncertainty by providing probabilistic forecasts.

Varying degrees of uncertainty also exist in almost 
all other parts of the electric system’s operation, includ-
ing the load forecast, the dynamic capacity of transmis-
sion lines, and unscheduled outages of nonvariable gen-
erators and transmission resources. Some of these are 
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weather dependent, while others are associated with different uncertainty factors. Therefore, the 
entire system has uncertainties that are most effectively managed with a probabilistic approach.

Because both the atmosphere and the electrical system with significant VERs contain large 
uncertainties, a probabilistic approach to forecasting and planning becomes necessary to opti-
mize the weather-dependent systems. Using probabilistic information provides knowledge that 
can be used to enhance situational awareness, assess multiple potential grid scenarios, optimize 
economic outcomes, leverage smart statistics, and improve plans. Probabilistic forecasts should 

not be considered the only means to solve the problem of 
predictability of VER output but, rather, as a way forward 
to better deal with the many specific tasks in power sys-
tem operations. These forecasts provide the possibility of 
making decisions based on a best guess and preparing for 
the less likely (lower probability) scenarios or extremes 
that may cause security issues on the grid, such as exces-
sive costs for balancing services or equipment malfunc-
tions or failures. We will describe some of the leading 
ways that probabilistic forecasts are being used and show 
how they might additionally be leveraged to enhance 
power system operation and planning.

Building Probabilistic Forecasts
Four primary methodologies are currently used to gener-
ate probabilistic forecasts for the power industry:
   ✔	 type 1: statistical methods of probabilistic forecasts
   ✔	 type 2: statistically based scenarios
   ✔	 type 3: physically based ensemble forecasts
   ✔	 type 4: perturbation-based ensemble forecasts.

These methodologies differ in their output and usage 
possibilities, complexity, and computational resource 
requirements. Figure 1 summarizes these approaches and 
their typical output types.

The first two methodologies statistically generate a 
probability density function (pdf) from a deterministic 
NWP simulation and the last two by employing differ-
ent NWP models or model parameterization schemes or 
perturbing the initial or boundary conditions. The dis-
advantage of running multiple ensemble members is the 
high computational cost in comparison to statistically 
based methodologies.

However, the user of such forecasts should be aware 
that each approach conveys a different type of information 
about the forecast uncertainty. The statistical postprocess-
ing of a single NWP forecast represents the composite 
historical uncertainty (i.e., based on the statistical sample), 
whereas an NWP ensemble more explicitly characterizes 
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the uncertainty of the current sce-
nario. Figure 2 compares the differ-
ence in the uncertainty information 
as seen in the uncertainty bands 
for wind power forecasts for all 
German wind plants derived from 
a statistical type 1 approach using 
a single NWP model and a multi-
model (type 3) approach. While the 
multimodel spread indicated a high 
risk of ramping up around noon, 
the single-model quantiles indi-
cated a moderate potential error 
because the statistical methods 
constructed a constant climatol-
ogy band around a single forecast. 
Extremes and outliers in present 
weather situations are not well mod-
eled by these methods.

Evaluating Probabilistic 
Forecasts
Evaluating the performance of 
probabilistic forecasts is unavoid-
ably more complex than assessing 
deterministic forecasts because 
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figure 2. A comparison of uncertainty information between a statistical approach 
based on a single NWP (blue dashed lines) and spread (deviation) of multiple NWP 
forecasts (orange shading). (Source: Energy & Meteo Systems.)
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figure 1. An overview of the four state-of-the-art forecast methodologies to generate probabilistic forecasts.
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the former contain more information. There are three funda-
mental attributes that describe the performance of probabi-
listic forecasts: 1) reliability, 2) sharpness, and 3) resolution.

The reliability of a probabilistic forecast is the degree 
to which the frequency of the actual outcome matches the 
forecasted probability. For example, do events with a 60% 
probability occur in 60% of the cases? If the reliability is 
not high, the forecast presents a distorted view of the uncer-
tainty and requires calibration.

The sharpness attribute measures the spread of a pdf. 
The sharpest probability forecast is one in which one value 
of a forecast variable has a probability of 100%, and all other 
values have a probability of 0%, which is essentially a deter-
ministic forecast. A sharper forecast (i.e., closer to a deter-
ministic forecast) is desirable but only if reliability is high. If 
a set of forecasted pdfs typically displays less spread than the 
climatological frequencies, then the forecast is often consid-
ered to have meaningful sharpness.

The resolution attribute refers to the ability to distinguish 
among cases with different pdfs. A forecast method that pro-
duces the same probability distribution for all cases (e.g., 
every forecast cycle) shows zero resolution. An example of a 
zero-resolution forecast is the climatological frequency dis-
tribution, which does not distinguish among forecast cases. 
However, such a forecast may be highly reliable (as in the 
case of a climatological distribution). A probabilistic forecast 
with high resolution enables the user to more effectively dis-
tinguish cases with low forecast uncertainty from those with 
high uncertainty, which may be the most valuable aspect of 
probabilistic forecasts for many applications.

There are metrics to measure each of these attributes, 
with reliability measured most often. Although a high degree 
of reliability is necessary for a probabilistic forecast to have 
value, it is seldom sufficient. In practice, the sharpness and 
resolution distinguish among alternative probabilistic fore-
cast solutions. Forecast providers often use composite scores 
that are implicitly sensitive to all three attributes.

How End Users Use  
Probabilistic Forecasts
Nearly all grid system operators with high shares of VERs 
use weather-dependent generation forecasts. Typically, they 
use only a best, single (i.e., deterministic) forecast. The use 
of probabilistic forecasts by grid operators with heavy renew-
able penetrations is growing, leading to enhanced grid man-
agement decision making. Such forecasting is also providing 
market uncertainty products to enable automatic commitment 
of resources to assist with renewable uncertainty. The follow-
ing sections provide examples of the current use of forecast 
uncertainty information in grid management processes.

Using Probabilistic Information as Input for 
Grid Security Calculations: A German Example
Several German transmission system operators (TSOs) and 
distribution system operators (DSOs) have recognized the 

importance of including VER predictions in load flow cal-
culations to detect future grid congestion and identify coun-
termeasures. In the German power system, most renewable 
generators are connected at the 110-kV or lower voltage 
level. This leads to an interest in the power flow through 
substations that connect different grid levels, referred to 
as vertical grid load. The exchange of data between grid 
operators, especially between TSOs and DSOs, is tradi-
tionally tedious. Several recent initiatives to exchange data 
regarding grid topology, VER units connected to specific 
grid points, and actual output promise to optimize grid-
related forecasts. Vendors in Germany now provide fore-
casts of the vertical grid load to grid operators for a number 
of substations. Recent experience indicates that integrating 
generation, load, and price forecasts leads to more accu-
rate projections of the vertical grid load. In addition, confi-
dence bands show the uncertainty of the vertical grid load 
forecast, as illustrated in Figure 3.

German grid operators currently calculate congestion 
forecasts for a specific voltage level based on determinis-
tic generation and load predictions. The resultant load flow 
forecasts and grid security measures do not incorporate 
any uncertainty information about volatile wind and photo-
voltaic (PV) generation. German TSOs plan to use probabi-
listic forecasts, i.e., scenario forecasts, as an input for grid 
congestion security calculations (e.g., congestion forecasts) 
to consider uncertainty in grid management processes.

Several methods are used for calculating forecast scenarios 
of the power production of spatially distributed wind plants 
and PV stations based on probabilistic forecasts. Using meth-
ods such as ensemble copula-coupling approaches (method 2 
in Figure 1), one can calibrate the scenario in time and space 
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figure 3. A forecast of vertical grid load (solid black line) 
for one substation between TSO and DSO grids with upper 
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to obtain reliable wind and PV forecast scenarios with realis-
tic weather-driven correlations among locations. Figure 4 is 
an example of a vertical grid load measurement and proba-
bilistic and deterministic forecasts of the wind power share at 
this transformer.

Using a calibrated scenario forecast instead of a single 
best forecast for all points of common coupling (PCCs) 

implies that the load flow calculation must be repeated 
for each scenario member. Besides the multiple load flow 
calculations, grid operators must interpret the characteris-
tics of the resultant load flow for each grid state scenario. 
These scenarios can be used to optimize redispatch and 
VER curtailment actions based on risk according to the 
probability of predefined critical grid states. Scenario fore-
casts can also be used to calculate system services that a 
DSO could provide to a TSO at a single PCC. Figure 5 
plots results from simulations using historical data from 
a German DSO, for a use case concerning reactive power 
demand by the TSO. The system required that no reac-
tive power exchange take place at this PCC. In Figure 5, 
the red triangles show the original expected interchange 
of reactive power flow at the PCC and the green triangles 
the flow after optimization of the operation of the installed 
VER (none needed). The green regions represent the pos-
sible reactive power flexibility of the VER at each time step.  
The pink and yellow areas display a simulated forecast of 
reactive power at the beginning of the time series (6:00 a.m.) 
and its uncertainty, respectively. In this case, the optimiza-
tion did a good job of satisfying the criteria of meeting zero 
reactive power exchange at the PCC.

Using Probabilistic Information to Fine-Tune 
Unit Commitment: A Lesson From the U.S. 
Southwest Power Pool
The U.S. Southwest Power Pool (SPP) has incorporated 
more than 17 GW of wind resources into its generation fleet 
over the past decade. As of early 2019, SPP had a total wind 
capability of 21.5 GW. To date, SPP has seen upwards of 
16.4 GW of instantaneous wind generation and served an 
instantaneous 63.4% of system load with wind energy. These 
high levels of variable energy production make accurate and 
up-to-date resource forecasting critical for system reliability. 
As industry experts and vendors work to improve forecasts 
for end-user consumption, SPP is also taking steps to man-
age real-time, day-ahead, and multiday forecast errors to 
better understand the potential impacts of forecast uncer-
tainty. Thus, probabilistic forecasting is likely to provide 
value for these time frames.

SPP has developed a process to maintain situational aware-
ness of the impacts of potential forecast errors. Each day, 
the staff runs real-time studies that assume various forecast 
errors. These multiday reliability studies help the organiza-
tion ensure that, in the event that forecast errors occur, it will 
still have sufficient energy capacity available to serve load. 
Currently, SPP runs four daily studies with different levels 
of error and resource flexibility: two with an 85th-percentile 
forecast errors for both load and variable resource applied 
and another two with 99th-percentile errors. An advance 
notice interval of either 6 or 20 h differentiates the two stud-
ies at each error percentile. This advance notice interval des-
ignates how far in advance of a particular target interval a 
resource can be called on to be available for that interval. 
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This is particularly important because many resources have 
lengthy lead times and must be started well in advance to 
ensure that they are online and available to serve load. The 
staff uses the results of these multiday reliability studies to 
determine whether additional generation needs to be started 
ahead of time to mitigate real-time forecast errors.

Currently, SPP takes into account up to 10 unique NWP 
weather models and examines their potential spread to quan-
tify the forecast’s uncertainty level. If ensemble members 
are strongly clustered (i.e., spread is low), SPP treats the sce-
narios with higher certainty. But if the ensemble spread is 
several gigawatts, commensurate with lower overall capac-
ity, SPP runs studies to account for higher forecast errors to 
ensure reliability across the system. In cases where SPP com-
mits additional units to mitigate the risk of forecast errors 
that do not materialize, the cost of system reliability due to 
incorrect interpretation of the forecast is equal to the make-
whole payments of the generators committed.

In addition to multiday reliability studies, SPP assesses 
probable forecast errors in the wind forecast during 1-, 4-, 
and 8-h horizons across multiple days. For this uncertainty 
assessment, SPP applies probable errors and then evaluates 
available capacity during each horizon for sufficiency. The 
probable error is determined by correlating the forecasted 
weather with past 95th-percentile wind forecast errors. In 
cases where errors exceed avail-
able capacity for a particular hori-
zon, actions may be taken to secure 
capacity beyond that horizon to 
ensure reliable system operations. 
An internal uncertainty response 
team evaluates weather and other 
system conditions to identify high-
risk time frames during which 
SPP may face greater uncertainty 
in load and VER forecasts. The 
resulting heightened awareness of 
forecast uncertainty impacts has 
helped SPP maintain reliable oper-
ations during forecast excursions. 
The group continues to work with 
forecast vendors to gain better visi-
bility of high-uncertainty intervals.

Other operators are applying 
similar analyses or considering 
whether to do so. For instance, the 
Portuguese TSO values the proba-
bilistic forecast’s ability to quan-
tify the added reserves needed due 
to errors in forecasting renewable 
VER generation (wind, solar, and 
hydro). The probabilistic informa-
tion provides the confidence inter-
val that the operator needs to man-
age the system.

Capturing Extreme Conditions:  
A Lesson From the Electric Reliability  
Council of Texas
While renewable energy forecasting has advanced, it remains 
challenging to accurately predict the output from VERs. Fig-
ure 6 is a histogram of system-wide wind generation forecast 
errors in 2018 at the Electric Reliability Council of Texas 
(ERCOT). Although the forecast errors are concentrated near 
zero, large forecast errors still occur. Probabilistic wind fore-
casting becomes particularly valuable for the large variations 
in wind generation that drive these large forecast errors. When 
these low-probability events are predicted within the distribu-
tion of the probabilistic forecast, their impact on the security 
and reliability of the grid can be assessed, and a correspond-
ing mitigation plan can be developed.

Fluctuations from VERs impose a challenge to the bal-
ancing services that operators perform to maintain satisfac-
tory grid reliability. ERCOT uses a probabilistic forecast that 
is updated every 15 min to alert system operators of projec-
tions for large wind ramp rates during the next 6 h. Figure 7 
displays forecasts from ERCOT’s Large Ramp Alert System 
(ELRAS). ELRAS provides estimates of the probability that 
wind ramp rates on the 15-min, 60-min, and 180-min time 
scales will exceed a set of predefined thresholds. An early 
warning for a large wind ramp event will trigger an in-depth 
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analysis to evaluate the system’s robustness for accommodat­
ing this impending event.

A statistical probabilistic forecast of type 1 provides a 
range of values, characterized as percentiles or the probability 
of occurrence, that can help the operators gauge the need for 
reserves in each forecasted scenario. ERCOT has develop­
ed an online tool to incorporate probabilistic wind forecasts 
into the real-time decision process, as shown in Figure 8. The 
probabilistic wind forecast is delivered for 50th, 90th, 95th, 
and 98th percentiles for the next 6 h. Operators can select one 
of these wind forecasts in the online tool. For example, the 
green line represents the load forecast, while the blue line 
represents the online generation capacity when considering 
the 50th-percentile wind forecast. The online generation 
capacity with a 90th-percentile wind forecast is given in 

red. The reserves [regulation-up (orange) and nonspinning 
(purple)] are overlaid on the red line, which represents addi­
tional generation capacity to be deployed if needed. In this 
example, after 18:00, a greater-than-10% chance exists for the 
forecasted load to be higher than the predicted online gen­
eration capacity. Because reserves are procured, the system 
maintains sufficient generation capacity to serve the load.

Use of Probabilistic Forecasting for Extreme 
Events, Such as High-Speed Shutdown Risk 
Assessment: An Irish Case
High-speed shutdown (HSSD) events, caused by wind speeds 
near 25 m/s, occur predominantly in coastal or mountainous 
areas but seldom cover a large portion of a given jurisdiction. 
In some regions, if wind power is producing at full capacity, the 
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wind energy penetration has reached a level that can meet 
or exceed the local demand. In such areas, concurrent shut-
down of multiple wind plants due to high wind speeds can 
cause system problems.

Ireland is such an area, where practically all wind plants 
can produce full generation when wind speeds reach approxi-
mately 15 m/s and continue until the plants reach their 
HSSD set point. The power measurements do not indi-
cate when such set points are reached in the wind-speed 
range below the HSSD: i.e., 20–25 m/s. Forecasting and 
signaling the high wind speed enables a system operator 
to prepare for large-scale HSSD events. Since a lack of 
power is more dangerous for power system reliability 
than surplus, which can always be curtailed, a need for 
action exists long before a deterministic forecast can pro-
vide accurate information.

Forecasting the probability of 
an HSSD event enables the system 
operator to verify system reliabil-
ity and allocate reserves long in 
advance to keep costs at a mini-
mum. At the Irish system operators 
EirGrid and System Operator for 
Northern Ireland, an HSSD warn-
ing system based on WEPROG’s 
75-member Multi-Scheme Ensem-
ble Prediction System (MSEPS), a 
type 3 method (see Figure 1), has 
been developed for this purpose. 
The HSSD warning system con-
tains three components:

✔✔ a probability indicator that 
a fraction of the HSSD will 
experience cutoff (in coop-
eration with the end user, 

the system-critical part of the capacity is determined, 
e.g., 30% of the capacity)

✔✔ an accumulated part of the expected cutoff capacity, 
which provides the accumulated cutoff probability for 
the expected temporal shortage of capacity and ramps

✔✔ a table combining the information above for more de-
tailed analysis and action planning.

Figure 9 displays the three components of the sys-
tem. Figure 9(a) shows the amplitude of the extreme wind 
speeds that cause a certain percentage of cutoff combined 
with strong down-ramps. This provides important knowl-
edge to help determine 1) the maximum reserve required 
to maintain system balance, 2) the risk of a shortage that 
exceeds available up-ramp capacity, and 3) the risk for 
excess capacity and congestion in the power lines. After 
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initial testing, EirGrid found that the amplitude of the events 
is useful for these considerations. However, a temporal accu-
mulation of the capacity that is in shutdown risk [Figure 9(b)] 
was required for the control room staff to be able to consider 
the total amount and length of reserve required and the asso-
ciated down-ramps and up-ramps of previously down-ramped 
capacity. The table in Figure 9(c) provides details for the con-
trol room staff’s concrete planning.

Figure 10 shows a real-time example of two concurrent 
HSSD events in which the forecast system issued warnings 
when the probability for an HSSD of more than 20% of the 
capacity exceeded 25%. The y-axis shows the probability 
for the percentage of capacity that will experience HSSD, 
and the difference between percentiles P10–P90 provides the 
probability that the event will occur. Due to the variability of 
forecasts in such situations, EirGrid decided that a warning 
would only be issued if these thresholds were exceeded in a 
minimum of three consecutive forecast cycles. Thus, outliers 
are captured but not overinterpreted. In both cases, a warn-
ing was issued, and in both cases, it was appropriate.

One of the many challenges in developing the warning 
system was that the alert frequency must be carefully config-
ured to assure that alerts are taken seriously when they con-
tain a realistic security concern for the system. The main 

considerations were lead time, change of severity level since 
previous alert, initial day of the week, valid day of the week, 
time of day, severity of the event computed from a ramp rate, 
the actions required, and need and ability to call back actions.

For the Irish case, the strategy for issuing an alert was 
found to work best after the following two points had been 
defined: 1) alerts are issued according to a simple scheme 
(e.g., probability of an HSSD of 20% of capacity exceeding 
25% probability for more than three consecutive forecasts) 
and 2) the number of alerts is reduced by issuing updates 
for changes in conditions once an initial alert has been 
sent, thus preventing critical alerts from being overlooked.

This setup allows for the automatic filtering of unpre-
dictable weather phenomena and reduces the risk for sys-
tem shortages and unwanted volatility. Such probabilistic 
HSSD forecasts also allow the end user to strategically 
prepare for the increased risk of such events. With a suit-
able presentation and alert system strategy, the danger 
of HSSD conditions can be determined and respective 
actions taken in real time. With probabilistic forecasts 
and measurements in both graphical and tabular formats, 
confidence in the forecasts increases, and the operators 
become more likely to take the correct actions without 
wasting resources.

Case 1 Case 1:
10% Probability of >84% Cutoff
30% Probability of >25% Cutoff
50% Probability of >10% Cutoff
90% Probability of ~5% Cutoff

Case 2

30
%

35
%

(P90–P60)

Case 2:
10% Probability of >55% Cutoff
35% Probability of >30% Cutoff
50% Probability of >16% Cutoff
90% Probability of ~5% Cutoff

(P90–P550)

Result of Actual Cutoff Scenario:

Case 1: 25% Peak Cutoff

Case 2: 35% Peak Cutoff

figure 10. An example of a coupled extreme event that caused significant HSSD and how the HSSD warning system was 
applied. In this example, the warning criteria were a minimum of 25% probability for 20% of capacity to experience HSSD in 
a minimum of three consecutive forecasts. (Source: WEPROG; used with permission.)
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Use of Probabilistic Forecasts by the TSO: 
A Spanish Case
Red Eléctrica (REE), the Spanish TSO, is responsible for 
dealing with the imbalances between generation and con-
sumption in the electrical system; thus, it has generation 
reserves that provide frequency regulation. The physical 
value of these necessary reserves is determined by variables 
that have a stochastic behavior. The following items stand 
out in the Spanish system:

✔✔ deviation between market schedules and the wind 
forecast

✔✔ forecast errors in other variables (demand, solar, co-
generation, and so on)

✔✔ unscheduled outages of the generation units.
The large amount of wind generation (currently 23,070 MW) 

installed in the Spanish peninsular system has a significant 
impact on system balancing. Short-term (1–2-h) fluctuations 
in wind energy on primary, secondary, and tertiary reserves 
remain less important because demand and sudden unsched-
uled outages of thermal units more significantly affect such 

reserves. However, the longer-term (8–12-h) fluctuations have 
a primary impact on system reserves, especially on spinning 
reserves. The calculation of these reserves is the main role of 
probabilistic forecasts at REE. Both probabilistic and deter-
ministic methods are used.

The probabilistic method assumes uncertainty as an inde-
pendent probabilistic variable and calculates the combined 
probability of loss of reserve as the sum of a convolution 
of pdfs calculated with the type 1 method (see Figure 1) and 
the additional reserve. The type 1 probabilistic method takes 
into account demand forecast errors, wind forecast errors, 
and unexpected outages of thermal units. The additional 
reserve allows for possible uncertainties regarding devia-
tions between forecast and market schedules and the man-
agement of international interconnections.

Peak-hour demand forecast errors for different hori-
zons are fit to Gaussian distributions [Figure 11(a)], while 
the wind forecast errors [Figure 11(b)] are fit to Weibull 
distributions. For thermal unit outages, it is necessary 
to calculate the probability that a unit trips k times in a 

0.012

0.01

0.008

0.006

0.004

0.002

0

P
ro

ba
bi

lit
y

–5
,0

00

–4
,0

00

–3
,0

00

–2
,0

00

–1
,0

00 0
1,

00
0

2,
00

0
3,

00
0

4,
00

0
5,

00
0

(MW)
(b)

Probability Density
Functions of Wind Power Forecast Errors

P
ro

ba
bi

lit
y

(MW)

(c)

Probability Density Functions
of the Unavailability of Generation Units

0.2
0.18
0.16
0.14
0.12
0.1

0.08
0.06
0.04
0.02

0
0

50
0

1,
00

0
1,

50
0

2,
00

0
2,

50
0

3,
00

0
3,

50
0

4,
00

0
4,

50
0

5,
00

0

P
ro

ba
bi

lit
y

(MW)

(d)

Convolution of Previous
Probability Density Functions

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0
–0.1

–1
0,

00
0

–8
,0

00

–6
,0

00

–4
,0

00

–2
,0

00 0
2,

00
0

4,
00

0
6,

00
0

8,
00

0

10
,0

00

0.016
0.014
0.012
0.01

0.008
0.006
0.004
0.002

0

P
ro

ba
bi

lit
y

–5
,0

00

–4
,0

00

–3
,0

00

–2
,0

00

–1
,0

00 0
1,

00
0

2,
00

0
3,

00
0

4,
00

0
5,

00
0

(MW)

(a)

Probability Density
Functions of the Demand Forecast Errors

0.016
0.014
0.012222222222222222222222222222222222222222222222

0.0111111111111111111111111111111111111111
0.00888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888
0.00606666666666606666666666666666066666606660666066606660606666066666666666606666666666666660666666606666666606666006666600666666006666660006666000066600006660000660000600000006
0.0000000000000000000000000000000000000000000000000004000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
0.00.0.0.0.00.00.0.00.000000.000.0.00.0.000000.00.0.0.0.00000.0.000000.0.000000.0.000000.00000 00000.0 00000.0.0000..000000.0..0000 0000 000000 00000 0.000 0000 00 0020000000000000000000000000000000000000000000000000000000000000000

0000

h-1 h-4 h-10 h-20 h-36

figure 11. An example from the REE system of the convolution of pdfs for demand, wind, and outages: (a) demand 
forecast error pdfs, (b) wind forecast error pdfs, (c) pdfs of unscheduled outages of thermal units, and (d) convolution of 
demand, wind, and outage pdfs.
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period by using the Poisson distribution. Once the prob-
abilities for all groups expected to run the next day are 
calculated, a Monte Carlo simulation is performed that 
provides the combined pdf [Figure 11(c)]. The sum of the 
three previous stochastic variables is another stochastic 
variable that indicates the reserve necessary to cover the 
demand [Figure 11(d)].

Figure 12 displays the amount of reserve required for each 
horizon with its margin of confidence. In this way, periodic 
runs of the probabilistic method determine a secure reserve 
level. REE also calculates reserve based on a deterministic 
method, which uses the confidence intervals of the wind 
forecast (P50 and P85) calculated from meteorological 
ensembles of type 4 (see Figure 1). In this way, the reserve 
is computed as the sum of the maximum loss of generation 
due to simple failure (1,000 MW), demand deviation (2%), 
wind power deviation (difference between P50 and P85), 
and additional reserve. The probabilistic method of sizing 
the reserves allows the system to carry less reserve without 
affecting the security of the supply, which is the highest pri-
ority for REE.

Experimental and Future Uses of 
Probabilistic Forecasts
Probabilistic forecasts can be used to enhance power sys-
tem stability and forecast future system conditions. As 

VER penetration increases, reserve capacities decrease 
while ramping increases. Look-ahead system assessment 
tools will become more important to maintaining an eco-
nomic dispatch structure and unit commitment.

For instance, probabilistic forecasts are being designed for 
application in future California Independent System Opera-
tor (CAISO) flexible ramp products (both day ahead and real 
time). Currently CAISO has deployed probabilistic method 
type 1 (see Figure 1) for a real-time flexible ramp product. 
This method leans heavily on a statistical histogram method-
ology that examines historic forecast movement between 
two periods of time and sets a requirement based on the 
uncertainty of net load. In the future, CAISO plans to expand 
this to include forecast information, either as regressors in 
the quantile regression technique (type 2) or using the 
ensemble approach (type 3 or 4). CAISO also plans to include 
a new commitment called day-ahead reliability and deliver-
ability assessment (replacing Residual Unit Commitment) that 
will allow multiple scenario optimization beyond the meteoro-
logical information.

The Australian Energy Market Operator developed a 
Bayesian belief network to assess historic forecast perfor-
mance and then project forward, dynamically, using forecast 
conditions. This augments the reserve assessments based on 
the usual asset contingencies. This approach considers that 
weather forecast error (wind, solar, and temperature) and 

contingent weather events show an 
increasing impact on the network 
and at times present the largest 
contingency other than historic 
rare largest-asset contingencies. 

Summary
Because the power system is sen-
sitive to weather information and 
the atmosphere is inherently vari-
able, it is prudent to quantify the 
uncertainty in weather forecasts 
and leverage that probabilistic 
information to the best advantage 
of system operators. Here, we have 
listed current methods to pro-
vide probabilistic forecasts and 
discussed how to judge whether 
the probabilistic forecast is sharp, 
resolves different distributions, 
and is statistically reliable. We 
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figure 12. A graph from the REE system of probabilistic reserves at different time 
horizons and different confidence intervals. 

One of the biggest hurdles for implementing probabilistic forecasting 
in industry is the lack of case studies, as well as reference materials 
in the form of documentation, standards, and guidelines.
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have described some of the forefront and experimental 
applications of probabilistic forecasts, including to assess 
grid security, fine-tune unit commitment, capture extreme 
conditions, prepare for extreme events more effectively, plan 
for reserves more efficiently, better maintain system stabil-
ity, and design flexible ramping products.

One of the biggest hurdles for implementing probabi-
listic forecasting in industry is the lack of case studies, as 
well as reference materials in the form of documentation, 
standards, and guidelines. IEA Wind Task 36, Wind Energy 
Forecasting, is an international collaboration that has, as one 
of its tasks, to facilitate optimal use of forecasting solutions 
with a special focus on uncertainty/probabilistic forecasting 
for the power industry. The task concentrates on the use of 
forecast uncertainties for operation and management of the 
power system with substantial variable generation, for oper-
ation, trading, and balancing in power markets. The goal is 
to develop best-practice guidelines for the implementation, 
measurement, and quantification of the value of probabilis-
tic forecasts based on experience from experts around the 
globe. Additional information can be found in the “For Fur-
ther Reading” section.

Many users say that wind and solar forecasts would have 
more value in their decision-making processes if they were 
more accurate. We must recognize, however, that the atmo-
sphere contains inherent variability that cannot be precisely 
predicted. A more realistic approach embraces that uncertainty, 
quantifies it, and uses that probabilistic information to opti-
mize system operation. Probabilistic forecasts show promise 
for growth as a tool to manage the variability of wind and solar 
generation in electric systems. Decision-making processes 
that leverage forecast uncertainty information have almost 
always been demonstrated to produce consistently better deci-
sions than those that don’t use this information. Therefore, a 
near-term opportunity remains to glean more value from wind 
and solar forecasts by more effectively using currently avail-
able uncertainty information without having to wait for future 
improvements in weather forecasting technology.
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Decision-making processes that leverage forecast uncertainty 
information have almost always been demonstrated to produce 
consistently better decisions than those that don’t.


