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Major Trends

1 Data explosion:
Automation of business processes, proliferation of digital
devices.
eBay has a 6.5 PB warehouse, Yahoo! Everest has 10 PB.

2 Analysis over raw data

Bottom line

Analyzing massive structured data on 1000s of shared-nothing
nodes.
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Sales Record Example

Consider a large data set of sales log records, each consisting of
sales information including:

1 a date of sale

2 a price

We would like to take the log records and generate a report
showing the total sales for each year.

Question:

How do we generate this report efficiently and cheaply over massive
data contained in a shared-nothing cluster of 1000s of machines?
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MapReduce (Hadoop)

MapReduce is a programming model which specifies:

A map function that processes a key/value pair to generate a
set of intermediate key/value pairs,

A reduce function that merges all intermediate values
associated with the same intermediate key.

Hadoop

is a MapReduce implementation for processing large data sets
over 1000s of nodes.

Maps (and Reduces) run independently of each other over
blocks of data distributed across a cluster.
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Sales Record Example using Hadoop

Query: Calculate total sales for each year.

We write a MapReduce program:

Map: Takes log records and extracts a key-value pair of year
and sale price in dollars. Outputs the key-value pairs.

Shuffle: Hadoop automatically partitions the key-value pairs
by year to the nodes executing the Reduce function

Reduce: Simply sums up all the dollar values for a year.
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Relational Databases

Suppose that the data is stored in a relational database system,
the sales record example could be expressed in SQL as:

SELECT YEAR(date) AS year, SUM(price)
FROM sales
GROUP BY year

The execution plan is:

projection(year,price) → hash aggregation(year,price).

Question:

How do we process this efficiently if the data is very large?
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Parallel Databases

Parallel Databases are like single-node databases except:

Data is partitioned across nodes

Individual relational operations can be executed in parallel

xxx
SELECT YEAR(date) AS year, SUM(price)
FROM sales GROUP BY year

Execution plan for the query:
projection(year,price) → partial hash aggregation(year,price) →
partitioning(year) → final aggregation(year,price).

Note that the execution plan resembles the map and reduce phases
of Hadoop.
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Differences between Parallel Databases and Hadoop
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Differences between Parallel Databases and Hadoop
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To summarize
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At Yale, we looked beyond the differences ...



At Yale, we looked beyond the differences ...



and we discovered ...

... that they complete each other
http://i214.photobucket.com/albums/cc19/brittanybutton/elephants.jpg

Basic design idea

Multiple, independent, single
node databases coordinated by
Hadoop.
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Hadoop Basics
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Architecture
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SQL-MR-SQL

SELECT YEAR(saleDate), SUM(revenue) FROM sales GROUP BY YEAR(saleDate);
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Evaluating HadoopDB

Compare HadoopDB to

1 Hadoop

2 Parallel databases (Vertica, DBMS-X)

Features:
1 Performance:

We expected HadoopDB to approach the performance of
parallel databases

2 Scalability:
We expected HadoopDB to scale as well as Hadoop

We ran the Pavlo et al. SIGMOD’09 benchmark on Amazon EC2
clusters of 10, 50, 100 nodes.
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Load
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Performance: Grep Task
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SELECT * FROM grep WHERE field LIKE ‘%xyz%’;

1 Full table scan, highly
selective filter

2 Random data, no
room for indexing

3 Hadoop overhead
outweighs query
processing time in
single-node databases
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Performance: Join Task
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SELECT sourceIP, AVG(pageRank), SUM(adRevenue)
FROM rankings, uservisits
WHERE pageURL=destURL
AND visitDate BETWEEN 2000-1-15 AND 2000-1-22
GROUP BY sourceIP
ORDER BY SUM(adRevenue) DESC LIMIT 1;

1 No full table scan due
to clustered indexing

2 Hash partitioning and
efficient join
algorithm
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Performance: Bottom Line

1 Unstructured data
HadoopDB’s performance matches Hadoop

2 Structured data
HadoopDB’s performance is close to parallel databases
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Scalability: Setup

1 Simple aggregation task - full table scan

2 Data replicated across 10 nodes

3 Fault-tolerance: Kill a node halfway

4 Fluctuation-tolerance: Slow down a node for the entire
experiment
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Scalability: Results
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1 HadoopDB and
Hadoop take
advantage of runtime
scheduling by
splitting data into
chunks or blocks

2 Parallel databases
restart entire query on
node failure or wait
for the slowest node
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To summarize

HadoopDB ...

1 is a hybrid of DBMS and MapReduce

2 scales better than commercial parallel databases

3 is as fault-tolerant as Hadoop

4 approaches the performance of parallel databases

5 is free and open-source

http://hadoopdb.sourceforge.net
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Future work

Engineering work:

1 Full SQL support in SMS

2 Data compression

3 Integration with other open source databases

4 Full automation of the loading and replication process

5 Out-of-the box deployment

6 We’re hiring!

Research work:

Incremental loading and on-the-fly repartitioning

Dynamically adjusting fault-tolerance levels based on failure
rate

Yale University, CLuE PI Meeting 2009 HadoopDB 23/24



Thank You ...

We welcome all thoughts on how to raise HadoopDB ...
http://www.jpbutler.com/thailand/images/elephant-8-days-old.jpg


