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Automation of business processes, proliferation of digital
devices.
eBay has a 6.5 petabyte warehouse.

2 Deep analysis over raw data:

Inefficient to push data from database into specialized analysis
engines → process data in the database.
Best price/performance → data partitioned across 100-1000s
of cheap, commodity, shared-nothing machines.
Clouds of processing nodes on demand, pay for what you use

Bottom line

Processing massive structured data on 1000s of shared-nothing
nodes.
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Parallel Databases

1 Great performance with
queries on structured data

But ...
1 “It’s okay to lose work!”

fault: restarts the query

Google reports 1.2
failures/job

performance fluctuations:
wait for slowest node

2 No open-source parallel
database!! Commercial ones
are expensive $$$

“Postgres is a high-maintenance,
perfectionist, fussy, city girl”

http://briansmithphoto.files.wordpress.com/2009/05/avedon-

dovima-with-elephants1.jpg
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MapReduce

1 Great scalability

Jobs broken into more
granular independent
tasks
Run-time scheduling
Yahoo! runs 4000+ node
clusters with Hadoop

2 Free and open-source

But ...
1 Poor performance with

queries on structured data

Ignores schema
Brute-force model

“Hadoop is a slow, lazy, brute,
farm boy”

http://www.breedbay.co.uk/gallery//data/500/elephant-

chmai-basketball.jpg
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Until we discovered ...

... that they complete each other
http://i214.photobucket.com/albums/cc19/brittanybutton/elephants.jpg
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HadoopDB’s Design

Goals:

Performance

Flexible query interface

Fault-tolerance

Tolerance for fluctuations from expected performance

Scalability

Basic design idea

Multiple, independent, single-node databases coordinated by
Hadoop.
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Hadoop Basics
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Architecture
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SQL-MR-SQL (SMS): Hive Basics

Hive Converts SQL queries into MapReduce jobs over HDFS files

1 Derives schema of files from an internal catalog

2 Parses, plans, optimizes the SQL query into a relational

operator DAG

3 Breaks down plan into series of Map / Reduce task with
interleaving re-partition operators
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SQL-MR-SQL

SELECT YEAR(saleDate), SUM(revenue) FROM sales GROUP BY YEAR(saleDate);
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Evaluating HadoopDB

Compare HadoopDB to Hadoop and Parallel databases:
1 Performance:

We expected HadoopDB to approach the performance of

parallel databases

Load times vs. performance trade-offs

2 Scalability:

We expected HadoopDB to scale as well as Hadoop

Fault- and fluctuation- tolerance
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Experimental Setup

1 Stage

Amazon EC2 cloud, clusters of 10, 50, 100 machines

2 Characters

Hadoop
HadoopDB
Vertica
DB-X∗

3 Plot

Pavlo et al. SIGMOD benchmark of large-scale analytical
queries derived from processing web-data
20+ GB/node

∗DB-X results reproduced from Pavlo et al. 2009
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Load
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Performance: Grep Task
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SELECT * FROM grep WHERE field LIKE ‘%xyz%’;

1 Full table scan, highly
selective filter

2 Random data, no
room for indexing

3 Hadoop overhead
outweighs query
processing time in
single-node databases
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Performance: Join Task
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SELECT sourceIP, AVG(pageRank), SUM(adRevenue)
FROM rankings, uservisits
WHERE pageURL=destURL
AND visitDate BETWEEN 2000-1-15 AND 2000-1-22
GROUP BY sourceIP
ORDER BY SUM(adRevenue) DESC LIMIT 1;

1 No full table scan due
to clustered indexing

2 Hash partitioning and
efficient join
algorithm

3 Partial aggregation
pushed into DB layer
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Performance: Bottom Line

1 Unstructured data

HadoopDB’s performance matches Hadoop

2 Structured data

HadoopDB’s performance is close to parallel databases
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Scalability: Setup

1 Simple aggregation task - full table scan

2 Data replicated across 10 nodes

3 Fault-tolerance: Kill a node halfway

4 Fluctuation-tolerance: Slow down a node for the entire
experiment

Key differences

HadoopDB and Hadoop take advantage of runtime scheduling
by splitting data into chunks or blocks

Parallel databases restart wait for the slowest node
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Scalability: Results
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To summarize

HadoopDB ...

1 is a hybrid of DBMS and MapReduce

2 scales better than commercial parallel databases

3 is as fault-tolerant as Hadoop

4 approaches the performance of parallel databases

5 is free and open-source

http://hadoopdb.sourceforge.net
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Future work

Engineering work:

1 Full SQL support in SMS

2 Data compression

3 Integration with other open source databases

4 Full automation of the loading and replication process

5 Out-of-the box deployment

6 We’re hiring!

Research Work:

Incremental loading and on-the-fly repartitioning

Dynamically adjusting fault-tolerance levels based on failure
rate
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Thank You ...

We welcome all thoughts on how to raise HadoopDB ...
http://www.jpbutler.com/thailand/images/elephant-8-days-old.jpg



Backup: Teradata Fault-tolerance

What happens if a processing node fails?

“Teradata’s parallel architecture ensures that part of every request
is executing on every node. When a processing node fails, all work
is affected. This is an area where Teradata is fault resilient rather
than fault tolerant. Our nodes are achieving such a large mean
time between failures (MTBF) today that this is a rare occurrence.

If a node fails, the rest of the system is immediately notified and
cycles through a recovery process. All requests are halted and
rolled back. ... moves units of parallelism from the failed node to
an operational one. ...”

http://www.teradata.com/td/go.aspx/?id=115417&logout 127166=1


