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Abstract — We consider a mobile wireless communica- the powerful forward error correction coding techniques, like
tion system composed of\/ transmit and N receive anten- turbo or LDPC codes. Hassibi and Hochwald propose in [5]
nas operating in a fading environment. Assuming channel a channel model that separates one coherent block into two
state information is unavailable to the transmitter and the phases: training and data. Based on the two phase channel
receiver, a capacity upper bound of the unknown MIMO model, as well as by applying the MMSE channel estimation
channel under the assumption of restricted input distri- algorithm, they provide a capacity lower bound for the un-
butions is provided. By analyzing the proposed capacity known MIMO channel, and prove that the optimal number of
upper bounds, we reenforce the advantages of using an or-training symbols is equal t@. = M when the training and
thogonal pilot structure which minimizes the mean square data powers are allowed to vary. The capacity lower bound
estimation error, in that it also maximizes the capacity up- provided in [5] assumes that the channel estimation (LMMSE)
per bounds. Interestingly, the capacity upper bound is is obtained by only using the training symbols, thereby not
shown to be a monotonically decreasing function with re- making use of the channel information contained in the re-
spect to the number of pilot symbolsT’.. Numerical eval- ceived data symbols. Therefore, the lower bound is pessimistic
uations of the capacity upper bound further demonstrate and unable to represent the true capacity (or the maximum
that the capacity gain is insignificant when the number of achievable information rate) accurately.

pilot symbols T, decreases belowl, suggesting an opti- Without assuming any specific channel estimation algo-
mum training duration of M time slots. rithm, we propose in this article a capacity upper bound for
the unknown MIMO channel with a two-phase transmitted sig-

[. INTRODUCTION nal structure given in [5]. By analyzing the proposed capac-

Communication systems using multiple antennas at bd% upper bounds with respect to different system parameters,

. . . : we show that the orthogonal pilots structure not only mini-
the transmitter and the receiver has recently received increased L o
: : o . -Mmizes the mean square estimation error, but also maximizes
attention due to its capability of providing great capacit
{

. . . . . e capacity upper bounds. Furthermore, we also prove that
increases in a wireless fading environment, as reported

. - channel capacity upper bound is a monotonically decreas-
Telatar [1] and Foschini [2]. However, the capacity anal;lzﬁg function wit% regpeF():Ft) to the number of pilot symybﬁﬂ,s
u

S|s_prowded IS base_d_on the underlying assumpnon that tb t with insignificant capacity increment whé@h decreases
fading channel coefficients between each transmit and recely

antenna pairs are perfectly known at the receiver without age?g\lljvn:cgﬁcr;:rg\?ael[j;);;;ansmlt antenni, which is verified
cost, which is not a reasonable assumption for most practical '
communication systems especially when the fading channel is
changing fast.
Marzetta and Hochwald provide in [3] the capacity analysis We consider in this article a MIMO system wiflf trans-
of an unknown MIMO channel with a finite coherent time inMitter antennas and/’ receive antennas, signaling through a
terval T. They showed that the capacity is achieved when tff€duency flat fading channel with i.i.d channel coefficient be-
transmitted signal matrix is equal to the product of an isotrop¥een each transmit and receive antenna pairs. It is assumed
ically distributed unitary matrix times a random diagonal mabat the fading coefficienH remains static within a coherent
trix with real, nonnegative diagonal elements. Furthermordne interval of 7" symbol periods, and varies independently
Zheng and Tse [4] compute the asymptotic capacity of tHf@m one coherent time block to another; and each element
channel at high signal to noise ratios. of His complex_Gaussian distributed. Hence, the signaling
However, in practice not only finding the optimal input disodel can be written as
tribution is an involved task and requires numerical optimiza-
tions, but also there are no known space-time codes that can

app_roach this capacity. Hence, this paper takes a more Pia8ereY is a7 x N received complex signal matriX is a7 x
matic approach and focuses on systems that are able to t Sansmitted complex signal matrild is aM x N complex

advantages of the existing channel estimation algorithms aﬂgannel matrix. anev is aT x N matrix of additive Gaussian

1This research was supported by CoRe grant No. 02-10109 sponsore@@se- Both matrixtl and w have Ze€ro mean unit variance
Ericsson. independent complex Gaussian entries. We also assume that

Il. SYSTEM MODEL

Y=X H+w, (1)




the entries of the transmitted signal mafhave, on average, Proof: First, conditioned on any input data sequenkgs(or

the following power constraint, X), vec (Y) is a Gaussian distributed vector of zero mean and
) variance
— B[tr(XX)] =p , 2
T [ r( )] P @ Syix = Cov(vec(Y)|X) =Ixy® (XXH + IT) . (8)

wherep is the average signal to noise ratio at each receive arn—k_ . £ (8) with %, th .
tenna. The transmitted signal mati is further separated aking expectation of (8) with respect X, the covariance

into two submatrixes: training followed by data, which is reg?arx of vec (Y) is obtained as,
resented as

_ [ (p-/M)? -8, ] €) Sy = Cov(vec(Y)) = Iy (S+1r) . @)
(pa/M)* - Xq where
- H
whereS; is the fixed pilot symbols anX; is the information > [ 47 - S-87 ‘ 0 ] ) (10)
bearing data symbols, whose structures are given by 0 ‘ pa - I,
i o H R Due to the fact that Gaussian distribution has the maximum
Sr=[s1',- vSTT] ) SreC 7Y, entropy among any vector distributions with the same covari-
X, = [xf’, o 7X¥d]H) X, e CTaxM (4 ance matrix, entrop¥(Y') can be upper bounded by
Conservation of time and energy leads to the following con- h(Y) < log, ((We)NT : |EY|) . (11)
straints,

Therefore, we have the following capacity upper bound
er(S-8,) = MT,,  Bx, [tr(X[ - Xa)| = MTu

) _ ¢ NT
T=T +Ts,  pT=p;Tr+pals . 5 [XY) = h(Y)_h(Y’X)Sl"g2((”) '|EY’)

- Ex, {log2 ((we)NT . |2y|x|>} ) (12)
I1l. CAPACITY ANALYSIS

. . where the second term of inequality) is from a direct ex-
A. Restricted Capacity Upper Bound pansion of the conditional entropy according to the definition.

From the capacity analysis result provided in [3], we kno . . )
that not only finding the capacity achieving input distributio\gmsmu'[Ing (8) and (9) into (12), capacity upper bound (7)

. ) : . R can be obtained in a straightforward manner.
is an involved task and requires numerical optimization, bat _.. . . . .

. . Since the received sign® can be viewed as a weighted
also there are no known viable space-time codes that can &0 of Gaussian random vectors, its distribution is close the
proach this capacity. '

In this section we restrict our attention to a conventionqaIUSSian as long as it contains a large number of indepen-
?]ent random variables according to the central limit theorem.

MIMO system having an input signal structure, which is de-, o o
scribed in Section Il. It is further assumed that the input d%?ence, the upper bound is tight and quite likely to be even less

- . o . an the true unknown MIMO channel capacity provided in
vectorsx; follow i.i.d. Gaussian distributions, i.e. . . .
[3]. Therefore, maximizing the capacity upper bound is a rea-
E[XH .X} —5 T ©6) sonable approach and will not make the bound become loose
v Wit eM due to the fact that both the capacity upper bound as well as

Although input distribution (6) is not optimized to achieve thgqe_m_utugl qurmauorI(X;Y_) in (7) increases through the
maximum mutual information rate, it is a reasonable assurrﬁ’)Qt'm'z"’ltlon with respect to different system parameters.

tion of a communication system with no channel state infor- B. Pilot Structure Optimizations

mation available at the transmitter. Therefore, under this re-The most commonly used pilots have an orthogonal struc-
stricted input distribution assumption, we have the followingyre. They are optimal in a sense that they minimize the mean
MIMO capacity upper bound. All the proofs provided are briefquare channel estimation error as well as achieve the Cramer-
due to length restrictions. Please refer to [6] for more detailRao lower bound. As a straightforward extension of the sin-
gle input single output system, the covariance matrix of the
MMSE estimation erroH = H — H for the unknown MIMO
channel is given by

Proposition 1 Mutual information betweelX andY are up-
per bounded by,

+Ty-logy(1+pa) 1

Can = Cov(vee(H), vec(H) ) = In®(Iu+2-87S,) ™"
(13)

It is obvious that the average mean square error of the channel

estimation

I(X;Y)<C = N(log2 ‘IJVIerMTSfST

~FEx, {logQ ’Iﬂ[+§28fsf+gjxfxd”> , (7)

where the expectatiof’x, [ - | is taken with respect to data

Pr -1
X, tr(Crp) = N xtr((Iv + 22878) 7). (14



is minimized when the non-zero eigenvaluesSéfS.. are all whereU is any unitary matrix, anda) follows from the fact
equal. Therefore, the following orthogonal pilot structure, rephat X ;U has the same distribution &5;. Further due to the
resented as fact that

Z1(Q)| = |Z:(UQU)|, (22)

the capacity upper bound (20) is hence invariant under the fol-
lowing transformation

minimizes the MIMO MMSE channel mean square estimation
error.

In order to obtain the optimal pilot structure with respect tg e nitary matrixU is set to be composed of the eigenvec-
the capacity upper bourdd, we utilize the following concavity tors of Q, then according to (23) we only need to focus our

property. attention on the case whe@is a diagonal matrix.

Proposition 2 The capacity upper bound obtained in Propo- Furthermore, it is also true that any permutations on the

sition 1 is concave with respect to mat@x = SES., i.e., non-zero diagonal elements 6 will not change the upper
bound,

— — a
Q) = % Y C(PiQP) < c(% ZPHQP> ,
P P (24)
Proof: The Hessian of the capacity upper bound is given bywhere X' = min(7’, M), matrix P is any permutation matrix
that permutes the firsk’ rows (or columns) of the non-zero
elements of), and(a) follows from the concavity property of
the upper bound. At this point, it is evident that the optimal
(17) pilot, which achieves the maximum capacity upper bound, has
whereX; andX, are given by an orthogonal structure given by (19).
Therefore, although starting from different perspectives, or-
¥ = [M+piQ , Xo = ]M+piQ+@x§1Xd . (18) thogonal pilots structure not only minimizes the estimation
M M M mean square error, but also maximizes the capacity upper
It can be shown that the Hessian matrix is negative serhdunds. Substituting the optimal structure (19) into the equa-
definite, and hence the capacity upper bound is concave wiigm (7), we obtain the following capacity upper bound
respect taQ.
As a direct result of Proposition 2, we have the followin% - N
optimal pilot structure.

S-;I?IST:TT'IMa TTZMa
S.SH = M-Ir, T, <M, (15)

c(Q)=c(u”qQu). (23)

AC(Q)+(1-2)C(Q2) <T(AQi+(1-1)Q2) , (16)
where) € [0,1] .
0%C Np?

—_ E [2—1 »ol_w-2 2—1},
d?vec(Q) M2Ing Xe[F @ 2 ®%

(Td-logz(l—l—pd)—Exd [logQ ’IM+’]OV“[lA—1X§Xd” ,

y . . . - 25)
Proposition 3 The optimal pilot structure, which maximizes ' XM _— (
the capacity upper bound (7), satisfies the following orthoggv-herexd IS of sizeC7#*™, andA is given by
nal conditions LT,

‘ A= (1 + mirf)(TT,M)) * Iin(T, 01 0 ]
MT, I 0 0 1 i ,
— SHST _ T min(7T,,M) 19 M —min(T,,M)
Q=5 min(T,, M) [ 0 [0 |’ (19) (26)
which is equivalent to (15). C. Equal Training and Data Power Allocation

For some communication systems, it might not be possi-
Proof: First, substituting (18) into (7), the capacity uppeple to vary the power during the training slots and data slots.
bound can be represented as Hence the capacity upper bound, assuming training symbol
and data symbol share the same power, is obtained by substi-
C= N(Td.10g2(1 + pa) +log, | 31| — Ex, {log2 |22|D . tuting the power allocation§, = pg = p) into (25). The
(20) capacity upper bound is further optimized with respect to the
data allocation schem@’., T,;), and we have the following
important result concerning the dependencelpnthe num-
ber of data symbols.

The following equality is true

Ex, [IOgQ |22(Q)|} = Fx, [logQ ’UH22U’:|
Pr - d " Proposition 4 Capacity upper bounds under equal power al-
= Ex, [bgg ‘IM +57Y QU + M(XdU) (XdU)H location schemes are monotonically increasing with respect to
P P the number of data slofgy, i.e.
° Fx [10g ‘IM +rufqQu dXHXd”
a| 2 M M (Ty=k-1), k<T—-M,

>
— Px, [1og2 yzz(quu)@ , (1) C(Ty=T) > C(Ty=T-M) . (27)



Proof: We begin with the first part of (27) whefi, > M, , 6 by 6 MIMO system Capacity Upper Bound Comparison
—%— Orthogonal Pilots, T=10, Td=1

where equation (25) is reduced to ~- Orthogonal Pilots, T=10,

T
—~— Orthogonal Pilots, T=10, Tt
T

/
C=N <Td log,(1+p) — Ex, [logz ‘IM + pﬂ X1 xd” ) : g Forom ploe 710

(28)
wherep’ = p/(1 + pT-/M). We further separate the data
matrix X4 into X/, andxr,,

X4

XTd

MIMO capacity per Transmission , C/T

Xy = { ] p € Cla Mk, e CM L (29)

Then we have the following inequality,

/
Ex, {logZ ‘IM + ]@Xé{Xd”

= Ex, [logg ’IM + pﬁ (XQH a+t X%XTd) ” Figure 1: Capacity comparison between orthogonal pilot

" / structures and random pilot structures under equal power al-

< Ex/, [log2 ‘IM + pﬁ (X&H i+ Ex, [xide]) ” , location schemes of@&x 6 MIMO system with coherent time
intervalsT = 10, and data interval; = 1,2, 3,4

where inequality(a) follows from the fact thalog| - | is a
concave function. Therefore, using assumption (6), we can
obtain the following result

6 by 6 MIMO System Capacity Upper Bound with Equal Power Allocation
6 T T T T T T T

tritiesd

PN ENE R

Sao

C(Ty=k)—C(Ty=k—1)>Af(p) >0, (31)

where

Af(p) = log,(14p)— M log, (1 + (T, +1)/M

1+ pT: /M

). @2

due to the fact thaf\ f(0) > 0 andA’f(p) > 0. A similar
approach can be used to prove the second part of (27).

mimo capacity per (Transmission) , C/T
w
T

D. Optimization ovefp,, pq) and (T, Ty)

For communication systems where the power allocation can
be varied between training and data symbols, the optimal ca-
pacity upper bound is obtained by solving the following con- %= 4 & & 1 12 1@ 1 1 2
strained optimization problem b

5(TT,Td) — max 5(p7,pd,TT,Td), p:Tr+paTy = pT . Figure 2: Capacity upper bound o6& 6 MIMO system under
(prspa) equal power allocation scheme of SNNR= 4dB, and with

) ] ] ] ,(33_) different coherent time interval = 4, 5,6, 7, 8, 10, 15, 20
However, numerical results provided in Section IV indicate

that there is insignificant capacity loss by using equal power
allocations, which is much easier for implementation.
B. Equal Power Allocation
IV. NUMERICAL AND SIMULATION RESULTS The capacity upper bounds oba< 6 MIMO system under
equal power allocation scheme with different coherent time

A. Optimal Pilot Structure and data slot allocatiofi; are demonstrated in Fig. 2. From

We know from Section Ill. B that orthogonal pilot structureihe plot, we can observe that the capacity upper bound is
not only minimizes the mean square estimation error, but alﬁ_' '

L . . %notonically increasing with respectq (even for the case
Mmaximizes _the capacity upper bound (7). F'g' 1 demonstr > T — M). However, the capacity gain is insignificant for
the sensitivity of the capacity upper bound with respect to t

. beyondl” — M especially whed" is larger thanV/. There-
pilots structures. As can be observed from the plot, the cap?cﬁ,-e %Id —T_M Tp> M?/s a good trac?e-off point between

ities using random pilot structure, which are denoted as dott%% élchievable capacity and implementation complexity.
curves, are inferior to those of applying orthogonal pilot struc-

ture. And the capacity loss is significant in moderate to high C. Optimal Power Allocation
SNR ranges. We demonstrate in Fig. 3 the capacity upper bound with
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Figure 3: Capacity upper bound o6& 6 MIMO system under Figure 5: Capacity comparison between lower bounds and up-

optimal power allocation scheme of SNR= 4dB, and with per bounds under equal power allocation schemestoka

different coherent time intervals = 4, 5,6, 7, 8, 10, 15, 20 MIMO system with coherent time intervals = 10, and data
intervalTy = 1,2,3,4

Capacity Gain of 6 by 6 MIMO System under Optimal Power Allocation
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In this paper, we propose a capacity upper bound of the un-
known MIMO channel. Through the analysis of the proposed
upper bound, we show that orthogonal pilot structure is opti-
i mal. It not only minimizes the mean square estimation error,
but also maximizes the proposed capacity upper bound. We
also proved that under equal power allocation scheme, capac-
ity upper bound is a monotonically increasing function with
, respect to the number of data sldfs. Through numerical
evaluations, we further demonstrate that the capacity incre-
ment is insignificant wheffy is larger thari"— M, and limited
oot capacity gain can be achieved by using optimal power alloca-
T tion between training and data symbols when compared to the

) ) ] ] ) simple equal power allocation scheme.
Figure 4. Capacity gain of optimal power allocations over
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