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Abstract — We consider a mobile wireless communica-
tion system composed ofM transmit and N receive anten-
nas operating in a fading environment. Assuming channel
state information is unavailable to the transmitter and the
receiver, a capacity upper bound of the unknown MIMO
channel under the assumption of restricted input distri-
butions is provided. By analyzing the proposed capacity
upper bounds, we reenforce the advantages of using an or-
thogonal pilot structure which minimizes the mean square
estimation error, in that it also maximizes the capacity up-
per bounds. Interestingly, the capacity upper bound is
shown to be a monotonically decreasing function with re-
spect to the number of pilot symbolsTτ . Numerical eval-
uations of the capacity upper bound further demonstrate
that the capacity gain is insignificant when the number of
pilot symbols Tτ decreases belowM , suggesting an opti-
mum training duration of M time slots.

I. I NTRODUCTION

Communication systems using multiple antennas at both
the transmitter and the receiver has recently received increased
attention due to its capability of providing great capacity
increases in a wireless fading environment, as reported by
Telatar [1] and Foschini [2]. However, the capacity analy-
sis provided is based on the underlying assumption that the
fading channel coefficients between each transmit and receive
antenna pairs are perfectly known at the receiver without any
cost, which is not a reasonable assumption for most practical
communication systems especially when the fading channel is
changing fast.

Marzetta and Hochwald provide in [3] the capacity analysis
of an unknown MIMO channel with a finite coherent time in-
tervalT . They showed that the capacity is achieved when the
transmitted signal matrix is equal to the product of an isotrop-
ically distributed unitary matrix times a random diagonal ma-
trix with real, nonnegative diagonal elements. Furthermore,
Zheng and Tse [4] compute the asymptotic capacity of this
channel at high signal to noise ratios.

However, in practice not only finding the optimal input dis-
tribution is an involved task and requires numerical optimiza-
tions, but also there are no known space-time codes that can
approach this capacity. Hence, this paper takes a more prag-
matic approach and focuses on systems that are able to take
advantages of the existing channel estimation algorithms and
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the powerful forward error correction coding techniques, like
turbo or LDPC codes. Hassibi and Hochwald propose in [5]
a channel model that separates one coherent block into two
phases: training and data. Based on the two phase channel
model, as well as by applying the MMSE channel estimation
algorithm, they provide a capacity lower bound for the un-
known MIMO channel, and prove that the optimal number of
training symbols is equal toTτ = M when the training and
data powers are allowed to vary. The capacity lower bound
provided in [5] assumes that the channel estimation (LMMSE)
is obtained by only using the training symbols, thereby not
making use of the channel information contained in the re-
ceived data symbols. Therefore, the lower bound is pessimistic
and unable to represent the true capacity (or the maximum
achievable information rate) accurately.

Without assuming any specific channel estimation algo-
rithm, we propose in this article a capacity upper bound for
the unknown MIMO channel with a two-phase transmitted sig-
nal structure given in [5]. By analyzing the proposed capac-
ity upper bounds with respect to different system parameters,
we show that the orthogonal pilots structure not only mini-
mizes the mean square estimation error, but also maximizes
the capacity upper bounds. Furthermore, we also prove that
the channel capacity upper bound is a monotonically decreas-
ing function with respect to the number of pilot symbolsTτ ,
but with insignificant capacity increment whenTτ decreases
below the number of transmit antennasM , which is verified
by numerical evaluation.

II. SYSTEM MODEL

We consider in this article a MIMO system withM trans-
mitter antennas andN receive antennas, signaling through a
frequency flat fading channel with i.i.d channel coefficient be-
tween each transmit and receive antenna pairs. It is assumed
that the fading coefficientH remains static within a coherent
time interval ofT symbol periods, and varies independently
from one coherent time block to another; and each element
of H is complex Gaussian distributed. Hence, the signaling
model can be written as

Y = X ·H + w , (1)

whereY is aT×N received complex signal matrix,X is aT×
M transmitted complex signal matrix,H is aM ×N complex
channel matrix, andw is aT ×N matrix of additive Gaussian
noise. Both matrixH andw have zero mean unit variance
independent complex Gaussian entries. We also assume that



the entries of the transmitted signal matrixX have, on average,
the following power constraint,

1
T
· E[

tr
(
XHX

)]
= ρ , (2)

whereρ is the average signal to noise ratio at each receive an-
tenna. The transmitted signal matrixX is further separated
into two submatrixes: training followed by data, which is rep-
resented as

X =

[ (
ρτ/M

) 1
2 · Sτ(

ρd/M
) 1

2 ·Xd

]
, (3)

whereSτ is the fixed pilot symbols andXd is the information
bearing data symbols, whose structures are given by

Sτ =
[
sH
1 , · · · , sH

Tτ

]H
, Sτ ∈ CTτ×M ,

Xd =
[
xH

1 , · · · ,xH
Td

]H
, Xd ∈ CTd×M . (4)

Conservation of time and energy leads to the following con-
straints,

tr
(
SH

τ · Sτ

)
= MTτ , EXd

[
tr

(
XH

d ·Xd

)]
= MTd ,

T = Tτ + Td, ρT = ρτTτ + ρdTd . (5)

III. C APACITY ANALYSIS

A. Restricted Capacity Upper Bound
From the capacity analysis result provided in [3], we know

that not only finding the capacity achieving input distribution
is an involved task and requires numerical optimization, but
also there are no known viable space-time codes that can ap-
proach this capacity.

In this section we restrict our attention to a conventional
MIMO system having an input signal structure, which is de-
scribed in Section II. It is further assumed that the input data
vectorsxi follow i.i.d. Gaussian distributions, i.e.

E
[
xH

i · xj

]
= δi,j · IM . (6)

Although input distribution (6) is not optimized to achieve the
maximum mutual information rate, it is a reasonable assump-
tion of a communication system with no channel state infor-
mation available at the transmitter. Therefore, under this re-
stricted input distribution assumption, we have the following
MIMO capacity upper bound. All the proofs provided are brief
due to length restrictions. Please refer to [6] for more details.

Proposition 1 Mutual information betweenX andY are up-
per bounded by,

I
(
X;Y

) ≤ C = N

(
log2

∣∣∣IM +
ρτ

M
SH

τ Sτ

∣∣∣+Td ·log2(1+ρd)

−EXd

[
log2

∣∣∣IM +
ρτ

M
SH

τ Sτ +
ρd

M
XH

d Xd

∣∣∣
])

, (7)

where the expectationEXd

[ · ] is taken with respect to data
Xd.

Proof: First, conditioned on any input data sequencesXd (or
X), vec

(
Y

)
is a Gaussian distributed vector of zero mean and

variance

ΣY|X = Cov
(
vec

(
Y

)∣∣X
)

= IN ⊗
(
XXH + IT

)
. (8)

Taking expectation of (8) with respect toXd, the covariance
matrix ofvec

(
Y

)
is obtained as,

ΣY = Cov
(
vec

(
Y

))
= IN ⊗ (

Σ + IT

)
, (9)

where

Σ =
[ ρτ

M · SτSH
τ 0

0 ρd · ITd

]
. (10)

Due to the fact that Gaussian distribution has the maximum
entropy among any vector distributions with the same covari-
ance matrix, entropyh(Y) can be upper bounded by

h
(
Y

) ≤ log2

(
(πe)NT ·

∣∣ΣY

∣∣
)

. (11)

Therefore, we have the following capacity upper bound

I
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X;Y

)
= h

(
Y

)− h
(
Y

∣∣X) a≤ log2

(
(πe)NT ·

∣∣ΣY
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)

− EXd

[
log2

(
(πe)NT ·

∣∣ΣY|X
∣∣
)]

, (12)

where the second term of inequality(a) is from a direct ex-
pansion of the conditional entropy according to the definition.
Substituting (8) and (9) into (12), capacity upper bound (7)
can be obtained in a straightforward manner.

Since the received signalY can be viewed as a weighted
sum of Gaussian random vectors, its distribution is close the
Gaussian as long as it contains a large number of indepen-
dent random variables according to the central limit theorem.
Hence, the upper bound is tight and quite likely to be even less
than the true unknown MIMO channel capacity provided in
[3]. Therefore, maximizing the capacity upper bound is a rea-
sonable approach and will not make the bound become loose
due to the fact that both the capacity upper bound as well as
the mutual informationI

(
X;Y

)
in (7) increases through the

optimization with respect to different system parameters.

B. Pilot Structure Optimizations
The most commonly used pilots have an orthogonal struc-

ture. They are optimal in a sense that they minimize the mean
square channel estimation error as well as achieve the Cramer-
Rao lower bound. As a straightforward extension of the sin-
gle input single output system, the covariance matrix of the
MMSE estimation error̃H = H− Ĥ for the unknown MIMO
channel is given by

CH̃,H̃ = Cov
(
vec

(
H̃

)
,vec

(
H̃

))
= IN⊗

(
IM+

ρτ

M
SH

τ Sτ

)−1
.

(13)
It is obvious that the average mean square error of the channel
estimation

tr
(
CH̃,H̃

)
= N × tr

((
IM +

ρτ

M
SH

τ Sτ

)−1
)

, (14)



is minimized when the non-zero eigenvalues ofSH
τ Sτ are all

equal. Therefore, the following orthogonal pilot structure, rep-
resented as

SH
τ Sτ = Tτ · IM , Tτ ≥ M ,

SτSH
τ = M · ITτ

, Tτ < M , (15)

minimizes the MIMO MMSE channel mean square estimation
error.

In order to obtain the optimal pilot structure with respect to
the capacity upper boundC, we utilize the following concavity
property.

Proposition 2 The capacity upper bound obtained in Propo-
sition 1 is concave with respect to matrixQ = SH

τ Sτ , i.e.,

λ·C(
Q1

)
+(1−λ)·C(

Q2

) ≤ C
(
λ·Q1+(1−λ)·Q2

)
, (16)

whereλ ∈ [0, 1] .

Proof: The Hessian of the capacity upper bound is given by

∂2C

∂2vec
(
Q

) = − Nρ2
τ

M2 ln 2
·EXd

[
Σ−1

1 ⊗Σ−1
1 −Σ−2

2 ⊗Σ−1
2

]
,

(17)
whereΣ1 andΣ2 are given by

Σ1 = IM +
ρτ

M
Q , Σ2 = IM +

ρτ

M
Q+

ρd

M
XH

d Xd . (18)

It can be shown that the Hessian matrix is negative semi-
definite, and hence the capacity upper bound is concave with
respect toQ.

As a direct result of Proposition 2, we have the following
optimal pilot structure.

Proposition 3 The optimal pilot structure, which maximizes
the capacity upper bound (7), satisfies the following orthogo-
nal conditions

Q = SH
τ Sτ =

MTτ

min(Tτ ,M)

[
Imin(Tτ ,M) 0

0 0

]
, (19)

which is equivalent to (15).

Proof: First, substituting (18) into (7), the capacity upper
bound can be represented as

C = N

(
Td · log2(1+ ρd)+ log2

∣∣Σ1

∣∣−EXd

[
log2

∣∣Σ2

∣∣
])

.

(20)
The following equality is true

EXd

[
log2

∣∣Σ2(Q)
∣∣
]

= EXd

[
log2

∣∣UHΣ2U
∣∣
]

= EXd

[
log2

∣∣∣IM +
ρτ

M
UHQU +

ρd

M
(XdU)H(XdU)

∣∣∣
]

a= EXd

[
log2

∣∣∣IM +
ρτ

M
UHQU +

ρd

M
XH

d Xd

∣∣∣
]

= EXd

[
log2

∣∣Σ2

(
UHQU

)∣∣
]

, (21)

whereU is any unitary matrix, and(a) follows from the fact
thatXdU has the same distribution asXd. Further due to the
fact that ∣∣Σ1(Q)

∣∣ =
∣∣Σ1(UHQU)

∣∣, (22)

the capacity upper bound (20) is hence invariant under the fol-
lowing transformation

C(Q) = C(UHQU) . (23)

If the unitary matrixU is set to be composed of the eigenvec-
tors of Q, then according to (23) we only need to focus our
attention on the case whereQ is a diagonal matrix.

Furthermore, it is also true that any permutations on the
non-zero diagonal elements ofQ will not change the upper
bound,

C
(
Q

)
=

1
K!

∑

P

C
(
PHQP

) a≤ C
( 1

K!

∑

P

PHQP
)

,

(24)
whereK = min(Tτ ,M), matrixP is any permutation matrix
that permutes the firstK rows (or columns) of the non-zero
elements ofQ, and(a) follows from the concavity property of
the upper bound. At this point, it is evident that the optimal
pilot, which achieves the maximum capacity upper bound, has
an orthogonal structure given by (19).

Therefore, although starting from different perspectives, or-
thogonal pilots structure not only minimizes the estimation
mean square error, but also maximizes the capacity upper
bounds. Substituting the optimal structure (19) into the equa-
tion (7), we obtain the following capacity upper bound

C = N

(
Td·log2(1+ρd)−EXd

[
log2

∣∣∣IM+
ρd

M
Λ−1XH

d Xd

∣∣∣
])

,

(25)
whereXd is of sizeCTd×M , andΛ is given by

Λ =

[ (
1 + ρτ Tτ

min(Tτ ,M)

) · Imin(Tτ ,M) 0
0 IM−min(Tτ ,M)

]
.

(26)

C. Equal Training and Data Power Allocation
For some communication systems, it might not be possi-

ble to vary the power during the training slots and data slots.
Hence the capacity upper bound, assuming training symbol
and data symbol share the same power, is obtained by substi-
tuting the power allocations(ρτ = ρd = ρ) into (25). The
capacity upper bound is further optimized with respect to the
data allocation scheme(Tτ , Td), and we have the following
important result concerning the dependence onTd, the num-
ber of data symbols.

Proposition 4 Capacity upper bounds under equal power al-
location schemes are monotonically increasing with respect to
the number of data slotsTd, i.e.

C(Td = k) ≥ C(Td = k − 1), k ≤ T −M,

C(Td = T ) ≥ C(Td = T −M) . (27)



Proof: We begin with the first part of (27) whenTτ ≥ M ,
where equation (25) is reduced to

C = N

(
Td · log2(1+ρ)−EXd

[
log2

∣∣∣IM +
ρ′

M
·XH

d Xd

∣∣∣
])

,

(28)
whereρ′ = ρ/(1 + ρTτ/M). We further separate the data
matrixXd into X′

d andxTd
,

Xd =
[

X′
d

xTd

]
, X′

d ∈ CTd−1×M , xTd
∈ C1×M . (29)

Then we have the following inequality,

EXd
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log2
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d Xd
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]

= EXd

[
log2

∣∣∣IM +
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M

(
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d
HX′

d + xH
Td

xTd
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a≤ EX′d

[
log2
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M

(
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d
HX′

d + ExTd

[
xH

Td
xTd

])∣∣∣
]

,

(30)

where inequality(a) follows from the fact thatlog | · | is a
concave function. Therefore, using assumption (6), we can
obtain the following result

C(Td = k)− C(Td = k − 1) ≥ ∆f(ρ) ≥ 0 , (31)

where

∆f(ρ) = log2(1+ρ)−M log2

(1 + ρ(Tτ + 1)/M
1 + ρTτ/M

)
, (32)

due to the fact that∆f(0) ≥ 0 and∆′f(ρ) ≥ 0. A similar
approach can be used to prove the second part of (27).

D. Optimization over(ρτ , ρd) and(Tτ , Td)
For communication systems where the power allocation can

be varied between training and data symbols, the optimal ca-
pacity upper bound is obtained by solving the following con-
strained optimization problem

C
(
Tτ , Td

)
= max

(ρτ ,ρd)
C

(
ρτ , ρd, Tτ , Td

)
, ρτTτ+ρdTd = ρT .

(33)
However, numerical results provided in Section IV indicate
that there is insignificant capacity loss by using equal power
allocations, which is much easier for implementation.

IV. N UMERICAL AND SIMULATION RESULTS

A. Optimal Pilot Structure
We know from Section III. B that orthogonal pilot structure

not only minimizes the mean square estimation error, but also
maximizes the capacity upper bound (7). Fig. 1 demonstrate
the sensitivity of the capacity upper bound with respect to the
pilots structures. As can be observed from the plot, the capac-
ities using random pilot structure, which are denoted as doted
curves, are inferior to those of applying orthogonal pilot struc-
ture. And the capacity loss is significant in moderate to high
SNR ranges.
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Figure 1: Capacity comparison between orthogonal pilot
structures and random pilot structures under equal power al-
location schemes of a6× 6 MIMO system with coherent time
intervalsT = 10, and data intervalTd = 1, 2, 3, 4
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Figure 2: Capacity upper bound of a6×6 MIMO system under
equal power allocation scheme of SNRρ = 4dB, and with
different coherent time intervalsT = 4, 5, 6, 7, 8, 10, 15, 20

B. Equal Power Allocation
The capacity upper bounds of a6× 6 MIMO system under

equal power allocation scheme with different coherent timeT
and data slot allocationTd are demonstrated in Fig. 2. From
the plot, we can observe that the capacity upper bound is
monotonically increasing with respect toTd (even for the case
Td > T −M ). However, the capacity gain is insignificant for
Td beyondT −M especially whenT is larger thanM . There-
fore,Td = T −M,T > M is a good trade-off point between
the achievable capacity and implementation complexity.

C. Optimal Power Allocation
We demonstrate in Fig. 3 the capacity upper bound with
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Figure 3: Capacity upper bound of a6×6 MIMO system under
optimal power allocation scheme of SNRρ = 4dB, and with
different coherent time intervalsT = 4, 5, 6, 7, 8, 10, 15, 20
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Figure 4: Capacity gain of optimal power allocations over
equal power allocations of a6 × 6 MIMO system with SNR
ρ = 4dB, under different coherent time intervalsT =
4, 5, 6, 7, 8, 10, 15, 20

optimal power allocation schemes for the same MIMO system
used in the Fig. 2 with varying coherent time intervals. As a
comparison, the capacity gain from using optimal power allo-
cation over equal power allocation scheme is shown in Fig. 4.
We can observe from the plot that, when the number of train-
ing symbolsTτ is small, there is insignificant capacity loss
due to using equal power allocations, which is much easier for
implementation.

D. Comparison
In Fig. 5, for comparison purpose we plot the capacity lower

bound provided in [5], the capacity upper bound provided in
this paper, as well as the MIMO channel capacity with ideal
channel state information at the receiver.
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Figure 5: Capacity comparison between lower bounds and up-
per bounds under equal power allocation schemes of a6 × 6
MIMO system with coherent time intervalsT = 10, and data
intervalTd = 1, 2, 3, 4

V. CONCLUSION

In this paper, we propose a capacity upper bound of the un-
known MIMO channel. Through the analysis of the proposed
upper bound, we show that orthogonal pilot structure is opti-
mal. It not only minimizes the mean square estimation error,
but also maximizes the proposed capacity upper bound. We
also proved that under equal power allocation scheme, capac-
ity upper bound is a monotonically increasing function with
respect to the number of data slotsTd. Through numerical
evaluations, we further demonstrate that the capacity incre-
ment is insignificant whenTd is larger thanT−M , and limited
capacity gain can be achieved by using optimal power alloca-
tion between training and data symbols when compared to the
simple equal power allocation scheme.
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