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In the present study, we proposed a data-driven approach combining machine learning,
experimental design and feedback from experiment to accelerate the search for
multi-component alloys with target properties. We demonstrated the efficiency of our
approach by rapidly obtaining several alloys with hardness 10% higher than the best
value in the original training dataset via only seven experiments. In Iteration Loop I, a

machine learning surrogate model is trained to learn the property-composition,



relationship, m with associated uncertainties. The model is applied to the
vast unexplored space and a utility function is employed to recommend the most
informative candidate for the next experiment, which balances the exploitation and
exploration. Feedback from experimental synthesis and characterization allows the
subsequent iterative improvement of the surrogate model. Iteration Loop Il is
essentially same as Iteration Loop |, except that a features pool was introduced to the
Iteration Loop | and a surrogate model is trained from composition (¢) and the
preselected physical features (), m We found that the approach using
both the composition and the descriptors based on domain knowledge can more
effectively accelerate material optimization compared to the approach using only the

compositions.
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Abstract: We formulate a materials design strategy combimaimgachine learning (ML)
surrogate model with experimental design algoritiionsearch for high entropy alloys
(HEAs) with large hardness in a model Al-Co-Cr-CaHRi system. We fabricated
several alloys with hardness 10% higher than thst alue in the original training
dataset via only seven experiments. We find thsitategy using both the compositions
and descriptors based on a knowledge of the piepeof HEAS, outperforms that
merely based on the compositions alone. This glyatsffers a recipe to rapidly

optimize multi-component systems, such as bulk hetglasses and superalloys,



towards desired properties.
Keywords. Multi-principal element alloys; Active learning; Maine learning;

Materials Genome Initiative

1. Introduction

The traditional compositional design strategy dbyd always begins with one (or
rarely two) principal elements and proceeds by tamidiof various alloying elements to
tailor desired properties.[1-3] Typically, the ingic properties of the designed alloy
remain dominated by the principal element. For glamFe acts as the principal
element in steels, Ni/Co in superalloys and Tiitanium alloys.[4-6] High entropy
alloys (HEAS)[7-8] are the result of an alloy desgpproach introduced a decade ago in
which multiple elements are mixed in equimolar @amequimolar compositions to
attempt to maximize the configurational entropy.cbmtrast to the expectation that a
large number of intermetallic phases or other cemghases would form in these
multi-principal element alloys, typical HEAs remainrather simple phase, primarily
face centered cubic (FCC), body centered cubic (B&@ mixture of the two.[9] This
configuration allows for excellent properties of A% including cryogenic toughness,
strength and thermal stability at elevated tempeeat as well as good corrosion and
wear resistance.[10-13]

As HEAs comprise multiple principal elements, thenter of possible compositions is

much higher than that of conventional alloys.[14jeThuge compositional space



provides an opportunity to improve properties, sashhardness, but sets a significant
challenge in compositional optimization, especidllgxplored by “trial and error” or
intuition.[15] Hence, search strategies that cdiciehtly and rapidly identify particular
alloys with desired properties are necessary. @ewdforts have been devoted to
utilizing thermodynamic modeling, density functibrtheory (DFT) and molecular
dynamics (MD) calculations to guide the alloy dedi$)6-22] For example, Miraclet

al. used the CALPHAD method to predict the formatiorpbases of HEAs and found
that the predicted number of stable phases is fvacenore, than those obtained by
experiments.[23] Meanwhile, DFT and MD calculatiopgmarily focus on phase
stability, solidification behavior, and crystalltaan kinetics of HEAs.[24-26] Moreover,
the number of elements, as well as the variety iofostructures, gives rise to complex
and computationally intensive calculations compa@donventional alloys. Few of
these methods, however, are oriented towards psopaesign, i.e., predicting
chemistries and compositions that are optimizeaftargeted property.

Recently, the materials science community has béguwtilize machine learning (ML)
tools,[27-29] such as identifying structural flowefdcts in disordered solids and
discovering inorganic-organic hybrid materials.[80- For HEAs, Tancrett al.[32]
proposed a robust strategy to predict the formatiosingle-phase solid solution HEAs
based on a critical assessment of phase formahdnaaGaussian process statistical
analysis. Their design strategy predicted sixty-@guimolar alloys to form single-

phase HEAs. Islanet al., investigated whether a single-phase solid satutian



amorphous phase or an intermetallic compound wéadch in HEAs by training a
neural network model from a dataset of 118 obsEmsatwith an average predictive
accuracy higher than 80%.[33] These studies fooughase formation predictions, and
not on predicting and optimizing the mechanicafurctional properties. Besides ML,
which estimates the mapping between the propedynaaterial features or descriptors,
the design of experiments (DOE) using utility fuoos to select the next experiment is
a crucial aspect of sampling the search space mttampt to find the global optimum,
as ML by itself can be sub-optimal.[34-35] This wdammonstrated in the search for
shape memory alloys (SMAs) with small thermal hgeses, as well as for BaTi©
based piezoelectrics with large electric field ioeld strains.[36-37]

In the present study, we propose a property-oriedtanaterials design strategy that
combines ML and DOE to find alloys with high hardaan the Al-Co-Cr-Cu-Fe-Ni
HEA system - a prototype HEA family comprehensivaiydied thus far.[38] A mixture
of various elements results in a broad distribubdhardness ranging from 110 to 770
HV, that is usually unpredictable. In our approaeh,first train a ML model to estimate
a map between hardness and descriptors, such asicahecompositions and the
chemistry of elements. Based on the ML predictiand the associated uncertainties,
we employ utility functions to guide the search &loys with high hardness from a
search space of nearly two million possible contpmss. Finally, we successfully
predict and synthesize several alloys by carryingam active learning feedback loop

with experiments, which we iterate seven times. Wark leads to several alloys with



hardness 10% higher than the best value (775 H\henoriginal training dataset. In
particular, we find that the approach using botd tomposition and the descriptors
based on a knowledge of the properties of HEAs etactively accelerate the

discovery process compared to using compositiohs on

2. Design strategy

Our iterative feedback loop for HEAs with optimadsign involves a tight coupling
with experiments and is schematically shown FigTie ML, DOE and feedback are
combined and implemented as follows: an ML surregabdel is trained based on a
dataset containing hardness (y) and compositignf¢c each element. The obtained
surrogate model.€., M) is applied to a search in the materials spaceravthe
hardness is unknown. Based on the hardness pmeWicind the associated uncertainties,
a utility function for selecting the next experinteiis employed to choose a candidate
for synthesis by balancing exploitation (choosing material with the highest predicted
hardness) and exploration (using the predicted ntmiogies to study regions of the
search space where the model is less accurateseuént alloy synthesis and
experiments allow an iterative improvement of the@gate model by incorporating the
measured results into the training set. This isesgnted by Iteration Loop | in Fig. 1.
In addition, in order to incorporate more materiasscriptors to improve the
performance of Iteration Loop |, we describe olmyahot only by the compositions;)c

but also by the use of physical featureg (F the elements as this is known to be



closely related to the hardness. Consequentlyiheurrogate model learns to estimate
the property from the compositions as well as tlodker features, that |m
These features are preselected from a feature pdoth is included in our design
strategy as shown by Iteration Loop Il in Fig. 1e Wompare the performance of these

two iteration loops.
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Figure.l. A schematic of the ML and DOE based iterative dedapp for accelerated design of

HEAs. Iteration Loop I: a ML surrogate mod&i(= f(cy).) is trained with a training dataset and

then applied to a search space to predict the pgyoped associated uncertainties. A utility funotio
for DOE is employed to choose a candidate by balgnexploitation and exploration. After the
synthesis and measurement of the recommended edeslidre performed, the new data are added
into the training dataset, allowing the iteratimgrovement of the surrogate model. Iteration Ldop |
the loop is essentially same as Iteration Loopdept that a feature pool is introduced into lierat

Loop | and a ML surrogate model is trained from ¢oenpositions (¢ and the preselected physical

features (p), m



3. Dataset and experimental method

3.1 Datasourceand quality

We consider HEAs that belong to the,@b,Cr,CufFeNi, system, where the mole
fractions of each element of x, y, z, u, v and wasstrained by x+y+z+u+v+w=100%.
To minimize the influence of processing on the [fipgoperty, the training data
assembled from the literature are for alloys fadied by vacuum arc melting only and
their property is measured in the as-cast formaddition, we exclude samples with
significant differences in measured hardness. Kamgle, the alloy AICoCrGisFeNi

is not considered because its hardness value astegpas 458, 563 and 665 HV in three
different studies.[39-41] We use the average vétuea composition whose hardness
does not vary appreciably in different studies. ragkes include the alloy
Al,CoCrCuFeNi with hardness of 582 and 570 HV,[7,42] &lCoCrFeNi alloy with
hardness of 510, 520 and 518 HV.[43-45] Finallgluding 18 experimental data from
our laboratory, the training data consists in tofal55 samples of measured hardness.
The data are fairly scattered and representatvehere are 22 quaternary alloys, 95
quinary alloys and 38 six-component alloys.

After the above preprocessing step, differencatenreported values still remain. This
can be attributed to the deviation of the actuaimposition from the nominal
composition, and the variation of the hardness nreasent/solidification conditions.

As our experimental results are added into thanitrgi data in the feedback loop, we



take the precaution of synthesizing and charaateyi@ compositions chosen randomly
from the training data. The results are listed abl& 1, along with the corresponding
literature reported hardness values. The measuwsethdésses are consistent with the
reported values with a difference of less than B%erefore, the training data from the
literature from different laboratories are deemedbé consistent and acceptable for the

subsequent steps. The training data is providélgdeiisupporting information.

Table.1. Comparison of the hardness values between thetegpdata and experimental data.

Elemental content, at% Vickershardness, HV

Al Co Cr Cu Fe Ni Reported in literature Thiswork
375 125 125 125 125 125 735 746+16
20 20 20 10 20 10 604 594+32
158 211 211 0 211 211 388 418+15
222 111 0 222 222 222 545 533+31
9.1 0 18.2 182 182 36.4 238 259+15
28.6 0 143 143 143 286 567 572+8

3.2  Search space of allowed, unsynthesized alloys

The possible compositional space of theGul,Cr,Cu,FeNi, system corresponds to a
large (virtual) search space, which includes 155A8Ikvith measured hardness. The
concentrations x, y, z, u, v and w are varied witstep size of 1 at.%, given that higher
accuracy is not appropriate due to the exploratatyre of the HEA design. The virtual
space is constructed by considering the upper @mdrlcompositional limits for alloys
with hardness exceeding 500 HV in our training seta For example, the

concentrations of six-component alloys are consdchi within 15<x<47, 5<y<22,



6<z<34, 5<u<16, 5<v<31 and 5<w<22 at.%. The unaeglspace of yet unsynthesized
HEAs thus essentially consists of 1,895,147 allyth unknown hardness, including
1,331 quaternary alloys, 218,324 quinary alloys &r&¥5,492 six-component alloys.
The virtual space with predicted hardness largan ti50 HV can be found in the
supporting information.

3.3  Experimental procedure

The alloys were prepared by arc-melting the mixdud high-purity (99.5wt%)
elements in an argon atmosphere. Each ingot waseled five times to improve
chemical homogeneity. The hardness was measured asivVickers micro-hardness
tester (LECA-VMHT-30M) under a load of 200gf for Xeconds holding time. The
measurements were repeated ten times for each esampbtain an average hardness
value and statistically significant results. Theagh structure was determined by X-ray
diffraction (XRD, RigakuSmartLab9000W), while theanostructure of the alloys and
the elemental area distributions were analyzed $gaaning electron microscope (SEM,

ZEISS EVO18) equipped with an energy dispersivespmeter (EDS).

4, Machine lear ning and design of experiments

4.1  Machinelearning models

We employed several well-known machine learning el®d including a linear
regression model (lin), a polynomial regression etddoly), support vector regression

with a linear kernel(svr.l), a polynomial kerneVi(p), and a radial basis function kernel



(svr.r), a regression tree model (cart), a backagation neural network model (bpnn)
and a k-nearest neighbor model (knn) - to produc®raconvex input/output fithess
function to estimate the hardness. The best pemgrnmodel was selected by
considering its predictions on an independent rigstiet (data not used to train the
model). We utilized cross validation and the boafstmethod with replacement to
estimate the test error for these models.

Our original data was split into a training set aniésting set using different split ratios

(training set is taken from 30% to 90% of the orajidataset). We calculated the root

mean square error (RMSE) us‘RMSE = \/%Z?ﬂ(yi — )3 where &) is the true

value and [ﬁ) the predicted value. This was repeated 100 timresach split of the data.

The mean value of RMSE is shown in Fig. 2(a). Threredecreases with increasing
size of the training set with the three models bhpkmn and svr.r, outperforming

the others across different splitting ratios. Thset of Fig. 2(a) zooms in the
performance of three models of svr.r, bpnn and knn.

We also employed the bootstrap with replacememiveduate the RMSE. The original

training data contained n = 155 samples, from whwé randomly selected n

observations with replacement to produce a boqstample. We trained a new model
on this bootstrap dataset, and made predictionslfathe data points in the original

training dataset. We repeated this procedure 1@@stiand obtained 100 sets of
predictions for the mealﬂo for the data in the original training set. The BM of

bootstrap was then estimated from the differendedrn the mean valu@{) and the



measured valueﬂ) through}RMSE =\/%Z?=1(Yi_ui)2' Fig. 2(b) plots the RMSE

results from the bootstrap method for all the medesing 70% of the training set in Fig.
2(a). The svr.r has the minimum prediction errod & performance is shown in Fig.
2(c). Thus, svr.r was chosen as the model to préaécunexplored alloys in the virtual

space in the iterative design loops.
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Figure.2. Model evaluation and selection by estimating thet teror for different models. (a) a

holdout method and (b) bootstrapping methods, atitig svr.r outperforms the others. The inset of
(a) zooms in the performance of three models af,9wpnn and knn. (c) The predicted values as a
function of the measured values of the svr.r méaieboth training data (randomly chosen 70%) and

testing data (the rest 30%).

4.2  Utility function for experimental design

As mentioned above, the search space is quite fargee HEA system. It is inadequate
to navigate this landscape, searching for a méateith an optimal property solely
based on the predictions of the ML model. Careédligh of experiments is necessary to
minimize the number of experiments which need tcémied out in the overall space
of variables and parameters (the design spaceliliy function can be defined so that

an experiment is selected to maximize the expeuatiddy. In the present study, we



employed expected improvement (El) to select tha egperiment.[35,49] The EGO

algorithm uses maximizes the expected improvententaver the search space, which

is defined b)%] = E[max(y — u*,0)] = f:j(y —u)P(y | xNdy = a[p(2) + z0(2))],

Where[): — " is the possible improvement for cert&im)r hardness,ls(y | x) is the

distribution of the predicte@ and is assumed to be normal, and (u— u*)/a, where
[1? is the maximum value of hardness in the trainiamdﬂ ando are the predicted
value of hardness and the associated uncertaegpgectively. Because we assume that
hardness values are distributed following a nomnsttibution, El is expressed in terms
ofp(z), the standard normal density, m the cumulant distribution function. El
balances exploration (aims at improving the pregécinodel) and exploitation (aims at
finding the best prediction). For our preselecteodal, svr.r, we utilize the bootstrap
method from statistics to estimate the uncertainft;predictionslg. We generate a
bootstrap training set by resampling the data fribim original training data with
replacement. That is, we train 1000 svr.r modelsebaon 1000 bootstrap training
datasets to obtain 1000 predictions for each sammptee virtual dataset. The mean
predicted value ﬁ) and standard deviatiorE(} can be estimated from the 1000

predictions to obtain El (expected improvement)dach alloy.

5. Results
51 Iteration loop |

We performed the iterative feedback loop | sevemes using svr.r as the ML model



employing EI for the DOE. We predicted the hardrafsall the materials in the virtual
space and then selected three of them for the gubsesynthesis and measurement. In
total, 21 new alloys were recommended and syntedsiand the compositions are
listed in Table S1 of the Supplementary Materidlfer each iteration, the measured
hardness values of new alloys were added intortheing data and the updated svr.r
ML model was retrained. The quality of our modetgictions is shown in Fig. 3(a),
which compares all of the predicted and measurednieas values from the training
data and our experimental data. The scatter pdistsbute around the diagonal line,
indicating that the model is adequate and the aggatis reasonable. Fig. 3(b) plots the
measured hardness as a function of iteration nuniber noted that even though the
three alloys in the first iteration have lower hads values than the best value of 775
HV in the training data, all of the alloys in thellbwing iterations outperform the
training data. In the sixth iteration, the alloy,&0,,Cr.oFe;Nig with hardness of 875
HV was discovered. The inset of Fig. 3(b) showspteslicted values for every iteration,
which exhibits a similar tendency to the measuesiilts. We conclude that Iterative

loop | works well and rapidly leads to a numbeH&As with improved hardness.
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Figure.3. The results of lterative Loop I. (&) The predicteardness values versus the measured
values for the alloys in the training data and experimental data. (b) The hardness of the newly
synthesized alloys as a function of loop iteratimmber. The inset of (b) plots the predicted values

as a function of iteration number, showing a sintdéamdency to the measured values.

52 Iterationloop Il

In Iteration Loop Il shown in Fig. 1, we incorpaganaterials knowledge by introducing
descriptors that are also related to mechanicagestes of HEAs. This is in contrast to
Iteration Loop | that only uses compositions aduiess. Our objective is to test the
efficiency of the search strategy with or withoettures related to the properties of
HEAs.

Several criteria are proposed to describe phasmatoosn in HEAs based on the
difference in atomic radiio¢) between elements, the difference in electronagat Ay)
between elements, the valence electron concentr@figC), the mixing enthalpy\H),
the configurational entropyAS), the Q parameter (which is related to the entropy,
enthalpy and the melting point), the parameter (which is related to an atom’s
configuration on a lattice and its radius) andthparameter (the solid angles of atomic
packing for the elements with the largest and ssallatomic sizes).[50] These
descriptors are related to the intrinsic properties influence the formation of a solid
solution, amorphous phase and/or intermetallic aumgd in HEAs, and affect the final
hardness. We also introduce the local electrondgatmismatch (Dy) between
elements, the number of itinerant electrons (efa) the cohesive energy JEall of

which potentially relate to phase formation. In iidd, we consider parameters from



strengthening theory to describe the lattice distoy elastic misfit and dislocation
motion, all of which affect the mechanical propestof HEAs. These features include
the modulus mismatchn), the local size mismatch (D.r), the energy temmthe
strengthening model (A), the Peierls-Nabarro fa¢irand sixth square of the work
function (w).[51-55] A number of additional desdops, such as the shear modulus (G),
the local modulus mismatch (D.G), the differencshear modulus(s), and the lattice
distortion energyy() are also included. Our final feature pool corsscdt20 features, 11
of which describe the formation of different phasesl the other 9 relate to the
mechanical properties. A detailed list of theseuess is provided in the Supplementary
Materials, Table S2.

In order to reduce the computation time and impmmeelel robustness by removing the
irrelevant and redundant features, we employ aitiybethod combining a correlation
analysis and a wrapper method to perform featutecten. First, for the highly
correlated features, we retain only one of themethuce redundant information in the
subsequent modeling. The right-top corner of F(@) 4lepicts the Pearson correlation
coefficient map between different features. Thog® & correlation coefficient greater
than 0.95 were considered as highly correlatecchfmse the feature to be retained, we
rank the importance of each feature to the modekvsluating the test error of the
model with a particular feature. We split our ongji data into a training set (80%) and a

testing set (20%) and build the svr.r model basedhe training set with one feature.

The test error is then calculated thro%RﬁISE = \/%Z?zl(yi — 9,)% where @) is the



true value and&) the predicted value and the test error are ramkdde left-bottom
corner of Fig. 4(a). Accordingly, highly correlatezhtures-G, Oy, 6G, D.G,dr, and A —
are removed. Second, we further reduce the feafsee by considering all possible
subsets of these features to identify the subseigyrise to the lowest model error. The
cross-validation errors of the svr.r model basedddferent subsets of features are
plotted in Fig. 4(b). According to Fig. 4(b), from starting set of knowledge based
features, the initial decrease in error indicatesmaprovement of the model and the
later increase is due to possible over-fitting.[36F best performance of the model is
given by a 6-tuple feature set and what's intargss that the best 3-, 4-, 5- and 6-tuple
feature sets are ‘e/a, w,; ‘e/a, w, n, vec’; ‘e/a, wn, vec,AS’ and ‘e/a, wp, vec,AS,
Gb’, respectively. Starting from the best threetdess, the addition of other features
reduces the prediction error of the svr.r modelydner, it increases the complexity of
the model at the same time, and the improvementaafel performance is not obvious.
We thus choose the best three features ‘e/q, far simplicity without sacrificing much

in terms of the model accuracy and generalizability
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Figure.4. Feature selection to identify the most importadtdires from the feature pool. (a) The
Pearson correlation map of the initial twenty feasu A larger circle with deeper color indicates a
high level of correlation. On the left-bottom pamghph, each color represents features that are
highly correlated with each other, and among eabbr,cthe one with the lower error is retained. (b)
The cross-validation error of each possible sviodeh containing a subset of preselected features
based on (a). The red frontier tracks the best imodea given number of features. The green dot

indicates the set of three features employed irt#nation loop Il, including e/a, w angd

We built our svr.r model with both the compositiof each element {icand the

preselected physical feature$),(me.,m, utilizing the original training data
with n = 155 without including the data of the 2dperimental alloys produced during
the lteration Loop I. This allows us to make a direomparison between the two
Iteration Loops. The original samples are randopdytitioned into 10 equal sized
subsamples. Nine subsamples are used as trainitegy atal the remaining one
subsample is retained as the validation data &imig the model. The cross-validation

process is then repeated 10 times to obtain theigbeel value&) of each sample. And

. . d . 1 ~
the cross-validation error is estimate thro@MSECV - \/;Z?:l(yi — )% where @

is the measured value. The svr.r model using bo#ima p has a cross-validation error
of 54.4, which is slightly lower than that 56.3 tbe model using only,.cBased on this
ML surrogate model together with EGO, we performdigack including synthesis with
Iterative loop Il seven times as well. Another Zwnalloys are recommended and the

compositions are listed in Table S3 of Supplemgntéaterials.
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Figure5. The results of Iterative Loop Il. (a) The predictearness values versus the measured
values for the alloys of the training data and ¢éhegnthesized in successive iterations. (b) The
hardness of the new alloys as a function of iteratiumber. The black dotted-line represents the
best hardness in the training dataset and the ragletied-line represents the best value obtained
using Iteration Loop I. The inset of (b) plots fredicted values as a function of iteration number,

showing a similar tendency to the measured values.

Fig. 5(a) plots the predicted hardness as a fumafothe measured values for all the
alloys from the training data and those synthesimesliccessive iterations. The data is
closer to the diagonal line compared to Fig. 3f@jjcating that this model is more
robust than for Loop | improvement. Fig. 5(b) shdiws measured hardness from each
iteration from Loop Il. In contrast to Iteration @p I, the alloys in the first iteration
show better performance than all of the trainintadand an alloy with hardness of 843
HV is found, which is 8.8% better than the bestugain the training data. For each
iteration, the hardness obtained in Iteration Ldoig higher than that in Loop | (gray
dots in Fig. 5(b)). The alloy, AC0,,Cr1sCusFesNis, possessing the highest hardness is
predicted after the fourth iteration. Its hardnessches 883 HV on average, which is

14% higher than the best value in the original skftaand even higher than the best



value found by Loop I. The 10 alloys with the highbardness from the two loops are
listed in Table 2. We observe that the alloys (C&rtl C7-2) obtained in the seventh
iteration of Loop | are the same as those (K5-2lghd) obtained in the fifth iteration

of Loop II. This indicates that Loop | and Il pdsgi converge to the same optimum in

the property-feature space. Overall, Loop Il filtiSAs with higher hardness values.

Table.2. The top 10 newly predicted and synthesized alldfysr seven iterations by both iterative

loops. There are more alloys with higher hardnedses from Loop 1l than Loop |.

Alloy Elemental content, at%

No. Al Co Cr Cu Fe Ni Hardness HY
K6-2 43 22 23 0 7 5 883+47
K4-1 47 20 18 5 5 5 883+22
K6-1 43 22 22 0 8 5 882+22
K7-2 47 19 19 5 5 5 878+25
C6-3 43 24 22 0 5 6 875158

K5-2 (C7-1) 43 25 22 0 5 5 868145
K5-1(C7-2) 43 24 23 0 5 5 865+39
K4-2 43 18 20 0 12 7 864123
C7-3 43 23 21 0 8 5 863134
C6-2 47 14 20 5 5 859+26

Notes: “C1-2” represents the second alloy in the firstation of Iteration Loop |, “K1-2" represents the

second alloy in the first iteration of Iterationdml|I.

6. Discussion

In this study, we address the design of HEAs astenation loop combining ML



modeling, experimental design algorithms and feekilisom experiments. By carrying
out the iteration loop, the experimental feedbaakmf each iteration continuously
improves the model performance, as shown by theedee of the cross-validation error
for both models in Fig. 6(a).

Meanwhile, the Eli(e., the expected improvement over the best valuerebden the
training data) of the newly-made samples gradud#égreases with iteration number,
indicating that the hardness prediction of our nhdmkEomes better, as shown in Fig.
6(b). In addition, the El values become stable #mel alloy compositions tend to
stabilize after five iterations for both Iteratidmoop | and Il. For example, the
composition of Al reaches an upper limit, and Cmposition reaches a lower limit of
the composition range of our virtual dataset afeterations. This suggests that both
search strategies appear to be trending toward®lzalgoptimum in the property
landscape. Moreover, lteration Loop Il, which a@s more knowledge based features,
performs better than Iteration Loop | — using oslympositions - in terms of the

efficiency to find HEAs with higher hardness.
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Figure.6. A comparison of the performance of the two itematimops. (a) The cross-validation error



for the svr.r model. The ML model with compositiamd materials features predicts the target
property more accurately. (b) The EI value of tHeosen alloys. The mean value and the

standard deviation of El decrease and tend to ege\adter five iterations for both Iterations Loops

The two alloys, Al3C0,,CrssFe/Nis and AL7Co,CrisCusFesNis, with the highest
hardness tend to have more Al content and littlelda known that Cu can promote the
formation of FCC phase in HEAs and decrease stneagid hardness; Al, when
combined with Ni, tends to form a BCC ordered phdse to the high formation
enthalpy of these two elements.[40] With an inceeas Al content, the HEAs will
transform from an FCC solid solution, through a BGGlid solution, to a B2
intermetallic ordered phase, which is expectedasspss higher hardness. Our design
strategy appears to capture this rule hidden irtrieing dataset and the design utility
function allows us to rapidly identify these alloys

We checked the phase and the microstructures diwihalloys above. The XRD results
in Fig. 7(a) revealthe formation of a mixture of BCC structures, corsgd of a
disordered BCC solid solution and an ordered BC@ ¢Bucture), while the SEM
micrographs in Fig. 7(b) and the EDS mapping in. Fi@) confirm that the ordered
phase can be identified as Al and Ni. This confitimst our design strategy drives the
prediction towards the B2 ordered phase. Howevennost cases, the ordered B2
structure is not as desirable as the disorderad solution FCC or BCC phase. Such
knowledge can be incorporated into the ML modehwaitclassification filter to prevent

searches for alloys likely to be in the intermétadpace.
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Figure.7. Characterization of the best two alloys 488l0,,Cr3Fe/Nis (K6-2) and
Al 4;7CoCrigCusFesNis (K4-1). () The XRD spectra shows that both alloys are cmeg of a
disordered solid solution BCC phase and an ordB&ghase. (b) Typical SEM micrograph of the
K6-2 alloy. (c) An element distribution map of tk&-2 alloy showing that Al, Ni have similar
spatial distribution, and Fe distributes unifornifyne combination of Al and Ni tends to form the

NiAl ordered B2 phase, leading to the increaseantlihess.



1. Summary

We have proposed a property-orientated materiadgydestrategy combining machine
learning, design of experiment and feedback fromeerent to search for HEA with
high hardness. The implicit mapping between thgetaproperty and descriptors such as
chemical compositions and other properties, indgdihose associated with the
elements is established through a ML algorithm.eBasn the ML predictions and the
associated uncertainties, utility functions are laygd to select the new experimental
candidates, which are synthesized, measured andesighe training data. We have
demonstrated our iterative, optimization strategyttte HEA system of alloys given by
Al-Co-Cr-Cu-Fe-Ni. Out of 42 newly synthesized §Ho we find 35 alloys with
hardness values higher than the best value irrdirertg dataset. Amongst these alloys,
the hardness of 17 alloys are enhanced by more 1@%hn compared to the maximum
hardness in our training dataset. A comparisorhefstrategies with different features
suggests that learning from composition togethén wescriptors exploiting knowledge
associated with HEAs outperforms that just usingngosition in terms of accelerating
the search for better HEAs. A similar design stygtean be used to optimize other
properties, such as light HEAs with high strengtld @reparation parameters of HEA
coatings. The framework can also be extended to foeltallic glasses and superalloys,

which face similar difficulties related to multiHecgponent alloy design.
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