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Graphical abstract 

 

 

 

In the present study, we proposed a data-driven approach combining machine learning, 

experimental design and feedback from experiment to accelerate the search for 

multi-component alloys with target properties. We demonstrated the efficiency of our 

approach by rapidly obtaining several alloys with hardness 10% higher than the best 

value in the original training dataset via only seven experiments. In Iteration Loop I, a 

machine learning surrogate model is trained to learn the property-composition, 
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relationship, , with associated uncertainties. The model is applied to the 

vast unexplored space and a utility function is employed to recommend the most 

informative candidate for the next experiment, which balances the exploitation and 

exploration. Feedback from experimental synthesis and characterization allows the 

subsequent iterative improvement of the surrogate model. Iteration Loop II is 

essentially same as Iteration Loop I, except that a features pool was introduced to the 

Iteration Loop I and a surrogate model is trained from composition (ci) and the 

preselected physical features (pi), . We found that the approach using 

both the composition and the descriptors based on domain knowledge can more 

effectively accelerate material optimization compared to the approach using only the 

compositions. 
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Abstract: We formulate a materials design strategy combining a machine learning (ML) 

surrogate model with experimental design algorithms to search for high entropy alloys 

(HEAs) with large hardness in a model Al-Co-Cr-Cu-Fe-Ni system. We fabricated 

several alloys with hardness 10% higher than the best value in the original training 

dataset via only seven experiments. We find that a strategy using both the compositions 

and descriptors based on a knowledge of the properties of HEAs, outperforms that 

merely based on the compositions alone. This strategy offers a recipe to rapidly 

optimize multi-component systems, such as bulk metallic glasses and superalloys, 
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towards desired properties.  

Keywords: Multi-principal element alloys; Active learning; Machine learning; 

Materials Genome Initiative 

 

1. Introduction 

The traditional compositional design strategy of alloys always begins with one (or 

rarely two) principal elements and proceeds by addition of various alloying elements to 

tailor desired properties.[1-3] Typically, the intrinsic properties of the designed alloy 

remain dominated by the principal element. For example, Fe acts as the principal 

element in steels, Ni/Co in superalloys and Ti in titanium alloys.[4-6] High entropy 

alloys (HEAs)[7-8] are the result of an alloy design approach introduced a decade ago in 

which multiple elements are mixed in equimolar or near-equimolar compositions to 

attempt to maximize the configurational entropy. In contrast to the expectation that a 

large number of intermetallic phases or other complex phases would form in these 

multi-principal element alloys, typical HEAs remain a rather simple phase, primarily 

face centered cubic (FCC), body centered cubic (BCC) or a mixture of the two.[9] This 

configuration allows for excellent properties of HEAs, including cryogenic toughness, 

strength and thermal stability at elevated temperatures, as well as good corrosion and 

wear resistance.[10-13] 

As HEAs comprise multiple principal elements, the number of possible compositions is 

much higher than that of conventional alloys.[14] The huge compositional space 
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provides an opportunity to improve properties, such as hardness, but sets a significant 

challenge in compositional optimization, especially if explored by “trial and error” or 

intuition.[15] Hence, search strategies that can efficiently and rapidly identify particular 

alloys with desired properties are necessary. Several efforts have been devoted to 

utilizing thermodynamic modeling, density functional theory (DFT) and molecular 

dynamics (MD) calculations to guide the alloy design.[16-22] For example, Miracle et 

al. used the CALPHAD method to predict the formation of phases of HEAs and found 

that the predicted number of stable phases is twice, or more, than those obtained by 

experiments.[23] Meanwhile, DFT and MD calculations primarily focus on phase 

stability, solidification behavior, and crystallization kinetics of HEAs.[24-26] Moreover, 

the number of elements, as well as the variety of microstructures, gives rise to complex 

and computationally intensive calculations compared to conventional alloys. Few of 

these methods, however, are oriented towards property design, i.e., predicting 

chemistries and compositions that are optimized for a targeted property. 

Recently, the materials science community has begun to utilize machine learning (ML) 

tools,[27-29] such as identifying structural flow defects in disordered solids and 

discovering inorganic-organic hybrid materials.[30-31] For HEAs, Tancret et al.[32]  

proposed a robust strategy to predict the formation of single-phase solid solution HEAs 

based on a critical assessment of phase formation and a Gaussian process statistical 

analysis. Their design strategy predicted sixty-two equimolar alloys to form single-

phase HEAs. Islam et al., investigated whether a single-phase solid solution, an 
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amorphous phase or an intermetallic compound would form in HEAs by training a 

neural network model from a dataset of 118 observations with an average predictive 

accuracy higher than 80%.[33] These studies focus on phase formation predictions, and 

not on predicting and optimizing the mechanical or functional properties. Besides ML, 

which estimates the mapping between the property and material features or descriptors, 

the design of experiments (DOE) using utility functions to select the next experiment is 

a crucial aspect of sampling the search space in an attempt to find the global optimum, 

as ML by itself can be sub-optimal.[34-35] This was demonstrated in the search for 

shape memory alloys (SMAs) with small thermal hysteresis, as well as for BaTiO3-

based piezoelectrics with large electric field induced strains.[36-37] 

In the present study, we propose a property-orientated materials design strategy that 

combines ML and DOE to find alloys with high hardness in the Al-Co-Cr-Cu-Fe-Ni 

HEA system - a prototype HEA family comprehensively studied thus far.[38] A  mixture 

of various elements results in a broad distribution of hardness ranging from 110 to 770 

HV, that is usually unpredictable. In our approach, we first train a ML model to estimate 

a map between hardness and descriptors, such as chemical compositions and the 

chemistry of elements. Based on the ML predictions and the associated uncertainties, 

we employ utility functions to guide the search for alloys with high hardness from a 

search space of nearly two million possible compositions. Finally, we successfully 

predict and synthesize several alloys by carrying out an active learning feedback loop 

with experiments, which we iterate seven times. Our work leads to several alloys with 
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hardness 10% higher than the best value (775 HV) in the original training dataset. In 

particular, we find that the approach using both the composition and the descriptors 

based on a knowledge of the properties of HEAs can effectively accelerate the 

discovery process compared to using compositions only. 

 

2. Design strategy 

Our iterative feedback loop for HEAs with optimal design involves a tight coupling 

with experiments and is schematically shown Fig. 1. The ML, DOE and feedback are 

combined and implemented as follows: an ML surrogate model is trained based on a  

dataset containing hardness (y) and composition (ci) for each element. The obtained 

surrogate model (i.e., ) is applied to a search in the materials space, where the 

hardness is unknown. Based on the hardness predictions and the associated uncertainties, 

a utility function for selecting the next experiments is employed to choose a candidate 

for synthesis by balancing exploitation (choosing the material with the highest predicted 

hardness) and exploration (using the predicted uncertainties to study regions of the 

search space where the model is less accurate). Subsequent alloy synthesis and 

experiments allow an iterative improvement of the surrogate model by incorporating the 

measured results into the training set. This is represented by Iteration Loop I in Fig. 1. 

In addition, in order to incorporate more materials descriptors to improve the 

performance of Iteration Loop I, we describe our alloy not only by the compositions (ci), 

but also by the use of physical features (pi) of the elements as this is known to be 
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closely related to the hardness. Consequently, the ML surrogate model learns to estimate 

the property from the compositions as well as these other features, that is, . 

These features are preselected from a feature pool, which is included in our design 

strategy as shown by Iteration Loop II in Fig. 1. We compare the performance of these 

two iteration loops. 

 

Figure.1. A schematic of the ML and DOE based iterative design loop for accelerated design of 

HEAs. Iteration Loop I: a ML surrogate model ( .) is trained with a training dataset and 

then applied to a search space to predict the property and associated uncertainties. A utility function 

for DOE is employed to choose a candidate by balancing exploitation and exploration. After the 

synthesis and measurement of the recommended candidates are performed, the new data are added 

into the training dataset, allowing the iterative improvement of the surrogate model. Iteration Loop II: 

the loop is essentially same as Iteration Loop I, except that a feature pool is introduced into Iteration 

Loop I and a ML surrogate model is trained from the compositions (ci) and the preselected physical 

features (pi), . 
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3. Dataset and experimental method 

3.1 Data source and quality  

We consider HEAs that belong to the AlxCoyCrzCuuFevNiw system, where the mole 

fractions of each element of x, y, z, u, v and w is constrained by x+y+z+u+v+w=100%. 

To minimize the influence of processing on the final property, the training data 

assembled from the literature are for alloys fabricated by vacuum arc melting only and 

their property is measured in the as-cast form. In addition, we exclude samples with 

significant differences in measured hardness. For example, the alloy AlCoCrCu0.5FeNi 

is not considered because its hardness value is reported as 458, 563 and 665 HV in three 

different studies.[39-41] We use the average value for a composition whose hardness 

does not vary appreciably in different studies. Examples include the alloy 

Al 2CoCrCuFeNi with hardness of 582 and 570 HV,[7,42] and AlCoCrFeNi alloy with 

hardness of 510, 520 and 518 HV.[43-45] Finally, including 18 experimental data from 

our laboratory, the training data consists in total of 155 samples of measured hardness. 

The data are fairly scattered and representative, as there are 22 quaternary alloys, 95 

quinary alloys and 38 six-component alloys. 

After the above preprocessing step, differences in the reported values still remain. This 

can be attributed to the deviation of the actual composition from the nominal 

composition, and the variation of the hardness measurement/solidification conditions. 

As our experimental results are added into the training data in the feedback loop, we 
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take the precaution of synthesizing and characterizing 6 compositions chosen randomly 

from the training data. The results are listed in Table 1, along with the corresponding 

literature reported hardness values. The measured hardnesses are consistent with the 

reported values with a difference of less than 5%. Therefore, the training data from the 

literature from different laboratories are deemed to be consistent and acceptable for the 

subsequent steps. The training data is provided in the supporting information. 

Table.1. Comparison of the hardness values between the reported data and experimental data. 

Elemental content, at% Vickers hardness, HV 

Al Co Cr Cu Fe Ni Reported in literature This work 

37.5 12.5 12.5 12.5 12.5 12.5 735[7] 746±16 

20 20 20 10 20 10 604[40] 594±32 

15.8 21.1 21.1 0 21.1 21.1 388[46] 418±15 

22.2 11.1 0 22.2 22.2 22.2 545[47] 533±31 

9.1 0 18.2 18.2 18.2 36.4 238[48] 259±15 

28.6 0 14.3 14.3 14.3 28.6 567[48] 572±8 

 

3.2 Search space of allowed, unsynthesized alloys 

The possible compositional space of the AlxCoyCrzCuuFevNiw system corresponds to a 

large (virtual) search space, which includes 155 HEAs with measured hardness. The 

concentrations x, y, z, u, v and w are varied with a step size of 1 at.%, given that higher 

accuracy is not appropriate due to the exploratory nature of the HEA design. The virtual 

space is constructed by considering the upper and lower compositional limits for alloys 

with hardness exceeding 500 HV in our training dataset. For example, the 

concentrations of six-component alloys are constrained within 15<x<47, 5<y<22, 
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6<z<34, 5<u<16, 5<v<31 and 5<w<22 at.%. The unexplored space of yet unsynthesized 

HEAs thus essentially consists of 1,895,147 alloys with unknown hardness, including 

1,331 quaternary alloys, 218,324 quinary alloys and 1,675,492 six-component alloys. 

The virtual space with predicted hardness larger than 750 HV can be found in the 

supporting information.  

3.3 Experimental procedure 

The alloys were prepared by arc-melting the mixtures of high-purity (99.5wt%) 

elements in an argon atmosphere. Each ingot was re-melted five times to improve 

chemical homogeneity. The hardness was measured using a Vickers micro-hardness 

tester (LECA-VMHT-30M) under a load of 200gf for 15 seconds holding time. The 

measurements were repeated ten times for each sample to obtain an average hardness 

value and statistically significant results. The phase structure was determined by X-ray 

diffraction (XRD, RigakuSmartLab9000W), while the microstructure of the alloys and 

the elemental area distributions were analyzed by a scanning electron microscope (SEM, 

ZEISS EVO18) equipped with an energy dispersive spectrometer (EDS). 

 

4. Machine learning and design of experiments 

4.1 Machine learning models 

We employed several well-known machine learning models - including a linear 

regression model (lin), a polynomial regression model (poly), support vector regression 

with a linear kernel(svr.l), a polynomial kernel (svr.p), and a radial basis function kernel 
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(svr.r), a regression tree model (cart), a back propagation neural network model (bpnn) 

and a k-nearest neighbor model (knn) - to produce a non-convex input/output fitness 

function to estimate the hardness. The best performing model was selected by 

considering its predictions on an independent testing set (data not used to train the 

model). We utilized cross validation and the bootstrap method with replacement to 

estimate the test error for these models.  

Our original data was split into a training set and a testing set using different split ratios 

(training set is taken from 30% to 90% of the original dataset). We calculated the root 

mean square error (RMSE) using , where ( ) is the true 

value and ( ) the predicted value. This was repeated 100 times for each split of the data. 

The mean value of RMSE is shown in Fig. 2(a). The error decreases with increasing 

size of the training set with the three models bpnn, knn and svr.r, outperforming 

the others across different splitting ratios. The inset of Fig. 2(a) zooms in the 

performance of three models of svr.r, bpnn and knn. 

We also employed the bootstrap with replacement to evaluate the RMSE. The original 

training data contained n = 155 samples, from which we randomly selected n 

observations with replacement to produce a bootstrap sample. We trained a new model 

on this bootstrap dataset, and made predictions for all the data points in the original 

training dataset. We repeated this procedure 100 times and obtained 100 sets of 

predictions for the mean () for the data in the original training set. The RMSE of 

bootstrap was then estimated from the difference between the mean value, () and the 
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measured value () through . Fig. 2(b) plots the RMSE 

results from the bootstrap method for all the models using 70% of the training set in Fig. 

2(a). The svr.r has the minimum prediction error and its performance is shown in Fig. 

2(c). Thus, svr.r was chosen as the model to predict the unexplored alloys in the virtual 

space in the iterative design loops. 

 

Figure.2. Model evaluation and selection by estimating the test error for different models. (a) a 

holdout method and (b) bootstrapping methods, indicating svr.r outperforms the others. The inset of 

(a) zooms in the performance of three models of svr.r, bpnn and knn. (c) The predicted values as a 

function of the measured values of the svr.r model for both training data (randomly chosen 70%) and 

testing data (the rest 30%). 

4.2 Utility function for experimental design  

As mentioned above, the search space is quite large for the HEA system. It is inadequate 

to navigate this landscape, searching for a material with an optimal property solely 

based on the predictions of the ML model. Careful design of experiments is necessary to 

minimize the number of experiments which need to be carried out in the overall space 

of variables and parameters (the design space). A utility function can be defined so that 

an experiment is selected to maximize the expected utility. In the present study, we 
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employed expected improvement (EI) to select the next experiment.[35,49] The EGO 

algorithm uses maximizes the expected improvement (EI) over the search space, which 

is defined by , 

where  is the possible improvement for certain  or hardness,   is the 

distribution of the predicted  and is assumed to be normal, and , where 

 is the maximum value of hardness in the training data,  and  are the predicted 

value of hardness and the associated uncertainty, respectively. Because we assume that 

hardness values are distributed following a normal distribution, EI is expressed in terms 

of , the standard normal density, and , the cumulant distribution function. EI 

balances exploration (aims at improving the predictive model) and exploitation (aims at 

finding the best prediction). For our preselected model, svr.r, we utilize the bootstrap 

method from statistics to estimate the uncertainty of predictions, . We generate a 

bootstrap training set by resampling the data from the original training data with 

replacement. That is, we train 1000 svr.r models based on 1000 bootstrap training 

datasets to obtain 1000 predictions for each sample in the virtual dataset. The mean 

predicted value ( ) and standard deviation () can be estimated from the 1000 

predictions to obtain EI (expected improvement) for each alloy. 

 

5. Results 

5.1 Iteration loop I 

We performed the iterative feedback loop I seven times using svr.r as the ML model 
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employing EI for the DOE. We predicted the hardness of all the materials in the virtual 

space and then selected three of them for the subsequent synthesis and measurement. In 

total, 21 new alloys were recommended and synthesized, and the compositions are 

listed in Table S1 of the Supplementary Materials. After each iteration, the measured 

hardness values of new alloys were added into the training data and the updated svr.r 

ML model was retrained. The quality of our model predictions is shown in Fig. 3(a), 

which compares all of the predicted and measured hardness values from the training 

data and our experimental data. The scatter points distribute around the diagonal line, 

indicating that the model is adequate and the agreement is reasonable. Fig. 3(b) plots the 

measured hardness as a function of iteration number. It is noted that even though the 

three alloys in the first iteration have lower hardness values than the best value of 775 

HV in the training data, all of the alloys in the following iterations outperform the 

training data. In the sixth iteration, the alloy Al43Co24Cr22Fe5Ni6 with hardness of 875 

HV was discovered. The inset of Fig. 3(b) shows the predicted values for every iteration, 

which exhibits a similar tendency to the measured results. We conclude that Iterative 

loop I works well and rapidly leads to a number of HEAs with improved hardness.  
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Figure.3. The results of Iterative Loop I. (a) The predicted hardness values versus the measured 

values for the alloys in the training data and our experimental data. (b) The hardness of the newly 

synthesized alloys as a function of loop iteration number. The inset of (b) plots the predicted values 

as a function of iteration number, showing a similar tendency to the measured values. 

5.2 Iteration loop II 

In Iteration Loop II shown in Fig. 1, we incorporate materials knowledge by introducing 

descriptors that are also related to mechanical properties of HEAs. This is in contrast to 

Iteration Loop I that only uses compositions as features. Our objective is to test the 

efficiency of the search strategy with or without features related to the properties of 

HEAs. 

Several criteria are proposed to describe phase formation in HEAs based on the 

difference in atomic radii (δr) between elements, the difference in electronegativity (∆χ) 

between elements, the valence electron concentration (VEC), the mixing enthalpy (∆H), 

the configurational entropy (∆S), the Ω parameter (which is related to the entropy, 

enthalpy and the melting point), the Λ parameter (which is related to an atom’s 

configuration on a lattice and its radius) and the γ parameter (the solid angles of atomic 

packing for the elements with the largest and smallest atomic sizes).[50] These 

descriptors are related to the intrinsic properties that influence the formation of a solid 

solution, amorphous phase and/or intermetallic compound in HEAs, and affect the final 

hardness. We also introduce the local electronegativity mismatch (D.χ) between 

elements, the number of itinerant electrons (e/a) and the cohesive energy (Ec), all of 

which potentially relate to phase formation. In addition, we consider parameters from 
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strengthening theory to describe the lattice distortion, elastic misfit and dislocation 

motion, all of which affect the mechanical properties of HEAs. These features include 

the modulus mismatch (η), the local size mismatch (D.r), the energy term in the 

strengthening model (A), the Peierls-Nabarro factor (F) and sixth square of the work 

function (w).[51-55] A number of additional descriptors, such as the shear modulus (G), 

the local modulus mismatch (D.G), the difference in shear modulus (δG), and the lattice 

distortion energy (µ) are also included. Our final feature pool consists of 20 features, 11 

of which describe the formation of different phases and the other 9 relate to the 

mechanical properties. A detailed list of these features is provided in the Supplementary 

Materials, Table S2. 

In order to reduce the computation time and improve model robustness by removing the 

irrelevant and redundant features, we employ a hybrid method combining a correlation 

analysis and a wrapper method to perform feature selection. First, for the highly 

correlated features, we retain only one of them to reduce redundant information in the 

subsequent modeling. The right-top corner of Fig. 4(a) depicts the Pearson correlation 

coefficient map between different features. Those with a correlation coefficient greater 

than 0.95 were considered as highly correlated. To choose the feature to be retained, we 

rank the importance of each feature to the model by evaluating the test error of the 

model with a particular feature. We split our original data into a training set (80%) and a 

testing set (20%) and build the svr.r model based on the training set with one feature. 

The test error is then calculated through , where ( ) is the 
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true value and () the predicted value and the test error are ranked in the left-bottom 

corner of Fig. 4(a). Accordingly, highly correlated features-G, D.χ, δG, D.G, δr, and A – 

are removed. Second, we further reduce the feature space by considering all possible 

subsets of these features to identify the subset giving rise to the lowest model error. The 

cross-validation errors of the svr.r model based on different subsets of features are 

plotted in Fig. 4(b). According to Fig. 4(b), from a starting set of knowledge based 

features, the initial decrease in error indicates an improvement of the model and the 

later increase is due to possible over-fitting.[56] The best performance of the model is 

given by a 6-tuple feature set and what's interesting is that the best 3-, 4-, 5- and 6-tuple 

feature sets are ‘e/a, w, η’; ‘e/a, w, η, vec’; ‘e/a, w, η, vec, ∆S’ and ‘e/a, w, η, vec, ∆S, 

Gb’, respectively. Starting from the best three features, the addition of other features 

reduces the prediction error of the svr.r model, however, it increases the complexity of 

the model at the same time, and the improvement of model performance is not obvious. 

We thus choose the best three features ‘e/a, w, η’ for simplicity without sacrificing much 

in terms of the model accuracy and generalizability.  
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Figure.4. Feature selection to identify the most important features from the feature pool. (a) The 

Pearson correlation map of the initial twenty features. A larger circle with deeper color indicates a 

high level of correlation. On the left-bottom panel graph, each color represents features that are 

highly correlated with each other, and among each color, the one with the lower error is retained. (b) 

The cross-validation error of each possible svr.r model containing a subset of preselected features 

based on (a). The red frontier tracks the best model for a given number of features. The green dot 

indicates the set of three features employed in the Iteration loop II, including e/a, w and η. 

We built our svr.r model with both the composition of each element (ci) and the 

preselected physical features (pi), i.e., , utilizing the original training data 

with n = 155 without including the data of the 21 experimental alloys produced during 

the Iteration Loop I. This allows us to make a direct comparison between the two 

Iteration Loops. The original samples are randomly partitioned into 10 equal sized 

subsamples. Nine subsamples are used as training data and the remaining one 

subsample is retained as the validation data for testing the model. The cross-validation 

process is then repeated 10 times to obtain the predicted value ( ) of each sample. And 

the cross-validation error is estimate through , where ( ) 

is the measured value. The svr.r model using both ci and pi has a cross-validation error 

of 54.4, which is slightly lower than that 56.3 for the model using only ci. Based on this 

ML surrogate model together with EGO, we perform feedback including synthesis with 

Iterative loop II seven times as well. Another 21 new alloys are recommended and the 

compositions are listed in Table S3 of Supplementary Materials.  
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Figure.5. The results of Iterative Loop II. (a) The predicted harness values versus the measured 

values for the alloys of the training data and those synthesized in successive iterations. (b) The 

hardness of the new alloys as a function of iteration number. The black dotted-line represents the 

best hardness in the training dataset and the magenta dotted-line represents the best value obtained 

using Iteration Loop I. The inset of (b) plots the predicted values as a function of iteration number, 

showing a similar tendency to the measured values. 

Fig. 5(a) plots the predicted hardness as a function of the measured values for all the 

alloys from the training data and those synthesized in successive iterations. The data is 

closer to the diagonal line compared to Fig. 3(a), indicating that this model is more 

robust than for Loop I improvement. Fig. 5(b) shows the measured hardness from each 

iteration from Loop II. In contrast to Iteration Loop I, the alloys in the first iteration 

show better performance than all of the training data and an alloy with hardness of 843 

HV is found, which is 8.8% better than the best value in the training data. For each 

iteration, the hardness obtained in Iteration Loop II is higher than that in Loop I (gray 

dots in Fig. 5(b)). The alloy, Al47Co20Cr18Cu5Fe5Ni5, possessing the highest hardness is 

predicted after the fourth iteration. Its hardness reaches 883 HV on average, which is 

14% higher than the best value in the original dataset and even higher than the best 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

value found by Loop I. The 10 alloys with the highest hardness from the two loops are 

listed in Table 2. We observe that the alloys (C7-1 and C7-2) obtained in the seventh 

iteration of Loop I are the same as those (K5-2 and K5-1) obtained in the fifth iteration 

of Loop II. This indicates that Loop I and II possibly converge to the same optimum in 

the property-feature space. Overall, Loop II finds HEAs with higher hardness values. 

 

Table.2. The top 10 newly predicted and synthesized alloys after seven iterations by both iterative 

loops. There are more alloys with higher hardness values from Loop II than Loop I.  

Alloy 

No. 

Elemental content, at% 
Hardness, HV 

Al Co Cr Cu Fe Ni 

K6-2 43 22 23 0 7 5 883±47 

K4-1 47 20 18 5 5 5 883±22 

K6-1 43 22 22 0 8 5 882±22 

K7-2 47 19 19 5 5 5 878±25 

C6-3 43 24 22 0 5 6 875±58 

K5-2 (C7-1) 43 25 22 0 5 5 868±45 

K5-1 (C7-2) 43 24 23 0 5 5 865±39 

K4-2 43 18 20 0 12 7 864±23 

C7-3 43 23 21 0 8 5 863±34 

C6-2 47 14 20 5 9 5 859±26 

Notes: “C1-2” represents the second alloy in the first iteration of Iteration Loop I, “K1-2” represents the 

second alloy in the first iteration of Iteration Loop II. 

 

 

 

 

6. Discussion 

In this study, we address the design of HEAs as an iteration loop combining ML 
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modeling, experimental design algorithms and feedback from experiments. By carrying 

out the iteration loop, the experimental feedback from each iteration continuously 

improves the model performance, as shown by the decrease of the cross-validation error 

for both models in Fig. 6(a).  

Meanwhile, the EI (i.e., the expected improvement over the best value observed in the 

training data) of the newly-made samples gradually decreases with iteration number, 

indicating that the hardness prediction of our model becomes better, as shown in Fig. 

6(b). In addition, the EI values become stable and the alloy compositions tend to 

stabilize after five iterations for both Iteration Loop I and II. For example, the 

composition of Al reaches an upper limit, and Cu composition reaches a lower limit of 

the composition range of our virtual dataset after 5 iterations. This suggests that both 

search strategies appear to be trending towards a global optimum in the property 

landscape. Moreover, Iteration Loop II, which utilizes more knowledge based features, 

performs better than Iteration Loop I – using only compositions - in terms of the 

efficiency to find HEAs with higher hardness.  

 

Figure.6. A comparison of the performance of the two iteration loops. (a) The cross-validation error 
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for the svr.r model. The ML model with composition and materials features predicts the target 

property more accurately. (b) The EI value of the chosen alloys. The mean value and the 

standard deviation of EI decrease and tend to converge after five iterations for both Iterations Loops. 

The two alloys, Al43Co22Cr33Fe7Ni5 and Al47Co20Cr18Cu5Fe5Ni5, with the highest 

hardness tend to have more Al content and little Cu. It is known that Cu can promote the 

formation of FCC phase in HEAs and decrease strength and hardness; Al, when 

combined with Ni, tends to form a BCC ordered phase due to the high formation 

enthalpy of these two elements.[40] With an increase of Al content, the HEAs will 

transform from an FCC solid solution, through a BCC solid solution, to a B2 

intermetallic ordered phase, which is expected to possess higher hardness. Our design 

strategy appears to capture this rule hidden in the training dataset and the design utility 

function allows us to rapidly identify these alloys. 

We checked the phase and the microstructures of the two alloys above. The XRD results 

in Fig. 7(a) reveal the formation of a mixture of BCC structures, comprised of a 

disordered BCC solid solution and an ordered BCC (B2 structure), while the SEM 

micrographs in Fig. 7(b) and the EDS mapping in Fig. 7(c) confirm that the ordered 

phase can be identified as Al and Ni. This confirms that our design strategy drives the 

prediction towards the B2 ordered phase. However, in most cases, the ordered B2 

structure is not as desirable as the disordered solid solution FCC or BCC phase. Such 

knowledge can be incorporated into the ML model with a classification filter to prevent 

searches for alloys likely to be in the intermetallic space.  
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Figure.7. Characterization of the best two alloys Al43Co22Cr23Fe7Ni5 (K6-2) and 

Al47Co20Cr18Cu5Fe5Ni5 (K4-1). (a) The XRD spectra shows that both alloys are comprised of a 

disordered solid solution BCC phase and an ordered B2 phase. (b) Typical SEM micrograph of the 

K6-2 alloy. (c) An element distribution map of the K6-2 alloy showing that Al, Ni have similar 

spatial distribution, and Fe distributes uniformly. The combination of Al and Ni tends to form the 

NiAl ordered B2 phase, leading to the increase of hardness. 
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7. Summary  

We have proposed a property-orientated materials design strategy combining machine 

learning, design of experiment and feedback from experiment to search for HEA with 

high hardness. The implicit mapping between the target property and descriptors such as 

chemical compositions and other properties, including those associated with the 

elements is established through a ML algorithm. Based on the ML predictions and the 

associated uncertainties, utility functions are employed to select the new experimental 

candidates, which are synthesized, measured and augment the training data. We have 

demonstrated our iterative, optimization strategy on the HEA system of alloys given by 

Al-Co-Cr-Cu-Fe-Ni. Out of 42 newly synthesized alloys, we find 35 alloys with 

hardness values higher than the best value in the training dataset. Amongst these alloys, 

the hardness of 17 alloys are enhanced by more than 10% compared to the maximum 

hardness in our training dataset. A comparison of the strategies with different features 

suggests that learning from composition together with descriptors exploiting knowledge 

associated with HEAs outperforms that just using composition in terms of accelerating 

the search for better HEAs. A similar design strategy can be used to optimize other 

properties, such as light HEAs with high strength and preparation parameters of HEA 

coatings. The framework can also be extended to bulk metallic glasses and superalloys, 

which face similar difficulties related to multi-component alloy design.  
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