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Human-Robot Co-Navigation using Anticipatory
Indicators of Human Walking Motion

Vaibhav V. Unhelkar*!, Claudia Pérez-D’ Arpino*!, Leia Stirling? and Julie A. Shah'

Abstract— Mobile, interactive robots that operate in human-
centric environments need the capability to safely and efficiently
navigate around humans. This requires the ability to sense and
predict human motion trajectories and to plan around them.
In this paper, we present a study that supports the existence of
statistically significant biomechanical turn indicators of human
walking motions. Further, we demonstrate the effectiveness of
these turn indicators as features in the prediction of human
motion trajectories. Human motion capture data is collected
with predefined goals to train and test a prediction algorithm.
Use of anticipatory features results in improved performance
of the prediction algorithm. Lastly, we demonstrate the closed-
loop performance of the prediction algorithm using an existing
algorithm for motion planning within dynamic environments.
The anticipatory indicators of human walking motion can
be used with different prediction and/or planning algorithms
for robotics; the chosen planning and prediction algorithm
demonstrates one such implementation for human-robot co-
navigation.

I. INTRODUCTION

Various applications within service and industrial domains
often require mobile robots capable of operating within
proximity to humans. Safe and autonomous navigation in
human-centric environments is an important prerequisite for
such interactive robots. Autonomous path/motion planning
is a classic problem in robotics [1]. Although multiple
successful motion planning algorithms have been devel-
oped that have enabled the current navigation capabilities
of modern robots, online motion planning within dynamic,
uncertain environments is still an active area of research [2].
Robots that operate in human-centric environments require
co-navigation, i.e., a system that can reason and plan around
humans and other dynamic obstacles online, efficiently and
in a human-intuitive fashion.

The challenge of robot navigation while in proximity to
humans includes aspects of physical human-robot interaction,
wherein both robot and human agents must plan and execute
trajectories toward goal locations that may interact with
the trajectories of other agents in the environment. Robots
that are deployed to assist and function alongside humans
must ensure that the interaction between these trajectories is
safe, fluent and nonintrusive from the humans’ perspective.
Ideally, a mobile robot should minimize disruptions to human
trajectories toward a goal location.
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A reliable human motion prediction capability can lead
to improved decision-making. For instance, in day-to-day
interactions, humans often predict the intention and mo-
tion of other agents within their environment in order to
plan, schedule and execute tasks. Similarly, prior studies of
human-robot collaboration have indicated that social robots
that can anticipate human intention are capable of more fluent
interaction [3]. Thus, we posit that in order to be effective,
a robot navigating around humans must be capable of both
predicting the motion of dynamic obstacles (including hu-
mans) and using this predictive information to plan safe and
purposeful paths.

Existing approaches that address the problem of robot path
planning in proximity to humans have incorporated both
of these aspects at different levels of detail [4]-[8]. Here,
we focus on improving human motion prediction through
the use of human walking motion features that have been
identified as statistically significant in prior biomechanical
studies. We posit that these features can augment existing
path and motion prediction approaches, resulting in improved
path planning performance.

We begin with a brief discussion of the existing methods
for robot path planning in proximity to humans. Next, we
report the results from a human motion study that extends
previously reported anticipatory turn signals [9], [10] to
loosely constrained human walking motion. We demonstrate
the effectiveness of these signals by incorporating them as
features in an algorithm [11] designed to predict human
walking motion. Lastly, we evaluate the closed-loop perfor-
mance of these features by using this prediction algorithm
along with an existing path planner for a dynamic environ-
ment [12] in simulation.

We wish to emphasize that the features can be used with
different prediction and/or planning algorithms while devel-
oping a navigation system for mobile, interactive robots. The
prediction and planning algorithms presented here demon-
strate one such implementation.

II. RELATED WORK

As mentioned in Section I, autonomous path planning
while in proximity to humans requires robots to both infer the
prospective path of the human agents and reason about this
anticipatory (and usually stochastic) information in order to
come up with feasible motion plans in real-time. Here, we
briefly describe some existing methods of addressing both
of these sub-problems, and prior art focused on integrating
them to develop path planners for human-robot interaction
scenarios.



A. Path Planning for Robots Working Among Humans

With the advent of social robots and autonomous vehi-
cles, there has been significant interest in developing path-
planning approaches for dynamic environments. Though still
an active area of research, various algorithms have already
been developed and used, such as anytime extensions of
classical motion planning algorithms including both grid-
based (such as A") and randomized approaches (such as
rapidly exploring random trees [RRT]) [13], [14].

Several methods for the integration of planning and pre-
diction have been considered for developing path-planning
systems around humans and other dynamic obstacles. One
study [4] uses velocity obstacles to plan around humans.
Gaussian processes for prediction and a probabilistic exten-
sion of RRT are used to plan paths for dynamic environments
in [15]. The generation of safe paths is critical in dynamic
and uncertain environments; [16] provides a reachability-
based extension of Gaussian processes to better predict
human motion, and uses chance-constrained RRT to plan
safe paths. In another study [12], researchers developed a
grid-based anytime extension of ARA" and demonstrated
its effectiveness assuming that predictive information was
available regarding dynamic obstacles.

As path-planning in a human-centric environment es-
sentially constitutes a case of human-robot interaction, re-
searchers have assessed navigation not just as a predict-
and-plan system, but have also considered interaction and
human factors issues [17], [18]. Sisbot et al. [19] presented
one of the first approaches to human-aware motion planning.
Modeling the human-robot interaction is necessary for indoor
environments, where the motion of human agents in the
environment will be influenced by that of the robot [20].
Trautman [7] models this cooperative navigation using an
interaction function, and treats path planning as an inference
problem over the joint space. A mixed-observability Markov
decision process (MOMDP)-based model is used to reason
about the intent and/or goals of human agents and plan
around them in [8]. Studies concerning human factors issues
include considerations of safety, proxemics and the legibility
and predictability of robot motion [21]-[23].

B. Prediction of Human Motion

The modeling and prediction of human motion is of direct
interest in multiple domains, including robotics, orthotics,
video games and crowd simulation. Initial approaches to pre-
dicting human motion included Kalman or particle filtering-
based methods, which model the problem of human mo-
tion prediction as one of tracking. For service robotics
applications, [24] used expectation minimization to learn
motion patterns in an environment, and hidden Markov
models (HMM) for prediction. Ziebart et al. [5] reported
improved results with a predictor that models the intention
and decision-making behavior of human motion. More re-
cently, [6] included as features both physical properties of
human motion and topological properties, and incorporated
prediction of continuous trajectories.

The social forces method [25] and its variants have been
utilized for the simulation and prediction of pedestrian
motion in crowds. Further, instead of predicting individual
motion, [26] used inverse reinforcement learning to learn
features of crowd motion and plan around them. Along
with the prediction of human motion, researchers have also
evaluated the general problem of predicting the motion of dy-
namic, uncertain objects. Employing Bayesian nonparametric
methods to model motion patterns, [27], [28] demonstrated
the prediction of the motion of cars through the use of prior
GPS data indicating car trajectories.

We believe that, along with the above, the inclusion
of biomechanical features of human walking motion may
further benefit prediction performance. In the following sec-
tions, we evaluate whether anticipatory turn signals of human
walking motion can further bolster this predictive capability.

III. ANTICIPATORY INDICATORS
oF HUMAN WALKING MOTION

Prior gate studies have demonstrated the existence of
anticipatory turn signals in human walking motion across
both adult and child populations [9], [10]. Specifically, the
indicators velocity of body center of mass, head orientation
and foot orientation have been shown to provide anticipatory
information regarding human turns in controlled biomechan-
ical studies with pre-specified turn locations. We aimed to
observe whether these indicators exist in loosely specified
human walking motion - i.e., cases in which humans are
free to choose their paths in order to reach goals within the
environment.

We performed a human walking study in which only start
and goal locations were specified, while the turn location
and path were not. Specifically, through a study analyzing
human walking motion in a motion capture environment, we
evaluated the hypotheses that (a) head orientation (y) and
(b) body velocity normalized by height (¥,) can anticipate a
turning motion. Analysis of the experimental data indicates
evidence of the existence of anticipation via both turn signals.

A. Methods and Protocol

Experiment Protocol: The experiment required partici-
pants to walk from a starting location to one of five goals
(G-1 through G-5) located within a room, as shown in Fig. 1.
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Fig. 1: Overview of the experimental setup. Region A denotes the
region after which participants were free to choose their trajectories.
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Fig. 2: Trajectories across all the participants: segmented based on
the subject (the colors correspond to the trials for different subjects).

Each participant performed 25 such trials, where each goal
was assigned five times in a randomized order. The goal
location was specified at the start of each run. All runs
involved movement along an initial straight-line path until
reaching region A (to avoid transient effects due to gait
initiation), after which participants were free, and specifically
instructed, to choose their own paths to the specified goal
locations. Although participants were free to rest between
the trials, none exercised this option.

Six participants with a median age of 23.5 years (max:
29, min: 21 years), all of whom were healthy individuals
with the ability to walk without assistance, performed the
experiment. !

Data Collection and Processing: Each participant wore a
hard hat, with Vicon markers, and four Vicon plates, each
placed at the subject’s umbilicus, back, left and right lower
feet. The Vicon markers on the hard hat were used to measure
head motion, while body motion was approximated by the
Vicon object placed at the umbilicus. The data collected via
Vicon was exported to Matlab®?2 for processing. To correct
for any missing data due to occluded motion capture markers,
the obtained motion data was first re-sampled at 100 Hz using
Matlab’s interpolation function. Next, the data was smoothed
using a two-way, 6th-order, Butterworth low pass filter with
a cut-off frequency of 10 Hz.

Figure 2 depicts a total of 150 processed trajectories across
the goal locations and subjects. The head orientation data
was obtained based on the hard hat object, and the body
position and velocity were obtained from the Vicon object
placed at the umbilicus. Velocity was calculated using an 8th-
order, discrete derivative of the position signal. The algorithm
for calculating this derivative was adopted from [29]. The
velocity was normalized using the subject’s height; as no
anthropometric data was collected, height was approximated
by averaging the height of the hard hat across all trajectories.
For the statistical analysis, the data for head yaw (y), body

The experimental protocol was approved by the Massachusetts Institute
of Technology’s institutional review board Committee on the Use of
Humans as Experimental Subjects (COUHES).

’http://www.mathworks.com/products/new_products/
release20l2a.html

position (x and y coordinate) and body velocity (v,) were
analyzed at 10 discrete points. These points were obtained
through discretization along the y-coordinate at an interval of
0.4m, and averaged across a length span of +0.1 m around
the discretized point.

B. Data Analysis

The experiment incorporated a repeated measures design
with one treatment (a goal location with five levels) and
five replicates per condition. The data was analyzed using a
two-way, mixed factor ANOVA, with the blocking variable
as the subject (random variable) and the treatment as the
goal location (fixed variable). The data was analyzed to
confirm the residuals were normally distributed. A total
of 30 hypotheses, three at each of the 10 discretized y-
locations for the dependent variables x, ¥ and 7, are
evaluated. Hence, the set of independent variables included
the treatment (goal location), subject and y-location; while
the dependent variables included X, ¥ and v,. The turn
signals were considered anticipatory if difference existed
across goal locations for ¥ or v, at an earlier y-location
than that for the dependent variable x, which represented the
physical turn. The procedure for the statistical analysis for
each hypothesis was as follows:

« Fitting the measured data to an ANOVA mixed effects

model (1 fixed factor, 1 random factor, and 5 replicates)

o F-tests for main and interaction effects

« Estimation of variances corresponding to random effects

o Tukey’s test for pairwise comparison of fixed effects

C. Results

Raw data: Head Orientation (y) Model fitted on Head Orientation (y)
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Fig. 3: Fitted coefficients of ANOVA, corresponding to the fixed
factor, for dependent variable y consolidated across all y-locations.

Fitted coefficients of the ANOVA mixed effects model for
the fixed effect can be consolidated in one plot across all the
y-locations to observe the evolution of the dependent variable
along the path. Fig. 3b shows one such plot of the fitted co-
efficients for the dependent variable y across all y-locations,
obtained using the raw data presented in Fig. 3a. Since the
model accounts for both main and interaction effects, the
fitted coefficient ¢ includes only the contribution due to the
fixed effect (here, the goal location). Also, although the fixed
effect is not statistically significant across all y-locations,
the coefficients o; are available across all y-locations and
provide a graphical indication of the different values for the
dependent variable according to the goal location.
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Fig. 4: Estimate of fixed factor effects across all y-locations for x
(top), Y (center) and 7, (bottom). The ovals represent the y-location
after which Tukey’s procedure demonstrated pairwise differences
across all pairs with 90% family confidence interval. The rectangles
represent the y-location after which differences emerge across the
turn directions (i.e., goals G2, G3 and G4).

Fig. 4 depicts a consolidated plot of the fixed factor effects
across all y-locations for all three dependent variables: x, v,
and y. The ovals for each plot represent the y-location after
which the fixed factor effects were significant (p < 0.001)
and Tukey’s procedure demonstrated pairwise differences
across all pairs with 90% family confidence interval for all
subsequent hypotheses of the corresponding variable.

Variation Across Participants: Analysis of the measured
data provides strong evidence that a statistically significant
difference exists between participants . Interaction effects
between the goal location and the participant were also
observed. Although this variability is difficult to estimate
due to the small sample size, we can still deduce certain
characteristics regarding loosely-constrained human motion
from the variability observed in the current study.

Anticipatory Turn Signals: Despite the presence of ran-
dom effects, pairwise comparisons of fixed effects can be
used to evaluate the presence of anticipatory turn signals. As
mentioned previously, turn signals can be defined as anticipa-
tory if statistically significant differences exist between goal
locations for y and/or 7, at an earlier y-location than that for
the dependent variable x, which represents the physical turn.
Hence, we examine the pairwise differences estimated using
the ANOVA mixed effects model and Tukey’s procedure, as
summarized in Fig. 4.

The pairwise differences across all pairs emerge for both
the turn signals y and v, at y-location #6 (indicated by
ovals in Fig. 4). In contrast, these pairwise differences are
observed across the dependent variable x at y-location #7,
which appears later along the path than that for turn signals
vy and . Similar, results are obtained when instead of goal
locations only the turn directions (left, straight and right) are
considered; wherein, the differences for turn signals emerge
at y-location #4 (rectangles in Fig. 4), before the differences
emerge for the variable x at y-location #6.

Based on the y-location after which the fixed factor
effects became significant (p < 0.001) and Tukey’s procedure
demonstrated pairwise differences across all pairs (repre-
sented by ovals in Fig. 4), the data provides evidence of
the presence of anticipatory turn signals for both y and v,
prior to the physical turn. This is observed despite variation
among participants and loosely specified paths. At the current
discretization of 0.4 m, the data from our study support the
existence of anticipatory turn signals - body velocity and
head orientation.

Thus, the results from our study confirm those from prior
gait studies reported in [9], [10] that provided evidence for
the existence of similar turn signals in purposeful (goal-
oriented) human motion. However, statistical tests only pro-
vide evidence of the existence of anticipatory indicators; in
order to utilize these indicators for path planning, predictive
models are required. In the following sections, we explore the
utility of these indicators as features in a predictive algorithm
in order to investigate their predictive performance.

IV. PREDICTION ALGORITHM

We leverage the prediction algorithm presented in [11],
which was designed to predict the goal of human motion
from a discrete set of possible targets for which a set of
demonstrations have been provided. The method used in [11]
was developed in the context of human-robot cooperative
manipulation tasks where the set of features was concentrated
in the joint angles of the human arms. Here, we take
advantage of the possibility of applying this algorithm to
a human walking task by using the anticipatory signals, de-
scribed in the previous section, as features. The anticipatory
signals have been identified for turning motion, so additional
challenge lies in exploring their utility for predicting arbitrary
trajectories. Furthermore, given that this method runs online
in real-time, it is ideal for integration in the loop with a
motion-planner algorithm.



A. Human Motion Prediction via Anticipatory Signals

The prediction problem is posed in [11] as one of time
series classification, which is attempted online using the
initial partial segment of the trajectory. The possible motion
classes correspond to a statistical model of the demonstra-
tions for each class (each possible target), where each time
step f is modeled as a multivariate Gaussian with the mean
and covariances of the observations of all features f; as
parameters, as illustrated in Fig.5. This model is computed
offline to create a library of motions that will be used later
to perform the classification.
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Fig. 5: Multivariate Gaussian model of the time series per time
step #; for one motion class. Each feature f; has several time series
obtained in several demonstrations for one goal.

The online phase computes a classification decision per
time step k, selecting the motion class with maximum a
posteriori probability, computed using the Bayes rule,

Pt | full 2 K]) o< P(2) - P(fy[1: K] [ 1), (D

where P(f,[1:k]|¢) is the likelihood of observing a partic-
ular partial trajectory f,[l : k] given a motion class ¢, and
P(t) is the prior probability of the motion class ¢ [11]. We
use uniform prior for all motion classes. The likelihood term
can be computed as shown in Eq.2:
K 1
P(fall k1) = kH1 (A (K], Z[K])] % 2)
As proposed in [11], we pre-compute and store in the
library terms that are independent of the new performance
data, and incorporate dynamic time warping (DTW) [30] to
find an optimal alignment for the signals when building the
library, as well as incremental online DTW [31] between the
motion classes in the library and the test trajectory to be
classified. It is interesting to note that, the statistical analysis
when performed with the dynamic time wrapped data derived
from the original signals, also supports the existence of
anticipatory turn signals.

B. Validation of Prediction Using Anticipatory Signals

The performance of the prediction algorithm was assessed
through random sub-sampling validation of the data de-

scribed in Sectionlll. The demonstrations were randomly
split into a training set and a test set to create a ‘random
library.” Classification performance is reported per time step
as the average correct classification across all test trajec-
tories for all motion classes along all random libraries.
This validation process was carried out offline through a
simulation of online processing of observed data. For this
reason, instead of smoothing the data, the raw position and
orientation trajectories were processed through a low-pass
filter. Further, the velocities were calculated with a Kalman
filter, in which we modeled the motion using a white noise
acceleration process model, and used position information
as measurements. This signal processing pipeline can be
implemented online, as it does not require any future data.

We tested a range of training set sizes to investigate
the amount of data required to achieve a certain level of
performance. Fig.6b depicts the performance result using
the position of the human (x,y) as features, while Fig.6b
incorporates head angle (x,y, ) and Fig.6¢ incorporates the
velocity of the human (x,y, ¥, 7y, 7y).
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Fig. 6: Performance results as a function of time and training set
size. Validation using 20 random libraries.



The performance surface obtained when using only posi-
tion features starts generating prediction results above chance
(20% for 5 motion classes) only after the human started to
turn in the region of time step 100. In contrast, when incorpo-
rating the head orientation, the prediction performance result
is in the range 30% to 40% in the second half of the pre-turn
region as shown in Fig.6b, giving evidence of the anticipatory
power of this feature. For this particular data set, the use of
the velocity features didn’t achieve better performance than
the use of (x,y,y) only.

The validation method was also employed in the two
different navigation environments considered in Section V.
This allowed us to specify the required training set size to
achieve the desired predictive performance. The next section
discusses the way in which we incorporate this predictive
algorithm in a robot planning framework. We note that
other methods exist for further augmenting robot planning,
including using dynamic models to predict human motion
via filtering techniques, such as, Kalman/particle filter or
Interacting Multiple Model (IMM) methods [32].

V. USING PREDICTION FOrR PLANNING

In the previous section, we evaluated the predictive per-
formance of the anticipatory indicators in environments
with pre-specified goals. Here, we demonstrate the closed-
loop performance of these indicators, using the predictive
algorithm in-loop with an anytime path planner designed
for dynamic environments. Specifically, we use the anytime,
safe-interval path planner (anytime SIPP), a grid-based ap-
proach to path planning within dynamic environments [12].

A. Planning Algorithm

The anytime, safe-interval path planner is an extension of
grid search-based path planning algorithms that efficiently
reasons about predictive information. This is accomplished
through the encoding of predictive information in terms of
safe obstacle-free time intervals, significantly reducing the
search space when planning in time. Further, the algorithm
assumes the perfect prediction of obstacles over a specified
time horizon. We chose this algorithm to demonstrate the
closed-loop performance due to its ability to utilize predictive
information and reason quickly in time. However, note that
the prediction incorporating anticipatory indicators can also
be used with other path-planning approaches for dynamic
environments, such as those described in Section II.

Offline Phase

Human Motion
Data of Typical
Trajectories

Training of the
Trajectory Predictor

Online Phase i

Online Prediction of
Human Trajectories

I

Sensed
Human
Trajectories

Robot Action

Fig. 7: Schematic of the Prediction and Planning System.

Path Planner for
Dynamic
Environments

Map #1

(a) Map 1

(b) Map 2

Fig. 8: The two maps used to demonstrate the integrated co-
navigation system. The black squares indicate static obstacles, and
the red squares indicate goal locations for human agents. For
each run, the human agent begins at the lower left corner and
moves toward one of the goal locations. The human motion is
simulated using actual human trajectories recorded in a motion
capture environment that replicated the above maps.

B. Integrating Prediction and Planning

Figure 7 depicts the framework of the navigation sys-
tem, which integrates planning and prediction for a given
environment. In the offline phase, the prediction algorithm
generates the trajectory predictor using human motion data
collected from the environment. During the online phase,
the algorithm predicts the potential trajectory of a moving
human using sensed data such as current position, velocity
and orientation. This information is then fed into the planner,
which reasons in time and generates time-optimal trajectories
for the robot while considering the prospective positions of
human agents in the environment. Since the time-step of
sensing and prediction is usually smaller than that for the
planning algorithm, the prediction algorithm may provide
multiple trajectory predictions within a single planning time-
step. To account for this, and to ensure safe and collision-
free trajectories, we adopted a conservative approach and
considered all predicted trajectories as potential obstacles.

C. Simulation Scenario

The aim of the robot is to safely and efficiently navigate
within an environment where humans are also moving.
The path-planning performance is evaluated with a Matlab
simulation, wherein:

e The human trajectories are simulated using data
recorded in a motion capture setting,

o The prediction algorithm of Section IV is used to make
online predictions about the human agent’s prospective
path at 100 Hz, and

o The robot replans at 10 Hz using the anytime, safe-
interval path planner in order to reach its goal.

For both maps, the motion capture data was collected from
the walking motion of one of the experimenters. A total of 20
trials were recorded for each goal location, and 10 trials were
used to train and develop the prediction algorithm. Further,
in contrast to the study data in Sectionlll, the human did
not pursue an initial straight line path before turning, but
rather pursued unconstrained, goal-oriented motion from the
starting location.
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Fig. 9: Prediction performance for Map 2 as a function of time and
training set size, with (x,y, ¥, ¥y, V,) as features.

The prediction algorithm is first trained using motion cap-
ture data during the offline phase. Based on the validation, we
observed that for both of the environments, better prediction
performance is obtained using position, head orientation and
normalized velocity as features. Since the human was not
asked to follow a specific path at the beginning of the
trajectory, the performance of the prediction shown in Fig. 9
achieves a higher initial value from the beginning of the
trajectory, equivalent to the post-turn section in Fig. 6c,
because this is the point at which the goal-oriented trajectory
begins. Through validation, we obtained surface plots as
shown in Fig. 9 for each map, and chose a training set of 10
trajectories to generate the predictive model.

The planner assumes that the robot is capable of waiting
while generating the plans. Although the planner can handle
arbitrary motion, we assume for simplicity that the robot
operates with a constant velocity and is capable of only
horizontal and vertical motion within the grid world. Further,
while considering the humans in the map, the planner extends
the obstacle information by 2 grid points in each direction to
simulate maintaining a safe and comfortable distance from
the human.

T3

T4

T2

T

(a) Planning with prediction: Map 1
-

(b) Planning without prediction: Map 1

Fig. 10: Simulation of human-robot co-navigation in Map 1. With-
out prediction, the robot (shown in blue) collides with the human
(grey) at T2; with prediction, the robot allows the human to move
first before continuing on to its goal (green).

D. Results

The simulations were carried out with different start and
goal locations for the robots, where the human agent chose a
particular trajectory in the map. The predictor informed the
planner of the future locations of obstacles, and the planner
generated a robot trajectory designed to avoid these obsta-
cles. We compared the performance of the co-navigation
system with a case for which no predictive information
regarding the human agents was available. Here, we describe
two such simulation trials, where the effect of prediction and
the ability to plan in time is evident. The dynamic simula-
tions are best observed through video footage, included as
an attachment and available at http://goo.gl/fOpgx8.

Figures 10-11 provide snapshots of these simulations at
different time steps within a single run for each simulation
case. The locations of dynamic objects at different time
instances are denoted by arrows and colored grid blocks.
Namely, the robot is represented with a dashed arrow and
blue grid block and the human is represented with a solid
arrow and grey grid block. The plots show static obstacles
in black, robot goal in green, and possible human goals
in red. In both the simulation runs, the human and robot
collided when no predictive information was available; this
will translate to an extensive waiting time in real-life sce-
narios due to reactive collision avoidance. However, when
predictive information was available, the robot utilized a path
that, while of longer length, took less time to complete. This
is especially evident in the simulation trial depicted in Fig. 11
where, to avoid a potential conflict while in the corridor, the
robot circumnavigated the wall to reach its goal faster.

This proof-of-concept simulation demonstrates the need
for prediction in human-robot co-navigation, and supports
the usability of the anticipatory indicators and prediction
algorithms described in Section III and IV, respectively.
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Fig. 11: Simulation of human-robot co-navigation in Map 2.
Without prediction, the robot (show in blue) incorrectly enters the
corridor and encounters the human (grey) at T3; with predictive
information, the robot chooses a longer path, but eventually reaches
its goal (green) faster and without collision.



VI. LIMITATIONS AND FUTURE WORK

In this work, for predicting human motion, we relied
on a Vicon motion capture system to track the features to
be used by the prediction algorithm. Hence, we required
markers to be placed on the human and within a structured
environment. Future work will include an exploration of
the prediction capability of the algorithm while using on-
board, markerless sensors, and how the uncertainty will
propagate to the predictor through the closed loop. Also, in
this work, the co-navigation system was tested using Matlab
simulation. We aim to implement the system online using
Robot Operating System for testing on robot hardware. A
hardware implementation of this system will require other
safety considerations, including recovery behaviors for when
the robot incorrectly predicts motion trajectories, or when
humans change their paths/intention midway through their
motion.

Additionally, the planning and prediction system described
above did not take into consideration any modifications to
the human path as a result of the motion of the robot. Prior
work [7] has demonstrated the importance of this interactive
behavior for path planning within crowded environments.
Further, a robot can also communicate its intention (such
as its prospective path), which can in turn impact the motion
of human agents. In the future, we intend to leverage
this interactive behavior and communication by developing
planning strategies that can reason over both human and
robot agents simultaneously.

VII. CONCLUSION

Mobile, interactive robots that function in close proximity
with humans require the ability to predict and plan around
uncertain, dynamic human agents within their surroundings.
Path prediction can be improved through the consideration of
biomechanical aspects of human motion. Through a biome-
chanical study, we confirmed the existence of anticipatory
turn indicators for human walking motion. The efficacy of
these indicators was demonstrated using a target prediction
algorithm to predict human motion in environments with pre-
defined goals. Lastly, the effect of this predictive capability
for planning paths was evaluated in simulation using anytime
safe-interval path planning, and significant benefits were
observed. Future directions for this work include evaluation
of the system within an uncontrolled, physical scenario
requiring human-robot interaction.
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