
MIT Open Access Articles

Project-based, collaborative, algorithmic robotics for high 
school students: Programming self-driving race cars at MIT

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Karaman, Sertac, Ariel Anders, Michael Boulet, Jane Connor, Kenneth Gregson, Winter 
Guerra, Owen Guldner, et al. “Project-Based, Collaborative, Algorithmic Robotics for High School 
Students: Programming Self-Driving Race Cars at MIT.” 2017 IEEE Integrated STEM Education 
Conference (ISEC), 2017, Princeton, NJ, USA, 2017.

As Published: http://dx.doi.org/10.1109/ISECON.2017.7910242

Publisher: Institute of Electrical and Electronics Engineers (IEEE)

Persistent URL: http://hdl.handle.net/1721.1/114816

Version: Author's final manuscript: final author's manuscript post peer review, without 
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/114816
http://creativecommons.org/licenses/by-nc-sa/4.0/


Project-based, Collaborative, Algorithmic
 Robotics for High School Students: 

Programming Self-driving Race Cars at MIT 

Sertac Karaman, Ariel Anders, Michael Boulet, Jane Connor, Kenneth Gregson, Winter Guerra, 
Owen Guldner, Mubarik Mohamoud, Brian Plancher, Robert Shin, John Vivilecchia 

Massachusetts Institute of Technology

Abstract –  We describe  the  pedagogy behind the  MIT
Beaver Works Summer Institute Robotics Program, a new
high-school  STEM program in  robotics.  The  program
utilizes  state-of-the-art  sensors  and  embedded
computers  for  mobile  robotics.  These  components  are
carried on an exciting 1/10-scale race-car platform. The
program has three salient, distinguishing features:  (i) it
focuses on robotics software systems: the students design
and  build  robotics  software  towards  real-world
applications,  without  being  distracted  by  hardware
issues;  (ii) it  champions  project-based  learning:  the
students learn through weekly project assignments and a
final course challenge;  (iii) the learning is implemented
in a collaborative fashion: the students learn the basics of
collaboration and technical communication in lectures,
and they work in teams to design and implement their
software systems. The program was offered as  a four-
week residential program at MIT in the summer of 2016.
In  this  paper,  we  provide  the  details  of  this  new
program, its teaching objectives, and its results. We also
briefly discuss future directions and opportunities. 

Index  Terms –  High  school  STEM  education;  hands-on
robotics; project-based learning; team-oriented learning.

I. INTRODUCTION

Robotics is a thriving emerging field that already has
had  tremendous  impact.  The  future  of  robotics  is  even
brighter: Self-driving cars may revolutionize transportation
by bringing down costs  by an order  of  magnitude,  while
substantially  enhancing  safety,  perhaps  even  eliminating
fatal  traffic  accidents;  Aerial  drones  may  finally  enable
affordable  same-hour  delivery  of  goods,  transforming the
way  we  shop;  Autonomous  underwater  vehicles  may
explore  our  oceans,  while  robotic  rovers  roam around  in
Mars  and  beyond.  These  robotics  applications  and  many
more are expected to unfold during the next few decades.
Those who will build these robotic systems are studying in
high schools today. How can we best prepare them now so
that they can build this future? 

It  is  widely  accepted  that  robotics  is  an  exciting

direction  for  high  school  students  [1],  and  robotics
competitions,  camps,  and  clubs  all  increase  interest  in
Science, Technology Engineering and Mathematics (STEM)
[2], [3]. Many high-school robotics programs are organized
as competitions [4]. Among the best known are the FIRST
Robotics  Challenge,  the  FIRST Lego  League  [5],  BEST
Robotics  [6],  National  Robotics  Challenge  (NRC),  and
EARLY Robotics. These programs are all tailored for pre-
college  students,  spanning  a  large  variety  of  robotics
hardware for students to build and utilize. For instance, on
the one end of the spectrum, students build hundred-pound
robots  for  the  FIRST  Robotics  Challenge.  Teams  with
budgets  beyond  $15,000  are  fairly  common  [4].  On  the
other end of the spectrum, the BEST Robotics Competition
provides all hardware material required for a small fee of
$500  for  the  students  to  build  palm-size  robots.
Independently  of  the  cost  of  the  platforms,  almost  all
existing  robotics  competitions  for  high  school  students
require the students to focus on building and integrating the
hardware  that  make  up  the  robot,  at  the  expense  of
designing  and  implementing  complex  algorithms  and
software. 

The emerging applications of robotics are much more
complex  for  several  reasons.  Firstly,  they  are  software
heavy.  In  fact,  most  advanced  robotics  applications  are
enabled by software that is built from hundreds of thousands
of lines of code that is professionally implemented, often in
an object-oriented, low-level  programming language, such
as C++. The software is often so large and so complex that a
large  team  of  robotics  engineers  and  software  engineers
implement it  together. Hence, it  is essential  to  design the
software  system  given the  project  requirements,  and
implement  it  as  a  team  utilizing  essential  software
collaboration  tools. Second,  in  most  modern  robotics
systems  applications  the  sensor  data  is  massive  in  size,
unstructured  and  noisy.  Furthermore,  for  most  robotic
systems, there is not one sensor that the robot solely relies
on; often, data from multiple sensors (e.g.,  cameras, laser
range finders, inertial measurement units, global positioning
system, and more) are utilized together. Hence, algorithms
and software for proper sensor fusion is key to making most
of emerging applications of robotics. 



Most  existing  high-school  computer  science  and
robotics programs are unable to address these challenges on
their  own.  On  the  one  hand,  existing  robotics  programs
focus on the mechanics; as a result, they do not have room
for  students  to  design  and  implement  relatively  complex
software systems, as noted above. On the other hand, most
existing computer programs are fairly conceptual, and they
often  do  not  work  with real-world data  and not  consider
real-time processing.

In this paper, we describe the pedagogy behind a new
program,  called  the  MIT Beaver  Works  Summer  Institute
Robotics  Program.  The  new  program  complements  the
existing computer science and robotics programs as follows.

First,  the  new  program  focuses  entirely  on  robotics
software.  Students  do  not  engage  in  hardware  design  or
development. They are given a hardware kit that includes
state-of-the-art sensors and computers, including a scanning
laser range finder, a high-resolution stereo camera, and an
Nvidia Jetson Tegra  X1 embedded computer  with a  256-
core General-Purpose Graphics Processing Unit (GP-GPU).
The whole  sensing and computation platform is  fitted on
1/10-scale  race  car,  making  it  an  exciting  platform  for
students.

 Second,  the new program is project  based. Students
build their  skills  through several  “mini projects,”  each of
which require the design of a relatively complex software
and its  implementation.  Lectures  and laboratory  exercises
are tailored to help the students think towards their projects.
The program also features a final course challenge, which
requires  the  students  to  design  and  implement  robotics
software for fully-autonomous racing. The fastest  car  that
abides by the rules of the road wins! We believe project-
based learning that involves exciting projects helps motivate
the students and improves their system-level thinking and
system  design  skills,  in  this  case  focusing  on  software
systems. 

Third,  the  program  champions  collaboration. The
students work in teams for their projects. In each project, the
students  design  the  software  system  as  a  team.  They
partition their implementation into Robot Operating System
(ROS) nodes,  often each student implementing more than
one ROS node. They connect the nodes utilizing the ROS
messaging  environment.  The  students  also  utilize  the
software version tracking tools, which are common in large
software engineering projects in the robotics industry. Given
the  substantial  amount  of  collaboration  involved  in  the
course, we have implemented lectures and instruction that
teaches students effective communication and collaboration.

The  program  was  implemented  as  a  four-week
residential  program  at  the  Massachusetts  Institute  of
Technology (MIT) in the summer of 2016. A total number of
46  students  were  invited  to  the  MIT  campus  for  the
program, 22 of which came from Massachusetts while the
remaining 24 came from across the U.S. and stayed in the
Boston Area during these four weeks. We devote this paper
to a detailed description of the pedagogy of this program
and its results. 

Most  lectures  and  laboratory  exercises  are  modeled
after  MIT’s flagship robotics  course,  taught  by Karaman,
entitled  Robotics:  Science and Systems,  jointly offered by
the  Department  of  Electrical  Engineering  and  Computer
Science (under course number 6.141) and the Department of
Aeronautics  and  Astronautics  (under  course  number
16.405).

Let us note that there have been some other courses that
utilized state-of-the-art hardware in robotics education. The
most notable contemporary example is the ZERO Robotics
Challenge [7]-[10]. Teams from all over the United States
compete do develop software for a space robotics hardware.
They first compete in simulation systems, and then winning
teams compete with real robots at  the International  Space
Station in the zero-gravity environment. The program is an
excellent  example  of  the  utilization  of  state-of-the-art
robotics  equipment.  It  has  also  emphasized  collaboration
and  teamwork  since  its  inception  [11],  [12].  However,
almost  all  teams  are  entirely  made  up  of  undergraduate
students, rather than high school students. Furthermore, the
state-of-the-art  hardware  for  space  robotics  differs
significantly from the hardware for ground/aerial robotics.
Our  program  utilizes  hardware  for  the  latter,  and  it  is
specifically  tailored  for  high-school  students.  A relevant
example  is  from  2002.  A joint  program  offered  by  the
Carnegie  Mellon  University  (CMU)  and  National
Aeronautics and Space Administration (NASA) invited 30
high-school students to NASA for a residential program to
learn  robotics  using  a  rover  utilized  by  NASA [13].  The
authors note that the goal for this course was to “provide
selected high school students with an immersive exploration
of  mobile  robotics  using  leading-edge  technologies.”  Our
program’s aim for 2016 was similar, with two exceptions:
the focus on high school education, and the focus on mobile
ground robots (rather than space robotics).

For the mobile robotics domain, most of the research
focused on the development of low-cost platforms, with the
motivation of reaching out to a large number of students. A
recent  survey  is  given  by  Irigoyen  [14].  Most  notable
examples include the use of Lego kits [5],  [15]-[18],  kits
based on the iRobot Create fitted with a Gumstix embedded
computer  [19],  [20] or  fitted  with just  a  laptop computer
[21].  These  platforms  serve  the  important  purpose  of
reaching as many students as possible, some of whom may
have very limited budgets. However, almost all of them lack
state-of-the-art sensors and computers that are an essential
part of many contemporary robotic systems. Our platform
includes the state-of-the-art hardware utilized in real-world
robotic vehicles today, while remaining within the budget of
high  schools  participating  in,  e.g.,  the  FIRST  Robotics
Challenge. 

This  paper is  organized as  follows.  In  Section 2,  we
describe  the  open-source  hardware  and  software  of  our
platform. In Section 3, we describe the major activities in
the program and the details of the technical instruction. In
Section  4,  we  provide  the  data  on  the  students’  self-
assessment along with a discussion of the results. We devote



the Section 5 to a discussion on potential opportunities to
extend  this  program  and  its  pedagogy  in  the  future.  We
conclude the paper with remarks in Section 6.

II. HARDWARE AND INFRASTRUCTURE SOFTWARE 

The  hardware  was  initial  developed  for  an  MIT
hackathon in January 2015 by the authors. It was updated
for another hackathon in January 2016. The same version
was  also  used  for  teaching  MIT’s flagship  undergraduate
robotics course. The same robotics hardware was used for
teaching this high-school program. 

Our hardware platform is an exciting autonomy-capable
mini  race  car.  The  fully-assembled  hardware  platform  is
shown in Figure 1. Its most essential components are shown
in Figure 2. The vehicle is based on the 1/10-scale Traxxas
RC Rally Car. We use the vehicle chassis, which one electric
drive motor that drives the wheels, and one electric servo
motor that steers the front wheels. The reported speed of the
Traxxas RC Rally Car is 40 mph. However, throughout this
high-school program, we limited the speed the vehicle to 5
mph through programming the firmware of an open-source
Electronic Speed Controller (ESC), called the VESC [22].

 
FIGURE I

THE MIT RACECAR PLATFORM. 

FIGURE II
THE MIT RACECAR PLATFORM COMPONENTS. 

FIGURE III
THE ROBOT OPERATING SYSTEM VISUALIZATION SOFTWARE, RVIZ. 

The main computing element is the Nvidia Jetson Tegra
X1  embedded  supercomputer  (from  here  on  called  the,
Jetson  TX1).  The  Jetson  TX  1  features  a  GP-GPU  that
delivers 1 Teraflops of computation power, using only 10
Watts of electrical power. It also boosts a quad-core Central
Processing Unit (CPU). The CPU is clocked at 2 GHz.

The  hardware  platform  includes  three  main  sensors.
The first  major sensor is  the Structure.io RGB-D camera.
The sensor provides RGB color along with depth. The depth
sensing is based on the structured light method, similar to
the  method  used  by  the  Microsoft  Kinect  sensor.  The
Structure.io  sensor  provides  RGB-D  images  at  the  VGA
resolution (640 by 480 pixels)  at  a rate of  30 frames per
second. It perceives depth in the range of 0.4 to 3.5 meters.
Its  reported accuracy is less than a centimeter at  the 0.4-
meter  range  and  around  3  cm at  the  3-meter  range.  The
second major sensor is the Hokuyo UST10-LX planar laser
range finder. It features one laser range finder element that
rotates at 40 Hz, providing 270-degree field of view at ¼-
degree  resolution.  Finally,  the  third  major  sensor  is  the
Stereolabs  ZED  stereo  camera,  which  provides
synchronized video from cameras. The two images from the
two separate cameras can be utilized to re-construct depth
by  utilizing  standard  stereo  matching  techniques.  The
Stereolabs  SDK  implements  a  semi-global  matching
algorithm that runs on GPU-based computers, such as the
Jetson  TX1.  The  sensor  suite  also  includes  an  inertial
measurement unit, specifically the Sparkfun Razor 9-DOF
IMU. Finally, the open-source electronic speed controller,
called the VESC, allows us to sense the speed of the drive
motor, which is a measurement of the vehicle’s speed. 

These  components  are  arranged  on  two  pieces  of
custom-made plates,  which  were  cut  using  a  laser  cutter.
The lower piece houses the main embedded computer and
the  inertial  measurement  unit.  The  RGB-D  camera  is
mounted on the upper piece. The laser range finder and the
stereo camera are mounted directly on the vehicle chassis.

The main computer runs the Ubuntu Linux operating
system. The computer also runs the Robot Operating System
(ROS). The ROS environment allows robotics software to
be modularized. For instance, the feedback control systems



software, motion planning system software, computer vision
system software, and other perception system software can
be  separated  into  their  own  software  modules.  Each
software  module  is  called  a  “node”.  The  nodes  share
information using “messages.” The ROS environment also
provides tools to visualize data that is being sent between
the nodes. See Figure 3. As seen in the figure, the software
allows the visualization of the sensor data in real time along
with other features. 

We have implemented the various drivers for hardware
integration.  Specifically,  our  team  has  implemented
software that  interfaces with all  sensors and software that
governs  the  VESC.  Our  team  has  also  developed  a
simulation system based on the Gazebo simulator. All this
infrastructure  software  is  made  available  open  source
through  the  following  URL:  http://github.mit.edu/mit-
racecar/.  More  information  about  this  and  other  classes
taught by this platform can be found in the following URL:
http://racecar.mit.edu. 

III. ACADEMIC PROGRAM 

The  academic  program  included  the  following:  (i)
lectures that convey theoretical  underpinnings of robotics,

(ii) laboratory exercises that allow the students to practice
hands-on  skills,  (iii) lectures  on  collaboration  and
communication that help students work in teams, and  (iv)
technical  seminars  that  broaden  the  students’  vision  in
science,  engineering,  research,  entrepreneurship  and
beyond.

The agenda is as follows. Each day starts with a one-
hour  lecture  that  teaches the foundational  the  topics.  The
rest of the day is largely devoted to laboratory exercises that
allows  students  to  practice  hands-on  development  skills.
Each week ends with a mini project.  Near the end of the
week, the students are given time to go through the software
system design exercise, and implement the software for their
projects. The final week of the program is devoted to the
course challenge. During the final week, the lectures focus
on  case  studies.  Instead  of  the  laboratory  exercises,  the
students focus on design and implementation for the course
challenge. 

The technical  program is split  into four modules. We
named  them:  (i) Move,  (ii) Explore,  (iii) Learn,  and  (iv)
Race. Each module takes one week of time to implement,
and they collectively cover the four weeks in this order. The
first three modules provide the basics of robotics, and end
with a mini project. The last module focuses on the course

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Value

Avg. Ability to discuss technical issues and arrive at sound decisions with a team (Before Course)

Avg. Ability to discuss technical issues and arrive at sound decisions with a team (Now)

Avg. Ability to integrate different technologies into working systems solutions (Before Course)

Avg. Ability to integrate different technologies into working systems solutions (Now)

Avg. Overall ability to contribute to effective teamwork (Before Course)

Avg. Overall ability to contribute to effective teamwork (Now)

Avg. Understanding of Python (Before Course)

Avg. Understanding of Python (Now)

Avg. Understanding of Robot Operating System (Before Course)

Avg. Understanding of Robot Operating System (Now)

Avg. Understanding of autonomy and autonomous systems (Before Course)

Avg. Understanding of autonomy and autonomous systems (Now)

Avg. Understanding of feedback control systems (Before Course)

Avg. Understanding of feedback control systems (Now)

Avg. Understanding of image processing (Before Course)

Avg. Understanding of image processing (Now)

3.915

1.809

4.298

2.787

3.787

2.787

1.936

3.766

4.170

4.000

4.064

1.404

4.362

2.362

1.681

3.191

Self assessment (average values)

Avg. Ability to discuss technical issues and arrive at sound decisions with a team (Before Course), Avg. Ability to discuss technical issues and arrive at sound decisions with a team (Now), Avg. Ability
to integrate different technologies into working systems solutions (Before Course), Avg. Ability to integrate different technologies into working systems solutions (Now), Avg. Overall ability to contribute
to effective teamwork (Before Course), Avg. Overall ability to contribute to effective teamwork (Now), Avg. Understanding of Python (Before Course), Avg. Understanding of Python (Now), Avg. Under-
standing of Robot Operating System (Before Course), Avg. Understanding of Robot Operating System (Now), Avg. Understanding of autonomy and autonomous systems (Before Course), Avg. Under-
standing of autonomy and autonomous systems (Now), Avg. Understanding of feedback control systems (Before Course), Avg. Understanding of feedback control systems (Now), Avg. Understanding
of image processing (Before Course) and Avg. Understanding of image processing (Now).

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Value

Median Ability to discuss technical issues and ar rive at sound decisions with a team (Before Cou..

Median Ability to discuss technical issues and ar rive at sound decisions with a team (Now)

Median Ability to integrate different technologies into working systems solutions (Before Course)

Median Ability to integrate different technologies into working systems solutions (Now)

Median Overall ability to contribute to effective teamwork (Before Course)

Median Overall ability to contribute to effective teamwork (Now)

Median Understanding of Python (Before Course)

Median Understanding of Python (Now)

Median Understanding of Robot Operating System (Before Course)

Median Understanding of Robot Operating System (Now)

Median Understanding of autonomy and autonomous systems (Before Course)

Median Understanding of autonomy and autonomous systems (Now)

Median Understanding of feedback control systems (Before Course)

Median Understanding of feedback control systems (Now)

Median Understanding of image processing (Before Course)

Median Understanding of image processing (Now)

3.000

4.000

2.000

4.000

3.000

4.000

3.000

4.000

1.000

4.000

2.000

4.000

2.000

4.000

1.000

4.000

Self assessment (median values)

Median Ability to discuss technical issues and arrive at sound decisions with a team (Before Course), Median Ability to discuss technical issues and arrive at sound decisions with a team (Now), Median
Ability to integrate different technologies into working systems solutions (Before Course), Median Ability to integrate different technologies into working systems solutions (Now), Median Overall ability to
contribute to effective teamwork (Before Course), Median Overall ability to contribute to effective teamwork (Now), Median Understanding of Python (Before Course), Median Understanding of Python
(Now), Median Understanding of Robot Operating System (Before Course), Median Understanding of Robot Operating System (Now), Median Understanding of autonomy and autonomous systems
(Before Course), Median Understanding of autonomy and autonomous systems (Now), Median Understanding of feedback control systems (Before Course), Median Understanding of feedback control
systems (Now), Median Understanding of image processing (Before Course) and Median Understanding of image processing (Now).

FIGURE VIII
SELF-ASSESSMENT OF COLLABORATION AND TECHNICAL SKILLS. 

http://github.mit.edu/mit-racecar/
http://github.mit.edu/mit-racecar/
http://racecar.mit.edu/


challenge. 
The  first  module,  which  we  call  Move,  teaches  the

basics of commanding the vehicle actuators, such as steering
and drive motor. The students first learn how to work with
the Robot Operating System and work with the platform. In
particular,  they  learn  how to  acquire  data  from the  laser
range finder, the inertial measurement unit, and the wheel
odometer (through the VESC). Later in the week, they learn
the  basics  of  control  systems  in  the  lectures,  and  they
experiment with the design of PID control systems in the
laboratory exercises. The mini project for this module is to
design and implement a software system for wall-following
drag  racing.  Specifically,  the  students  must  design  a
perception  system  that  detects  the  wall  from  laser  range
finder measurements, and a controller that steers the system
to align with the wall. During the mini race, we start two
cars at the same time side by side, and declare the first car to
finish  as  the  winner. We rank  the  teams in a  tournament
style race. 

The  second  module,  called  Explore,  delves  into
working with cameras.  Specifically, the students learn the
basics of blob detection in images as well as visual servoing
control systems. The project for the week is to design and
implement a software system that drives the robot towards a
fork, detects the color of a marker right at the fork location,
turns right if the marker is green and turns left if the marker
is red. 

FIGURE V
THE SEMINAR SCHEDULE. 

The third module, called Learn, teaches the basics robot
perception and robot motion planning. In the first half of the
week,  the  students  learn  the  basics  of  robot  perception
algorithms,  including  localization  and  mapping.  In  the
second half  of  the  week,  the  students  learn the basics  of
robot motion planning algorithms, such as potential field-
based,  search-based,  and  sampling-based  planners.  The
project  is  to  develop  software  for  a  robotic  vehicle  that
explores its surroundings without colliding with obstacles. 

The final module, called  Race, focuses entirely on the
course challenge. The course challenge includes two main
activities:  Racing  challenge and an exploration challenge.
Both challenges must be completed fully autonomously. 

The race involves the design and implementation of a
software system which allows the vehicle to travel through
the  race  course  as  fast  as  possible.  A picture  of  the  race
course is shown in Figure 6 with cars and students along the
race course. Notice that there is a fork at the top part of the
course. Right at the fork, there is a visual marker. The cars
must detect the marker and make a turn if the marker is red,
drive straight if the marker is green. First, we allow each
team to run their car on the track. We then place multiple
cars on the track at the same time. A view from the race is
shown in Figure 7; Autonomous mini race cars are chasing
each other.

The  exploration  challenge  involves  navigating  in  an
environment  that  is  unknown  a  priori.  The  environment
includes several visual markers framed in a pink frame. The
challenge is to design and implement a software system that
requires  the  robot  to  find  as  many  markers  as  possible
without colliding with obstacles within a fixed amount of
time. 

FIGURE VI
THE COURSE CHALLENGE EVENT ARENA. 



FIGURE VII
A VIEW FROM THE RACE EVENT. 

The  academic  program  also  features  instruction  on
communication  and  collaboration.  In  these  lectures,  the
students are instructed in forums, where they get a chance to
actively  participate  in  exercises  that  help  them  develop
technical  communication  skills  and  provide  them  an
opportunity to effectively work in teams. 

Finally, the program features  a  one-hour seminars  on
each day. The seminars were given by researchers at MIT as
well as the thriving robotics industry. The seminar schedule
is shown in Figure 5. Each technical seminar is roughly 45
minutes of talk by the speaker and roughly 15 minutes of
questions and answers session. 

IV. ASSESSMENT AND DISCUSSION

In  this  section,  we  report  our  assessment  based  on
student surveys, and our findings after analyzing the data. 

At  the  completion  of  the  course,  the  students  were
asked  to  complete  a  self-assessment  survey.  They  were
asked to evaluate their  the following before and after the
course: 

 Understanding  of  the  Python  programming
language;

 Understanding of the Robot Operating System;
 Understanding of feedback control systems;
 Understanding of image processing;
 Ability  to  integrate  different  technologies  into  a

working systems solution;
 Ability  to  discuss  technical  issues  and  arrive  at

sound decisions with a team;
 Overall ability to contribute effective teamwork.

The ratings correspond to the following: 1.  Very poor;  2.
Somewhat  poor;  3.  Neutral;  4.  Somewhat  good;  5.  Very
good.

The results of the self-assessment survey are shown in
Figure 8. The top figure shows the average rating for each
question; the bottom figure shows the median. Notice that
the students report substantial improvement in every item. 

We  also  conducted  a  self  assessment  survey  of
communication and collaboration skills taught by the class
in  the  middle  of  the  program.  We asked  the  students  to
evaluate  their  interpersonal,  communication  and
collaboration skills, before the course and two weeks after
the  start  of  the  course.  The  ratings  correspond  to  the
following: 1. Very poor; 2. Somewhat poor; 3. Neutral; 4.
Somewhat good; 5. Very good. 

In terms of averages, we observe a slight increase in the
students’ self assessment of these skills two weeks into the
program.  Specifically,  assessment  of  interpersonal  skills
average  raises  from 3.26  to  3.71,  that  of  communication
skills  raises  from 3.36  to  3.78,  and  that  of  collaboration
skills raises from 3.42 to 3.86. In all three categories, the
median  values  are  3  before  the  class,  while  the  median

values improve to 4 after the class.  Hence, most students
report at most “neutral” for these skills before the class; they
report  that  these  skills  improved  to  at  least  “somewhat
good,”  after  the  course.  For  the  reader  to  see  the  slight
improvement individually, we refer the reader to Figure 9.
Several comments are in order. 

First, the students report relatively good programming
skills  (Python  programming)  even  before  starting  the
course; yet, they improve their programming skills over the
course of this program. See Figure 8. The average reported
rating  for  “understanding  of  Python”  is  2.787 before  the
course, and rises to 4.064 after the course; the median rises
from 3  to  4.  We believe  that  the  program contributes  to
students’ programming abilities substantially, even for those
who are good programmers. The students frequently quoted
the  valuable  experience  of  designing  and  implementing
software  to  handle  real-world,  real-time  data,  which  we
believe  was  one  of  the  major  reasons  that  helped  the
students  sharpen  their  programming  and  software
development skills. 

Second, the students report very little understanding of
advanced  robotics  concepts,  such  as  robot  operating
system,  feedback  control  systems,  image  processing,  and
autonomous systems; but, the program allows the students
to  build  these  skills  substantially  in  a  relatively  short
amount of time. Before the course, the average rating ranges
between 1.5 and 2; the medians 1 or 2. Hence, most students
report that their skills in these areas are “poor,” before the
course. After the course, the ratings improve substantially.
Specifically, the average values range between 3.7 and 4.2;
the median values all improve to 4. Hence, most students
rate their skills in these areas as at least “good,” after the
course.  We  believe  that  the  program’s  focus  on  these
advanced  robotics  topics  with  hands-on  practice  in  a
collaborative project-based environment allows the students
to  learn  these  advanced  skills  fairly  well  in  a  very  short
period of time.

Third, even though the students report relatively strong
communication and collaboration skills, we observe that the
reported  assessment  of  these  skills  also  improve  rapidly
throughout the program. Even two weeks into the program,
the students report improvement of these skills, as seen in
Figure 9. By the end of the program, the students report a
significant improvement on complex teamwork skills, such
as “ability to discuss  technical  issues and arrive at  sound
decisions  as  a  team,”  “ability  to  integrate  different
technologies into a working system solution,” and “ability to
contribute  to  effective  teamwork.”  We  believe  that  the
assessment is a consequence of a number of aspects of the
program.  First,  the  program  teaches  a  rigorous  set  of
lectures on communication and collaboration. In forum-style
lectures, the students learn the basics of working in teams.
Second,  the  program  provides  the  students  several
opportunities to practice these skills. Each lab exercise, each
project, and the course challenge are all conducted in teams.
We believe that the lectures and the hands-on practice for
communication and collaboration that is embedded in this



class provides the results we observe in Figures 8 and 9.

FIGURE IX
MID-COURSE SELF ASSESSMENT OF INTERPSERSONAL, COMMUNICATION

AND COLLABORATION SKILLS. 

V. FUTURE PLANS: SUPPORTING ONLINE COURSES 
AND A COMMON HARDWARE PLATFORM

There  is  ample  room  for  improvement,  towards
updating the platform, the technical lectures, the laboratory
exercises, the projects and the course challenge. However,
we believe the most important area for future work is to fill
in the essential ingredients that will allow us to scale this
program up, to reach thousands of high school students.  We
propose two extensions: a set of supporting online courses
and a common hardware platform. We envision the students
will have access to both of these components before coming
to MIT campus for the residential part of the program. In
this section, we describe these extensions in details, and we
survey  some  of  the  relevant  work  in  the  literature
afterwards.

Supporting  Online  Courses: We believe  one  of  the
key  ingredients  is  to  support  the  program  with  online
material that students can work with before they start the
summer program at MIT. The online material will be shaped
into a Massive Open Online Course (MOOC) program. The
MOOC  program  will  consist  of  a  few  short  courses,
including programming, software engineering, the basics of
control systems, computer vision and robotics as well as a
set of lectures on communication and collaboration. 

We envision  that  the  students  will  go  through  these
courses  the  academic  year  before  they  come  to  MIT
campus, when they can focus on projects that involve the
design  and  implementation  of  complex  robotics  software
systems. 

These  online  courses  will  include  a  number  of
components: (i) short video lectures which the students can
watch on their own pace, comment on and discuss through
the online forums;  (ii) short technical exercises which are
automatically  graded,  so  that  the  students  can  get  rapid
feedback  on  their  learning  of  the  complex  foundational
concepts;  (iii)  hands-on programming exercises which are
also automatically graded through unit tests;  (iv) hands-on
robotics  software  development  exercises  that  run  on  a
realistic simulation environment or run with real-world data
collected using the experimental platforms,  through which
the students can design and implement relatively complex
robotics  software  systems  and  test  them  on  their  own
computer on their own time and pace. 

The implementation of these components requires the
development  of  a  few  key  platforms. First  is  an online
forum that  is  open  to  all  students  and  instructors.  We
envision this online forum to be used for any question that
relates to the course. The second is an open code repository
that  students and instructors  can share code.  We envision
instructors  to  share the solutions to  various programming
exercises,  software  components  that  students  can  utilize
toward their work as well as certain infrastructure software
such  as  robot  simulation  software.  We envision  that  the
students  will  use  the  code  repository  to  share  work-in-
progress  code  snippets,  their  solutions  to  programming
exercises, and code branches that include their own updates
to the instructors’ software posted in the code repository. We
expect  that  the  students,  will  help  tremendously  in
improving the software developed by the instructors; hence,
it is critical to allow students to provide feedback or even
the  opportunity  to  develop  software  for  the  course  itself.
Thankfully, modern software version tracking tools provide
easy  means  to  implement  this  vision.  Finally, third  is  an
open data repository which the instructors and students can
utilize to share data, either from experiments on the robots
or from the simulation environment. 

Common hardware platform: To further  strengthen
this  program,  we  also  envision  a  common  hardware
platform, such as the mini race car described in Section 2,
which  several  high  schools  have  access  to  even  before
coming to the MIT campus for the residential portion of the
program.  We  believe  that  having  access  to  a  common
platform  will  allow  the  students  download  and  execute
software from the code repository. They will be able to try
software developed by the instructors or the fellow students.
They  will  also  be  able  to  upload  their  data  from  their
experiments  to the common data repository to share with
fellow students and/or ask feedback from the instructors, or
even have the data evaluated by automated data evaluation
software to get  rapid feedback on their latest  experiment.
Furthermore, we believe that access to a common platform



will allow the students from different high schools to work
on  common  projects  by  utilizing  the  online  resources,
specifically the online forums, the open code repository, and
the  open  data  repository.  We  imagine  the  students  will
utilize  state-of-the-art  online  video  conferencing  tools  to
talk to each other and collaborate.  We, as the instructors,
hope to learn from this experience and tightly integrate the
utilization  all  these  remote  collaboration  tools  into  our
teaching of communication and collaboration, as we believe
these  tools  will  be  essential  to  robotics  software  systems
design and development in the coming years. 

VI. CONCLUSIONS

We  presented  a  new  high-school  robotics  program,
called the MIT Beaver Works Robotics  Institute Robotics
Program.  The  program focuses  on  robotics  software,  and
allows the students to design and develop complex software
systems  to  run  on  mini  race  platform.  In  particular,  the
course challenge involves the design and implementation of
software  systems that  allow the  mini  race  car  to  operate
completely autonomously. The program champions project-
based  and  team-oriented  learning.  The  program  was
implemented for the first time in the Summer of 2016 on
MIT campus as  a  four-week residential  program with the
participation of 46 students, 24 of which participated from
outside  of  Massachusetts  and  stayed  in  the  Boston  Area
during this program. The self-assessment suggests that the
students  benefit  in  many  directions  in  terms  of  both
technical and teamwork skills. Our future plans include the
expansion  of  the  platform,  particularly  with  an  online-
supported  teaching,  in  which  the  students  follow  online
classes during the semester building up to the summer to
understand the foundations, and then use their time at MIT
to design and  build complex robotic  software systems.  A
short  video  describing  the  course  can  be  found  in  the
following URL: https://youtu.be/ozcBNbu7ogY. 

ACKNOWLEDGEMENTS 

This  material is based upon work supported under Air
Force Contract No. FA8721-05-C-0002 and/or FA8702-15-
D-0001.  Any  opinions,  findings,  conclusions  or
recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the U.S.
Air  Force.  The  program  was  supported  by  a  number  of
sponsors, which are featured in the video link provided in
Section  VI.  In  addition,  Prof.  Karaman  was  supported
through  the  NSF  CAREER  program  through  grant
#1350685. 

REFERENCES

[1] E. Kolberg and N. Orlev, “Robotics learning as a tool for integrating 
science technology curriculum in K-12 schools,” presented at the 
Frontiers in Education Conference, 2001.

[2] A. Welch and D. Huffman, “The Effect of Robotics Competitions on 
High School Students' Attitudes Toward Science,” School Science 
Mathematics, vol. 111, no. 8, pp. 416–424, Dec. 2011.

[3] G. Nugent, B. Barker, N. Grandgenett, and G. Welch, “Robotics 
camps, clubs, and competitions: Results from a US robotics project,” 
Robotics and Autonomous Systems, vol. 75, no. Part B, pp. 686–691, 
Jan. 2016.

[4] R. T. Johnson and S. E. Londt, “Robotics Competitions: The Choice 
Is up to You!.,” Tech Directions, vol. 69, no. 6, pp. 16–20, 2010.

[5] C. Chalmers, “Learning with FIRST LEGO League,” Society for 
Information Technology and Teacher …, 2013.

[6] H. Fike, P. Barnhart, C. E. Brevik, E. C. Brevik, C. Burgess, J. Chen, 
S. Egli, B. Harris, P. J. Johanson, N. Johnson, M. Moe, and R. Olsen, 
“Using a robotics competition to teach about and stimulate 
enthusiasm for Earth science and other STEM topics,” EGU General 
Assembly, 2016.

[7] A. Saenz-Otero, J. Katz, and S. Mohan, “ZERO-Robotics: A student 
competition aboard the International Space Station,” IEEE Aerospace
Conference, 2010.

[8] S. Nag, I. Heffan, A. Saenz-Otero, and M. Lydon, “SPHERES Zero 
Robotics software development: Lessons on crowdsourcing and 
collaborative competition,” presented at the IEEE Aerospace 
Conference, 2012, pp. 1–17.

[9] D. W. Miller, “ZERORobotics: a Student Competition Aboard the 
International Space Station,” presented at the Next-Generation 
Suborbital Researchers Conference, 2010.

[10] A. Saenz-Otero and J. Katz, “The Zero Robotics SPHERES 
Challenge 2010,” IEEE Aerospace and Electronic Systems Magazine, 
2011.

[11] S. Nag, J. G. Katz, and A. Saenz-Otero, “Collaborative gaming and 
competition for CS-STEM education using SPHERES Zero 
Robotics,” Acta Astronautica, vol. 83, no. C, pp. 145–174, Feb. 2013.

[12] S. Nag, “Collaborative Competition for Crowdsourcing Spaceflight 
Software and STEM Education using SPHERES Zero Robotics,” 
MIT, 2012.

[13] I. R. Nourbakhsh, E. Hamner, and K. Crowley, “Formal measures of 
learning in a secondary school mobile robotics course,” presented at 
the IEEE International Conference on Robotics and Automation, 
2004.

[14] E. Irigoyen, E. Larzabal, and R. Priego, “Low-cost platforms used in 
Control Education: An educational case study,” presented at the IFAC
Symposium Advances in Control Education, 2013, vol. 46, no. 17, pp.
256–261.

[15] E. Danahy, E. Wang, J. Brockman, A. Carberry, B. Shapiro, and C. B, 
“LEGO-based Robotics in Higher Education: 15 Years of Student 
Creativity,” International Journal of Advanced Robotic Systems, pp. 
1–16, 2014.

[16] L. E. Whitman and T. L. Witherspoon, “Using legos to interest high 
school students and imtrove k12 stem education,” presented at the 
33rd Annual Frontiers in Education, 2003. FIE 2003., 2003, vol. 2, 
pp. F3A_6–F3A_10.

[17] A. Salamon, S. Kupersmith, and D. Housten, “Inspiring Future Young
Engineers Through Robotics Outreach,” presented at the Proceedings 
of the Global Conference on Educational Robotics, 2008, pp. 1–7.

[18] E. Afari and M. S. Khine, “Robotics as an Educational Tool: Impact 
of Lego Mindstorms,” IJIET, vol. 7, no. 6, pp. 437–442, 2017.

[19] M. J. Mataric, N. Koenig, and D. Feil-Seifer, “Materials for Enabling 
Hands-On Robotics and STEM Education,” presented at the AAAI 
Spring Symposium Semantic Scientific Knowledge Integration, 2007,
pp. 1–4.

[20] T. L. Crenshaw and S. Beyer, “UPBOT: A Testbed for Cyber-Physical
Systems,” presented at the Proceedings of the International 
conference on Cyber security experimentation and test, 2010.

[21] J. Kelly, J. Binney, A. Pereira, O. Khan, and G. Sukhatme, “Just Add 
Wheels: Leveraging Commodity Laptop Hardware for Robotics and 
AI Education ,” presented at the Proceedings of AAAI Education 
Colloquium, 2008.

[22] Benjamin's  robotics,  VESC  –  Open  Source  ESC  Project,  URL:
http://vedder.se/2015/01/vesc-open-source-esc/, retrieved, January 19,
2017.

https://youtu.be/ozcBNbu7ogY

	Figure VIII
	Figure I
	Figure II
	Figure III
	III. Academic Program
	Figure V
	
	Figure VI
	Figure VII
	IV. Assessment and Discussion
	Figure IX
	V. Future Plans: Supporting Online Courses and a Common Hardware Platform
	VI. Conclusions
	Acknowledgements
	References

