Abstract
Rackoff’s small witness property for the coverability problem is the standard means to prove tight upper bounds in vector addition systems (VAS) and many extensions. We show how to derive the same bounds directly on the computations of the VAS instantiation of the generic backward coverability algorithm. This relies on a dual view of the algorithm using ideal decompositions of downwards-closed sets, which exhibits a key structural invariant in the VAS case. The same reasoning readily generalises to several VAS extensions.
Work funded in part by the Leverhulme Trust Visiting Professorship VP1-2014-041, and the EPSRC grant EP/M011801/1.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abdulla, P.A., Čerāns, K., Jonsson, B., Tsay, Y.K.: Algorithmic analysis of programs with well quasi-ordered domains. Inform. and Comput. 160(1/2), 109–127 (2000)
Blondin, M., Finkel, A., McKenzie, P.: Handling infinitely branching WSTS. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014, Part II. LNCS, vol. 8573, pp. 13–25. Springer, Heidelberg (2014)
Bonnet, R., Finkel, A., Praveen, M.: Extending the Rackoff technique to affine nets. FSTTCS 2012. LIPIcs, vol. 18, pp. 301–312. LZI (2012)
Bonnet, R.: On the cardinality of the set of initial intervals of a partially ordered set. Infinite and finite sets: to Paul Erdős on his 60th birthday, vol. 1, pp. 189–198. Coll. Math. Soc. János Bolyai, North-Holland (1975)
Bozzelli, L., Ganty, P.: Complexity analysis of the backward coverability algorithm for VASS. In: Delzanno, G., Potapov, I. (eds.) RP 2011. LNCS, vol. 6945, pp. 96–109. Springer, Heidelberg (2011)
Courtois, J.-B., Schmitz, S.: Alternating vector addition systems with states. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014, Part I. LNCS, vol. 8634, pp. 220–231. Springer, Heidelberg (2014)
Demri, S., Jurdziński, M., Lachish, O., Lazić, R.: The covering and boundedness problems for branching vector addition systems. J. Comput. Syst. Sci. 79(1), 23–38 (2013)
Figueira, D., Figueira, S., Schmitz, S., Schnoebelen, P.: Ackermannian and primitive-recursive bounds with Dickson’s Lemma. In: LICS 2011, pp. 269–278. IEEE Computer Society (2011)
Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere!. Theor. Comput. Sci. 256(1–2), 63–92 (2001)
Finkel, A., Goubault-Larrecq, J.: Forward analysis for WSTS, part I: Completions. In: Proc. STACS 2009. LIPIcs, vol. 3, pp. 433–444. LZI (2009)
Goubault-Larrecq, J., Karandikar, P., Narayan Kumar, K., Schnoebelen, P.: The ideal approach to computing closed subsets in well-quasi-orderings (in preparation) (2015)
Kochems, J., Ong, C.H.L.: Decidable models of recursive asynchronous concurrency (2015) (preprint) http://arxiv.org/abs/1410.8852
Lazić, R., Schmitz, S.: Non-elementary complexities for branching VASS, MELL, and extensions. ACM Trans. Comput. Logic 16(3:20), 1–30 (2015)
Lipton, R.: The reachability problem requires exponential space. Tech. Rep. 62, Yale University (1976)
Majumdar, R., Wang, Z.: Expand, Enlarge, and Check for Branching Vector Addition Systems. In: D’Argenio, P.R., Melgratti, H. (eds.) CONCUR 2013 – Concurrency Theory. LNCS, vol. 8052, pp. 152–166. Springer, Heidelberg (2013)
Rackoff, C.: The covering and boundedness problems for vector addition systems. Theor. Comput. Sci. 6(2), 223–231 (1978)
Schmitz, S.: Complexity hierarchies beyond Elementary (2013) (preprint) http://arxiv.org/abs/1312.5686
Schmitz, S., Schnoebelen, P.: Algorithmic aspects of WQO theory. Lecture notes (2012). http://cel.archives-ouvertes.fr/cel-00727025
Schnoebelen, P.: Revisiting Ackermann-hardness for lossy counter machines and reset Petri nets. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp. 616–628. Springer, Heidelberg (2010)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Lazić, R., Schmitz, S. (2015). The Ideal View on Rackoff’s Coverability Technique. In: Bojanczyk, M., Lasota, S., Potapov, I. (eds) Reachability Problems. RP 2015. Lecture Notes in Computer Science(), vol 9328. Springer, Cham. https://doi.org/10.1007/978-3-319-24537-9_8
Download citation
DOI: https://doi.org/10.1007/978-3-319-24537-9_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-24536-2
Online ISBN: 978-3-319-24537-9
eBook Packages: Computer ScienceComputer Science (R0)