Abstract
Freehand sketches are an intuitive tool for communication and suitable for various applications. In this paper, we present an effective approach that combines triplet networks and an attention mechanism for sketch-based image retrieval (SBIR). The study conducted in this work is based on features extracted using deep convolutional neural networks (ConvNets). In order to overcome the SBIR cross-domain challenge (i.e. searching for photographs from sketch queries), we use triplet loss to train ConvNets to compute shared embedding for both sketches and images. Our main novel contribution is to combine such triplet networks with an attention mechanism. Our approach outperform previous state-of-the-art on challenging SBIR benchmarks. We achieved a recall of 41.66% (at \(k=1\)) for the sketchy database (more than 4% improvement), a Kendal score of 42.9\(\mathcal {T}_\mathrm {b}\) on the TU-Berlin SBIR benchmark (close to 5.5\(\mathcal {T}_\mathrm {b}\) improvement) and a mean average precision (MAP) of 31% on Flickr15k (a category level SBIR benchmark).
Similar content being viewed by others
References
Eitz, M., Hildebrand, K., Boubekeur, T., et al.: Sketch-based image retrieval: benchmark and bag-of-features descriptors. IEEE Trans. Vis. Comput. Graph. 17(11), 1624–1636 (2011)
Eitz, M., Hildebrand, K., Boubekeur, T., et al.: An evaluation of descriptors for large-scale image retrieval from sketched feature lines. Comput. Graph. 34(5), 482–498 (2010)
Hu, R., Collomosse, J.: A performance evaluation of gradient field hog descriptor for sketch based image retrieval. Comput. Vis. Image Underst. 117(7), 790–806 (2013)
Collobert, R., Kavukcuoglu, K., Farabet, C.: A matlab-like environment for machine learning. In: BigLearn, NIPS Workshop (No.EPFL-CONF-192376)
Seddati, O., Dupont, S., Mahmoudi, S.: Deepsketch: deep convolutional neural networks for sketch recognition and similarity search. In: 2015 13th International Workshop on Content-Based Multimedia Indexing (CBMI), pp. 1–6. IEEE (2015)
Sangkloy, P., Burnell, N., Ham, C., et al.: The sketchy database: learning to retrieve badly drawn bunnies. ACM Trans. Graph. (TOG) 35(4), 119 (2016)
He, K., Zhang, X., Ren, S., et al.: Deep residual learning for image recognition. arXiv preprint arXiv:1512.03385 (2015)
Seddati, O., Dupont, S., Mahmoudi, S.: DeepSketch 2: deep convolutional neural networks for partial sketch recognition. In: 2016 14th International Workshop on. IEEE Content-Based Multimedia Indexing (CBMI), pp. 1–6 (2016)
Schroff, F., Kalenichenko, D., Philbin, J.: Facenet: a unified embedding for face recognition and clustering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 815–823 (2015)
Sznt, B., Pozsegovics, P., Vmossy, Z., et al.: Sketch4matchContent-based image retrieval system using sketches. In: 2011 IEEE 9th International Symposium on Applied Machine Intelligence and Informatics (SAMI), pp. 183–188. IEEE (2011)
Wang, Y., Yu, M., Jia, Q., et al.: Query by sketch: an asymmetric sketch-vs-image retrieval system. In: 2011 4th International Congress on Image and Signal Processing (CISP), pp. 1368–1372. IEEE (2011)
Jin, C., Wang, Z., Zhang, T., et al.: A novel visual-region-descriptor-based approach to sketch-based image retrieval. In: Proceedings of the 5th ACM on International Conference on Multimedia Retrieval, pp. 267–274. ACM (2015)
Seddati, O., Dupont, S., Mahmoudi, S.: DeepSketch2Image: deep convolutional neural networks for partial sketch recognition and image retrieval. In: Proceedings of the 2016 ACM on Multimedia Conference, pp. 739–741. ACM (2016)
Bozas, K., Izquierdo, E.: Large scale sketch based image retrieval using patch hashing. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Fowlkes, C., Wang, S., Choi, M.-H., Mantler, S., Schulze, J., Acevedo, D., Mueller, K., Papka, M. (eds.) ISVC 2012. LNCS, vol. 7431, pp. 210–219. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33179-4_21
Bhattacharjee, S.D., Yuan, J., Hong, W., et al.: Query adaptive instance search using object sketches. In: Proceedings of the 2016 ACM on Multimedia Conference, pp. 1306–1315. ACM (2016)
Bui, T., Ribeiro, L., Ponti, M., et al.: Generalisation and Sharing in Triplet Convnets for Sketch based Visual Search. arXiv preprint arXiv:1611.05301 (2016)
Deore, A., Gunjal, B.L.: Advanced sketch based image retrieval system using object boundary selection algorithm (2016)
Li, Q., Han, Y., Dang, J.: Sketch4Image: a novel framework for sketch-based image retrieval based on product quantization with coding residuals. Multimed. Tools Appl. 75(5), 2419–2434 (2016)
Qi, Y., Song, Y-Z., Zhang, H., et al.: Sketch-based image retrieval via Siamese convolutional neural network. In: 2016 IEEE International Conference on Image Processing (ICIP), pp. 2460–2464. IEEE (2016)
Niu, J., Ma, J., Lu, J., Liu, X., Zhu, Z.: M-SBIR: an improved sketch-based image retrieval method using visual word mapping. In: Amsaleg, L., Guðmundsson, G., Gurrin, C., Jónsson, B., Satoh, S. (eds.) MMM 2017. LNCS, vol. 10133. Springer, Cham (2017). doi:10.1007/978-3-319-51814-5_22
Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. IEEE Trans. Pattern Anal. Mach. Intell. 24(4), 509522 (2002)
Dalal, N.,Triggs, B.: Histograms of oriented gradients for human detection. In: Proceedings of the CVPR, vol. 1, pp. 886–893 (2005)
Qi, Y., Song, Y.-Z., Xiang, T., Zhang, H., Hospedales, T., Li, Y., Guo, J.: Making better use of edges via perceptual grouping. In: Proceedings of the CVPR (2015)
Bui, T., Collomosse, J.: Scalable sketch-based image retrievalusing color gradient features. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, p. 18 (2015)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Seddati, O., Dupont, S., Mahmoudi, S. (2017). Triplet Networks Feature Masking for Sketch-Based Image Retrieval. In: Karray, F., Campilho, A., Cheriet, F. (eds) Image Analysis and Recognition. ICIAR 2017. Lecture Notes in Computer Science(), vol 10317. Springer, Cham. https://doi.org/10.1007/978-3-319-59876-5_33
Download citation
DOI: https://doi.org/10.1007/978-3-319-59876-5_33
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-59875-8
Online ISBN: 978-3-319-59876-5
eBook Packages: Computer ScienceComputer Science (R0)