Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Stimulation of cyclic AMP production by vasoactive agents in cultured bovine aortic and pulmonary artery endothelial cells

  • Published:
In Vitro Aims and scope Submit manuscript

Summary

The ability of selected vasoactive agents to influence cyclic AMP levels of confluent, early-passaged bovine calf aortic and pulmonary artery endothelial cells was investigated. Among the agents tested, only the catecholamines (isoproterenol, epinephrine, nonrepinephrine) and prostaglandins (PGE1, PGE2, PGF2a) resulted consistently in increased cyclic AMP production in both cell populations. The degree of cyclic AMP stimulation obtained with other vasoactive compounds (angiotensins I and II, bradykinin, and serotonin) tended to be either very small or difficult to reproduce. Isoproterenol stimulation was blocked completely by propanolol, a β-blocking agent, but not by phentolamine, an α-blocking agent. These results reveal that bovine calf aortic and pulmonary artery endothelial cells are responsive to catecholamines and prostaglandins, and therefore presumably possess both sensitive adenylate cyclases and plasma membrane receptors for these compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ryan, J. W.; Roblero, J.; Stewart, J. M. Inactivation of bradykinin in rat lung. Adv. Exp. Med. Biol. 8: 263–272; 1970.

    CAS  Google Scholar 

  2. Dorer, F. E.; Kahn, J. R.; Lentz, K. E.; Levine, M.; Skeggs, L. T. Hydrolysis of bradykinin by angiotensin-converting enzyme. Circulation Res. 34: 824–827; 1974.

    PubMed  CAS  Google Scholar 

  3. Caldwell, P.; Seegal, B.; Hsu, K.; Das, M.; Soffer, R. Angiotensin-converting enzyme: Vascular endothelial localization. Science 191: 1050–1051; 1975.

    Article  Google Scholar 

  4. Johnson, A. R.; Erdos, E. G. Metabolism of vasoactive peptides by human endothelial cells in culture. J. Clin. Invest. 59: 684–695; 1977.

    PubMed  CAS  Google Scholar 

  5. Gimbrone, M. A., Jr.; Alexander, R. W. Angiotensin II stimulation of prostaglandin production by cultured human vascular endothelium. Science 189: 219–220; 1975.

    Article  PubMed  CAS  Google Scholar 

  6. Ryan, J. W.; Ryan, U. S. Pulmonary endothelial cells. Fed. Proc. 36: 2683–2691; 1977.

    PubMed  CAS  Google Scholar 

  7. Ryan, U. S.; Habliston, D.; Martin, L.; Ryan, J. W. Pulmonary endothelial cells and prostaglandin synthesis. Circulation 55, 56 (Suppl. III): 111–123; 1977.

    Google Scholar 

  8. Jaffee, E. A.; Mosher, D. F. Synthesis of fibronectin by cultured human endothelial cells. J. Exp. Med. 147: 1779–1791; 1978.

    Article  Google Scholar 

  9. Birdwell, C. R.; Gospodarowicz, D.; Nicolson, G. C. Identification, localization, and role of fibronectin in cultured bovine endothelial cells. Proc. Natl. Acad. Sci. USA 75: 3273–3277; 1978.

    Article  PubMed  CAS  Google Scholar 

  10. Jaffee, E. A.; Minick, C. R.; Adelman, B.; Becker, C. G.; Nachman, R. Synthesis of basement membrane collagen by cultured human endothelial cells. J. Exp. Med. 144: 209–225; 1976.

    Article  Google Scholar 

  11. Howard, B. V.; Macarak, E. J.; Gunson, D.; Kefalides, N. A. Characterization of the collagen synthesized by endothelial cells in culture. Proc. Natl. Acad. Sci. USA 73: 2361–2365; 1976.

    Article  PubMed  CAS  Google Scholar 

  12. Sage, H.; Crouch, E.; Bornstein, P. Collagen synthesis by bovine aortic endothelial cells in culture. Biochemistry 24: 5433–5442; 1979.

    Article  Google Scholar 

  13. Todd, A. S. Some topographical observations on fibrinolysis. J. Clin. Pathol. 17: 324–327; 1964.

    PubMed  CAS  Google Scholar 

  14. Loskutoff, D. Fibrinolytic components specified by vascular endothelial cells. Fed. Proc. 36: 676; 1977.

    Google Scholar 

  15. Becker, C. G.; Harpel, P. C. α 2-Macroglobulin of human vascular endothelium. J. Exp. Med. 144: 1–9; 1976.

    Article  PubMed  CAS  Google Scholar 

  16. Jaffe, E. A.; Hoyer, L. W.; Nachman, R. L. Synthesis of antihemophilic factor antigen by cultured human endothelial cells. J. Clin. Invest. 52: 2757–2764; 1973.

    PubMed  CAS  Google Scholar 

  17. Maynard, J. R.; Dreyer, B. E.; Pitlick, F. A. Tissue factor activity of cultured human endothelial and smooth muscle cells and fibroblasts. Blood 50: 387; 1977.

    PubMed  CAS  Google Scholar 

  18. Howard, B. V. Uptake of very low density lipoprotein triglyceride by vovine aortic endothelial cells in culture. J. Lipid Res. 18: 561–571; 1977.

    PubMed  CAS  Google Scholar 

  19. Vlodavsky, I.; Fielding, P. E.; Fielding, C. J.; Godpodarowicz, D. Role of contact inhibition in the regulation of receptor-mediated uptake of low density lipoprotein in cultured vascular endothelial cells. Proc. Natl. Acad. Sci. USA 75: 356–360; 1978.

    Article  PubMed  CAS  Google Scholar 

  20. Fielding, C. J.; Vlodavsky, I.; Fielding, P. E.; Gospodarowicz, D. Characteristics of chylomicron binding and lipid uptake by endothelial cells in culture. J. Biol. Chem. 254: 8861–8868; 1979.

    PubMed  CAS  Google Scholar 

  21. Herbst, T. J.; Raichle, M. E.; Ferrendilli, J. A. β-Adrenergic regulation of adenosine 3′, 5′-monophosphate concentration in brain microvessels. Science 204: 330–332; 1979.

    Article  PubMed  CAS  Google Scholar 

  22. Huang, M.; Drummond, G. I. Adenylate cyclase in cerebral microvessels: Action of guanine nucleotides, adenosine, and other agonists. Mol. Pharmacol. 16: 462–472; 1979.

    PubMed  CAS  Google Scholar 

  23. Wagner, R. C.; Kreiner, P.; Barrnett, R. J.; Bitensky, M. W. Biochemical characterization and cytochemical localization of a catecholaminesensitive adenylate cyclase in isolated capillary endothelium. Proc. Natl. Acad. Sci. USA 69: 3175–3179; 1972.

    Article  PubMed  CAS  Google Scholar 

  24. Nemecek, G. M. Properties of adenylate cyclase and cyclic nucleotide phosphodiesterase in hamster isolated capillary preparations Biochem. Biophys. Acta 628: 125–135; 1980.

    PubMed  CAS  Google Scholar 

  25. Colburn, P.; Buonassisi, V. Estrogen-binding sites in endothelial cell cultures. Science 201: 817–819; 1978.

    Article  PubMed  CAS  Google Scholar 

  26. Buonassisi, V.; Venter, J. C. Hormone and neurotransmitter receptors in an established vascular endothelial cell line. Proc. Natl. Acad. Sci. USA 73: 1612–1616; 1976.

    Article  PubMed  CAS  Google Scholar 

  27. Brooker, G.; Harper, J. F.; Terasaki, W. L.; Moylan, R. D. Radioimmunoassay of cyclic AMP and cyclic GMP. Adv. Cyclic Nucleotide Res. 10: 1–33; 1979.

    PubMed  CAS  Google Scholar 

  28. Gimbrone, M. A., Jr. Culture of vascular endothelium. Spaet, T. H. ed. Progress in hemostasis and thrombosis, Vol. 3. New York: Grune and Stratton; 1976: 1–28.

    Google Scholar 

  29. Macarak, E. J.; Howard, B. V.; Kefalides, N. A. Properties of calf endothelial cells in culture. Lab. Invest. 36: 62–67; 1977.

    PubMed  CAS  Google Scholar 

  30. Ryan, U. S.; Ryan, J. W.; Whitaker, C.; Chiu, A. Localization of angiotensin converting enzyme (kininase II). II. Immunocytochemistry and immunofluorescence. Tissue Cell 8: 125–145; 1976.

    Article  PubMed  CAS  Google Scholar 

  31. Junod, A. F.; Ody, C. Amine uptake and metabolism by endothelium of pig pulmonary artery and aorta. Am. J. Physiol. 232: C88-C94; 1977.

    PubMed  CAS  Google Scholar 

  32. Jaffee, E. A.; Nachman, R. L.; Becker, C. G.; Minick, C. R. Culture of human endothelial cells derived from umbilical veins. J. Clin. Invest. 52: 2745–2756; 1973.

    Google Scholar 

  33. Ross, R. The smooth muscle cell. II. Growth of smooth muscle in culture and formation of elastic fibers. J. Cell Biol. 50: 172–186; 1971.

    Article  PubMed  CAS  Google Scholar 

  34. Schwartz S. M. Selection and characterization of bovine aortic endothelial cells. In Vitro 14: 966–980; 1978.

    Article  PubMed  CAS  Google Scholar 

  35. Stalcup, S. A.; Lipset, J. S.; Woan, J. M.; Leuenberger, P.; Mellins, R. B. Inhibition of angiotensin converting enzyme activity in cultured endothelial cells by hypoxia. J. Clin. Invest. 63: 966–976; 1979.

    PubMed  CAS  Google Scholar 

  36. Ryan, U. S.; Clements, E.; Habliston, D.; Ryan, J. W. Isolation and culture of pulmonary artery endothelial cells. Tissue Cell 10: 535–554; 1978.

    PubMed  CAS  Google Scholar 

  37. Gospodarowicz, D.; Greenburg, G.; Bialecki, H.; Zetter, B. R. Factors involved in the modulation of all proliferation in vivo and in vitro: the role of fibroblast and epidermal growth factors in the proliferative response of mammalian cells. In Vitro 14: 85–118; 1978.

    Article  PubMed  CAS  Google Scholar 

  38. McAuslan, B. R.; Reilly, W. A variant endothelial cell line with altered growth characteristics. J. Cell Physiol. 101: 419–430; 1979.

    Article  PubMed  CAS  Google Scholar 

  39. Harper, J. F.; Brooker, G. Femtomole sensitive radioimmunoassay for cyclic AMP and cyclic GMP after 2′0 acetylation by acetic anhydride in aqueous solutions. J. Cyclic Nucleotide Res. 1: 207–218; 1975.

    PubMed  CAS  Google Scholar 

  40. Steiner, A. L.; Pagliara, A. S.; Chase, L. R.; Kipnis, D. M. Radioimmunoassay for cyclic nucleotides. II. Adenosine 3′, 5′-monophosphate and guanosine 3′, 5′-monophosphate in mammalian tissues and body fluids. J. Biol. Chem. 247: 1114–1120; 1972.

    PubMed  CAS  Google Scholar 

  41. Johnson, A. R. Human pulmonary endothelial cells in culture: Activities of cells from arteries and cells from veins. J. Clin. Invest. 65: 841–850; 1980.

    PubMed  CAS  Google Scholar 

  42. Murray, J. F. The normal lung: The basis for diagnosis and treatment of pulmonary disease. Philadelphia, PA: W. B. Saunder Co.; 1976.

    Google Scholar 

  43. Gimbrone, M. A., Jr.; Alexander, R. W. Angiotensin II stimulation of prostaglandin production in cultured human vascular endothelium. Science 189: 219–220; 1975.

    Article  PubMed  CAS  Google Scholar 

  44. Alexander, R. W. Hormone receptors in cultured vascular cells. Bevan, J. A.; Maxwell, R. A.; Godfraind, T.; Vanhoutte, P. M. eds. Vascular neuroeffector mechanisms. New York: Raven Press; 1980: 15–16.

    Google Scholar 

  45. Schafer, A. I.; Gimbrone, M. A., Jr.; Handin, R. I. Endothelial cell adenylate cyclase: Activation by catecholamines and prostaglandin I2. Biochem. & Biophys. Res. Commun. 96: 1640–1647; 1980.

    Article  CAS  Google Scholar 

  46. Hopkins, N. K.; Gorman, R. R. Regulation of endothelial cell cyclic nucleotide metabolism by prostacyclin. J. Clin. Invest. 67: 540–546; 1981.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by a Young Investigator Grant HL-21189 from the National Institutes of Health, United States Public Health Service.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Makarski, J.S. Stimulation of cyclic AMP production by vasoactive agents in cultured bovine aortic and pulmonary artery endothelial cells. In Vitro 17, 450–458 (1981). https://doi.org/10.1007/BF02626746

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02626746

Key words