Abstract
The version 3.0 of the Delphes fast-simulation is presented. The goal of Delphes is to allow the simulation of a multipurpose detector for phenomenological studies. The simulation includes a track propagation system embedded in a magnetic field, electromagnetic and hadron calorimeters, and a muon identification system. Physics objects that can be used for data analysis are then reconstructed from the simulated detector response. These include tracks and calorimeter deposits and high level objects such as isolated electrons, jets, taus, and missing energy. The new modular approach allows for greater flexibility in the design of the simulation and reconstruction sequence. New features such as the particle-flow reconstruction approach, crucial in the first years of the LHC, and pile-up simulation and mitigation, which is needed for the simulation of the LHC detectors in the near future, have also been implemented. The Delphes framework is not meant to be used for advanced detector studies, for which more accurate tools are needed. Although some aspects of Delphes are hadron collider specific, it is flexible enough to be adapted to the needs of electron-positron collider experiments.
Article PDF
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Avoid common mistakes on your manuscript.
References
J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Dubois et al., Geant4 developments and applications, IEEE Trans. Nucl. Sci. 53 (2006) 270 [INSPIRE].
ATLAS collaboration, The ATLAS Fast Track Simulation Project, ATL-SOFT-PROC-2011-038 (2011).
ATLAS collaboration, W. Lukas, Fast Simulation for ATLAS: Atlfast-II and ISF, J. Phys. Conf. Ser. 396 (2012) 022031 [INSPIRE].
R. Rahmat, R. Kroeger and A. Giammanco, The fast simulation of the CMS experiment, J. Phys. Conf. Ser. 396 (2012) 062016 [INSPIRE].
CMS collaboration, S. Abdullin, P. Azzi, F. Beaudette, P. Janot and A. Perrotta, The fast simulation of the CMS detector at LHC, J. Phys. Conf. Ser. 331 (2011) 032049 [INSPIRE].
CMS collaboration, Comparison of the Fast Simulation of CMS with the first LHC data, CMS-DP-2010-039 (2010).
S. Ovyn, X. Rouby and V. Lemaitre, DELPHES, a framework for fast simulation of a generic collider experiment, arXiv:0903.2225 [INSPIRE].
ALEPH collaboration, D. Buskulic et al., Performance of the ALEPH detector at LEP, Nucl. Instrum. Meth. A 360 (1995) 481 [INSPIRE].
CMS collaboration, Particle-Flow Event Reconstruction in CMS and Performance for Jets, Taus and MET, CMS-PAS-PFT-09-001.
Particle Data Group collaboration, J. Beringer et al., Review of Particle Physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].
M. Cacciari, G.P. Salam and G. Soyez, FastJet User Manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].
M. Cacciari, G.P. Salam and G. Soyez, The Catchment Area of Jets, JHEP 04 (2008) 005 [arXiv:0802.1188] [INSPIRE].
M. Cacciari and G.P. Salam, Pileup subtraction using jet areas, Phys. Lett. B 659 (2008) 119 [arXiv:0707.1378] [INSPIRE].
CMS collaboration, CMS Physics: Technical Design Report Volume 1: Detector Performance and Software, CERN-LHCC-2006-001.
ATLAS collaboration, Expected Performance of the ATLAS Experiment - Detector, Trigger and Physics, arXiv:0901.0512 [INSPIRE].
J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5 : Going Beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].
T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].
S. Catani, F. Krauss, R. Kuhn and B. Webber, QCD matrix elements + parton showers, JHEP 11 (2001) 063 [hep-ph/0109231] [INSPIRE].
CMS collaboration, Performance of CMS muon reconstruction in pp collision events at \( \sqrt{s} \) = 7 TeV,2012JINST 7P10002[arXiv:1206.4071] [INSPIRE].
ATLAS collaboration, Expected Performance of the ATLAS Experiment - Detector, Trigger and Physics, arXiv:0901.0512 [INSPIRE].
CMS collaboration, Electron performance with 19.6 fb −1 of data collected at \( \sqrt{s} \) = 8 TeV with the CMS detector., CMS-DP-2013-003 (2013).
M. Cacciari, G.P. Salam and G. Soyez, The Anti-k(t) jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].
ATLAS collaboration, Jet energy resolution in proton-proton collisions at \( \sqrt{s} \) = 7 TeV recorded in 2010 with the ATLAS detector, Eur. Phys. J. C 73 (2013) 2306 [arXiv:1210.6210] [INSPIRE].
ATLAS collaboration, Performance of Missing Transverse Momentum Reconstruction in ATLAS with 2011 Proton-Proton Collisions at sqrts = 7 TeV, ATLAS-CONF-2012-101 (2012).
ATLAS collaboration, Performance of the ATLAS Inner Detector Track and Vertex Reconstruction in the High Pile-Up LHC Environment, ATLAS-CONF-2012-042 (2012).
CMS collaboration, Measurement of the top-quark mass in \( t\overline{t} \) events with lepton+jets final states in pp collisions at \( \sqrt{s} \) = 7 TeV, JHEP 12 (2012) 105 [arXiv:1209.2319] [INSPIRE].
https://cp3.irmp.ucl.ac.be/projects/delphes/wiki/WorkBook/DelphesAnalysis.
CMS collaboration, b-Jet Identification in the CMS Experiment, CMS-PAS-BTV-11-004.
T. Sjöstrand, S. Mrenna and P.Z. Skands, A Brief Introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].
I. Antcheva, M. Ballintijn, B. Bellenot, M. Biskup, R. Brun et al., ROOT: A C++ framework for petabyte data storage, statistical analysis and visualization, Comput. Phys. Commun. 180 (2009) 2499 [INSPIRE].
S. Chekanov, Next generation input-output data format for HEP using Google’s protocol buffers, arXiv:1306.6675 [INSPIRE].
M. Dobbs and J.B. Hansen, The HepMC C++ Monte Carlo event record for High Energy Physics, Comput. Phys. Commun. 134 (2001) 41 [INSPIRE].
L. Garren, P. Lebrun, StdHep User Manual, http://cepa.fnal.gov/psm/stdhep/.
J. Alwall, A. Ballestrero, P. Bartalini, S. Belov, E. Boos et al., A Standard format for Les Houches event files, Comput. Phys. Commun. 176 (2007) 300 [hep-ph/0609017] [INSPIRE].
A. Giammanco, The CMS Fast Simulation, J. Phys.: Conf. Ser., submitted.
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
Author information
Authors and Affiliations
Consortia
Corresponding author
Additional information
ArXiv ePrint: 1307.6346
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
The DELPHES 3 collaboration., de Favereau, J., Delaere, C. et al. DELPHES 3: a modular framework for fast simulation of a generic collider experiment. J. High Energ. Phys. 2014, 57 (2014). https://doi.org/10.1007/JHEP02(2014)057
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP02(2014)057