Abstract
The tensor renormalization group method is a promising approach to lattice field theories, which is free from the sign problem unlike standard Monte Carlo methods. One of the remaining issues is the application to gauge theories, which is so far limited to U(1) and SU(2) gauge groups. In the case of higher rank, it becomes highly nontrivial to restrict the number of representations in the character expansion to be used in constructing the fundamental tensor. We propose a practical strategy to accomplish this and demonstrate it in 2D U(N) and SU(N) gauge theories, which are exactly solvable. Using this strategy, we obtain the singular-value spectrum of the fundamental tensor, which turns out to have a definite profile in the large-N limit. For the U(N) case, in particular, we show that the large-N behavior of the singular-value spectrum changes qualitatively at the critical coupling of the Gross-Witten-Wadia phase transition. As an interesting consequence, we find a new type of volume independence in the large-N limit of the 2D U(N) gauge theory with the θ term in the strong coupling phase, which goes beyond the Eguchi-Kawai reduction.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
M. Levin and C.P. Nave, Tensor renormalization group approach to 2D classical lattice models, Phys. Rev. Lett. 99 (2007) 120601 [cond-mat/0611687] [INSPIRE].
G. Evenbly and G. Vidal, Tensor network renormalization, Phys. Rev. Lett. 115 (2015) 180405 [arXiv:1412.0732].
J.F. Yu et al., Tensor Renormalization Group Study of Classical XY Model on the Square Lattice, Phys. Rev. E 89 (2014) 013308 [arXiv:1309.4963] [INSPIRE].
Z.Y. Xie, J. Chen, M.P. Qin, J.W. Zhu, L.P. Yang and T. Xiang, Coarse-graining renormalization by higher-order singular value decomposition, Phys. Rev. B 86 (2012) 045139 [arXiv:1201.1144].
S. Wang, Z.-Y. Xie, J. Chen, B. Normand and T. Xiang, Phase transitions of ferromagnetic potts models on the simple cubic lattice, Chin. Phys. Lett. 31 (2014) 070503 [arXiv:1405.1179].
Y. Shimizu, Tensor renormalization group approach to a lattice boson model, Mod. Phys. Lett. A 27 (2012) 1250035 [INSPIRE].
D. Kadoh, Y. Kuramashi, Y. Nakamura, R. Sakai, S. Takeda and Y. Yoshimura, Tensor network analysis of critical coupling in two dimensional ϕ4 theory, JHEP 05 (2019) 184 [arXiv:1811.12376] [INSPIRE].
Y. Shimizu and Y. Kuramashi, Grassmann tensor renormalization group approach to one-flavor lattice Schwinger model, Phys. Rev. D 90 (2014) 014508 [arXiv:1403.0642] [INSPIRE].
Y. Shimizu and Y. Kuramashi, Critical behavior of the lattice Schwinger model with a topological term at θ = π using the Grassmann tensor renormalization group, Phys. Rev. D 90 (2014) 074503 [arXiv:1408.0897] [INSPIRE].
S. Takeda and Y. Yoshimura, Grassmann tensor renormalization group for the one-flavor lattice Gross-Neveu model with finite chemical potential, PTEP 2015 (2015) 043B01 [arXiv:1412.7855] [INSPIRE].
R. Sakai, S. Takeda and Y. Yoshimura, Higher order tensor renormalization group for relativistic fermion systems, PTEP 2017 (2017) 063B07 [arXiv:1705.07764] [INSPIRE].
Y. Shimizu and Y. Kuramashi, Berezinskii-Kosterlitz-Thouless transition in lattice Schwinger model with one flavor of Wilson fermion, Phys. Rev. D 97 (2018) 034502 [arXiv:1712.07808] [INSPIRE].
D. Kadoh, Y. Kuramashi, Y. Nakamura, R. Sakai, S. Takeda and Y. Yoshimura, Tensor network formulation for two-dimensional lattice \( \mathcal{N} \) = 1 Wess-Zumino model, JHEP 03 (2018) 141 [arXiv:1801.04183] [INSPIRE].
Y. Yoshimura, Y. Kuramashi, Y. Nakamura, S. Takeda and R. Sakai, Calculation of fermionic Green functions with Grassmann higher-order tensor renormalization group, Phys. Rev. D 97 (2018) 054511 [arXiv:1711.08121] [INSPIRE].
N. Butt, S. Catterall, Y. Meurice, R. Sakai and J. Unmuth-Yockey, Tensor network formulation of the massless Schwinger model with staggered fermions, Phys. Rev. D 101 (2020) 094509 [arXiv:1911.01285] [INSPIRE].
S. Akiyama and D. Kadoh, More about the Grassmann tensor renormalization group, JHEP 10 (2021) 188 [arXiv:2005.07570] [INSPIRE].
S. Akiyama, Y. Kuramashi, T. Yamashita and Y. Yoshimura, Restoration of chiral symmetry in cold and dense Nambu-Jona-Lasinio model with tensor renormalization group, JHEP 01 (2021) 121 [arXiv:2009.11583] [INSPIRE].
S. Akiyama and Y. Kuramashi, Tensor renormalization group approach to (1 + 1)-dimensional Hubbard model, Phys. Rev. D 104 (2021) 014504 [arXiv:2105.00372] [INSPIRE].
D. Adachi, T. Okubo and S. Todo, Anisotropic Tensor Renormalization Group, Phys. Rev. B 102 (2020) 054432 [arXiv:1906.02007] [INSPIRE].
D. Kadoh and K. Nakayama, Renormalization group on a triad network, arXiv:1912.02414 [INSPIRE].
S. Akiyama, Y. Kuramashi, T. Yamashita and Y. Yoshimura, Phase transition of four-dimensional Ising model with higher-order tensor renormalization group, Phys. Rev. D 100 (2019) 054510 [arXiv:1906.06060] [INSPIRE].
S. Akiyama, D. Kadoh, Y. Kuramashi, T. Yamashita and Y. Yoshimura, Tensor renormalization group approach to four-dimensional complex ϕ4 theory at finite density, JHEP 09 (2020) 177 [arXiv:2005.04645] [INSPIRE].
S. Akiyama, Y. Kuramashi and Y. Yoshimura, Phase transition of four-dimensional lattice ϕ4 theory with tensor renormalization group, Phys. Rev. D 104 (2021) 034507 [arXiv:2101.06953] [INSPIRE].
Y. Kuramashi and Y. Yoshimura, Tensor renormalization group study of two-dimensional U(1) lattice gauge theory with a θ term, JHEP 04 (2020) 089 [arXiv:1911.06480] [INSPIRE].
A. Bazavov, Y. Meurice, S.-W. Tsai, J. Unmuth-Yockey and J. Zhang, Gauge-invariant implementation of the Abelian Higgs model on optical lattices, Phys. Rev. D 92 (2015) 076003 [arXiv:1503.08354] [INSPIRE].
J. Unmuth-Yockey, J. Zhang, A. Bazavov, Y. Meurice and S.-W. Tsai, Universal features of the Abelian Polyakov loop in 1 + 1 dimensions, Phys. Rev. D 98 (2018) 094511 [arXiv:1807.09186] [INSPIRE].
A. Bazavov, S. Catterall, R.G. Jha and J. Unmuth-Yockey, Tensor renormalization group study of the non-Abelian Higgs model in two dimensions, Phys. Rev. D 99 (2019) 114507 [arXiv:1901.11443] [INSPIRE].
D.J. Gross and E. Witten, Possible Third Order Phase Transition in the Large N Lattice Gauge Theory, Phys. Rev. D 21 (1980) 446 [INSPIRE].
S.R. Wadia, N = ∞ Phase Transition in a Class of Exactly Soluble Model Lattice Gauge Theories, Phys. Lett. B 93 (1980) 403 [INSPIRE].
B.E. Rusakov, Loop averages and partition functions in U(N) gauge theory on two-dimensional manifolds, Mod. Phys. Lett. A 05 (1990) 693.
T. Eguchi and H. Kawai, Reduction of Dynamical Degrees of Freedom in the Large N Gauge Theory, Phys. Rev. Lett. 48 (1982) 1063 [INSPIRE].
M. Fukuma, D. Kadoh and N. Matsumoto, Tensor network approach to 2D Yang-Mills theories, arXiv:2107.14149 [INSPIRE].
I. Bars and F. Green, Complete Integration of U(N) Lattice Gauge Theory in a Large N Limit, Phys. Rev. D 20 (1979) 3311 [INSPIRE].
I. Bars, U(N) Integral for Generating Functional in Lattice Gauge Theory, J. Math. Phys. 21 (1980) 2678 [INSPIRE].
S. Samuel, U(N) Integrals, 1/N, and the Dewit-’t Hooft Anomalies, J. Math. Phys. 21 (1980) 2695 [INSPIRE].
J.-M. Drouffe and J.-B. Zuber, Strong Coupling and Mean Field Methods in Lattice Gauge Theories, Phys. Rept. 102 (1983) 1 [INSPIRE].
G. Bhanot, U.M. Heller and H. Neuberger, The Quenched Eguchi-Kawai Model, Phys. Lett. B 113 (1982) 47 [INSPIRE].
R. Narayanan and H. Neuberger, Large N reduction in continuum, Phys. Rev. Lett. 91 (2003) 081601 [hep-lat/0303023] [INSPIRE].
J. Kiskis, R. Narayanan and H. Neuberger, Does the crossover from perturbative to nonperturbative physics in QCD become a phase transition at infinite N?, Phys. Lett. B 574 (2003) 65 [hep-lat/0308033] [INSPIRE].
B. Fornberg, Generation of finite difference formulas on arbitrarily spaced grids, Math. Comput. 51 (1988) 699.
C. Bonati and P. Rossi, Topological susceptibility of two-dimensional U(N) gauge theories, Phys. Rev. D 99 (2019) 054503 [arXiv:1901.09830] [INSPIRE].
C. Bonati and P. Rossi, Topological effects in continuum two-dimensional U(N) gauge theories, Phys. Rev. D 100 (2019) 054502 [arXiv:1908.07476] [INSPIRE].
M. Hirasawa, A. Matsumoto, J. Nishimura and A. Yosprakob, Complex Langevin analysis of 2D U(1) gauge theory on a torus with a θ term, JHEP 09 (2020) 023 [arXiv:2004.13982] [INSPIRE].
C. Gattringer and O. Orasch, Density of states approach for lattice gauge theory with a θ-term, Nucl. Phys. B 957 (2020) 115097 [arXiv:2004.03837] [INSPIRE].
J.M. Pawlowski, M. Scherzer, C. Schmidt, F.P.G. Ziegler and F. Ziesché, Simulating Yang-Mills theories with a complex coupling, Phys. Rev. D 103 (2021) 094505 [arXiv:2101.03938] [INSPIRE].
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2110.05800
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Hirasawa, M., Matsumoto, A., Nishimura, J. et al. Tensor renormalization group and the volume independence in 2D U(N) and SU(N) gauge theories. J. High Energ. Phys. 2021, 11 (2021). https://doi.org/10.1007/JHEP12(2021)011
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP12(2021)011