Zusammenfassung
Hintergrund
Zunehmendes Interesse gilt der Biokompatibilität kardiovaskulärer Implantate. Ziel dieser Arbeit ist die Vorstellung von Methoden und Ergebnissen der pathologischen Aufarbeitung von explantierten Implantaten.
Methoden
Die Standardeinbettung von Implantaten zur histologischen Beurteilung in Paraffin ist nur eingeschränkt geeignet, da metallische Anteile vor der Einbettung unter Beschädigung der Grenzfläche Gewebe/Implantat entfernt werden müssen. Alternativ kommt eine Einbettung in Kunstharze in Frage, wobei histologische Schnitte mittels Schneiden und Schleifen angefertigt werden. Dies ermöglicht die Untersuchung lokaler entzündlicher Vorgänge an der Oberfläche des Implantates. Zusätzlich interessieren bei der Aufarbeitung der Implantate die Reaktion und Struktur des umgebenden Gewebes sowie der benachbarten Grenzfläche zum Blutstrom. Neben der Histologie kommen immunhistochemische Verfahren sowie die Elektronenmikroskopie zum Einsatz. Unter Verwendung der genannten Methoden demonstrieren wir Befunde von Implantatpräparaten aus Tierversuchen und entsprechende Ergebnisse von Implantaten, die bei Patienten im Rahmen von Korrekturoperationen bei angeborenen Herzfehlern entfernt wurden.
Ergebnisse
Nach der Implantation kommt es unabhängig vom Implantattyp zu einer raschen Re-Endothelialisierung der Gefäßoberfläche. In das nach Okkluder-Implantation initial gebildete Thrombusgewebe sprossen fibromuskuläre Zellen ein, wie sie auch nach Stentimplantation in der Intimahyperplasie gesehen werden. Entzündliche Reaktionen sind in Qualität und zeitlichem Verlauf materialabhängig.
Zusammenfassung
Mit einer vollständigen pathologischen Aufarbeitung kardiovaskulärer Implantate nach Explantation können Informationen über Einwachsen, Endothelialisierung und Entzündungsreaktionen gewonnen werden.
Summary
Background
Interest in information on biocompatibility of implants is increasing. The purpose of this paper is to discuss methods and results of pathological biocompatibility screening of explanted cardiovascular implants.
Methods
Use of standard histology after embedding in paraffin is limited since metallic implants have to be removed during workup with disruption of the specimen. Alternatively, tissue blocks containing an implant can be embedded in methylmethacrylate or hydroxyethylmethacrylate and processed by sectioning with a diamond cutter and grinding, thus leaving the implant in situ and saving the tissue/implant interface for detection of local inflammatory reactions. Another important aspect of evaluation is the progress of thrombus organisation after initial fibrin clotting on the metal surface or in the inner part of occlusion devices. New methacrylate resins and embedding techniques allow for specific immunohisto-chemical staining of the specimen thus enabling characterisation of tissues surrounding the implant. Information on endothelialisation of the vascular surface of the implant can be obtained by means of immunohistochemistry or by scanning electron microscopy.
Results
Illustrating the use of these technologies, we demonstrate findings in tissue specimens from animal studies with different types of devices (i.e. stents, occlusion devices). We present corresponding findings in human specimens with implants that were removed during corrective surgery for congenital heart defects. Early endothelialisation of the vascular surface was seen after implantation in all types of devices. Cells within occlusion devices could be characterised histologically and immunohistochemically as fibromuscular cells as seen in intimal hyperplasia after stent implantation. Inflammatory implant-host reactions ranged from mild to moderate (medical grade stainless steel, nitinol) to severe (polytetrafluoroethylene [PTFE]).
Conclusions
With an optimal work-up of cardiovascular implants, ingrowth and endothelialisation as well as inflammatory reactions in the surrounding tissue can be assessed. This information allows evaluation of individual tissue reactions to the implant and may serve as valuable basis for optimisation of biocompatibility by implant modification.
References
Anderson JM (1988) Inflammatory response to implants. ASAIO Trans 34:101–107
Asahara T, Bauters C, Pastore C, Kearney M, Rossow S, Bunting S, Ferrara N, Symes JF, Isner JM (1995) Local delivery of vascular endothelial growth factor accelerates reendothelialization and attenuates intimal hyperplasia in balloon-injured rat carotid artery. Circulation 91:2793–2801
Barth KH, Strandberg JD, Kaufman SL, White RI Jr (1978) Chronic vascular reactions to steel coil occlusion devices. AJR Am J Roentgenol 131:455–458
Bellon JM, Bujan J, Contreras LA, Hernando A, Jurado F (1996) Similarity in behavior of polytetrafluoroethylene (ePTFE) prostheses implanted into different interfaces. J Biomed Mater Res 31:1–9
Crook MF, Akyurek LM (2003) Gene transfer strategies to inhibit neointima formation. Trends Cardiovasc Med 13:102–106
Farb A, Sangiorgi G, Carter AJ, Walley VM, Edwards WD, Schwartz RS, Virmani R (1999) Pathology of acute and chronic coronary stenting in humans. Circulation 99:44–52
Fingerle J, Au YP, Clowes AW, Reidy MA (1990) Intimal lesion formation in rat carotid arteries after endothelial denudation in absence of medial injury. Arteriosclerosis 10:1082–1087
French MH, Faxon DP (2002) Current anticoagulation options in percutaneous intervention: designing patient-specific strategies. Rev Cardiovasc Med 3:176–182
Harnek J, Zoucas E, Carlemalm E, Cwikiel W (1999) Differences in endothelial injury after balloon angioplasty, insertion of balloon-expanded stents or release of self-expanding stents: An electron microscopic experimental study. Cardiovasc Intervent Radiol 22:56–61
Hart CE, Kraiss LW, Vergel S, Gilbertson D, Kenagy R, Kirkman T, Crandall DL, Tickle S, Finney H, Yarranton G, Clowes AW (1999) PDGFbeta receptor blockade inhibits intimal hyperplasia in the baboon. Circulation 99:564–569
Haynes DR, Crotti TN, Haywood MR (2000) Corrosion of and changes in biological effects of cobalt chrome alloy and 316L stainless steel prosthetic particles with age. J Biomed Mater Res 49:167–175
Hoffmann R, Mintz GS (2000) Coronary in-stent restenosis—predictors, treatment and prevention. Eur Heart J 21:1739–1749
Jux C, Bertram H, Wohlsein P, Bruegmann M, Fink C, Wueboldt P, Paul T, Hausdorf G (2001) Experimental preseeding of the STARFlex atrial septal occluder device with autologous cells. J Interv Cardiol 14:309–312
Jux C, Bertram H, Wohlsein P, Brugmann M, Wuboldt P, Fink C, Paul T, Hausdorf G (2002) Experimental ASD closure using autologous cell-seeded interventional closure devices. Cardiovasc Res 53:181–191
Kong X, Grabitz RG, van Oeveren W, Klee D, van Kooten TG, Freudenthal F, Qing M, von Bernuth G, Seghaye MC (2002) Effect of biologically active coating on biocompatibility of Nitinol devices designed for the closure of intra-atrial communications. Biomaterials 23:1775–1783
Kretschmar O, Dahnert I, Berger F, Ewert P, Lange PE (2000) [Interventional treatment of congenital heart defects in infants with a body weight up to 2500 grams]. Z Kardiol 89:1126–1132
Krumsdorf U, Ostermayer S, Billinger K, Trepels T, Zadan E, Horvath K, Sievert H (2004) Incidence and clinical course of thrombus formation on atrial septal defect and patient foramen ovale closure devices in 1000 consecutive patients. J Am Coll Cardiol 43:302–309
Kumar V (1999) Thrombosis. 6th ed. Saunders Company, Philadelphia, pp 124–138
Kumazawa R, Watari F, Takashi N, Tanimura Y, Uo M, Totsuka Y (2002) Effects of Ti ions and particles on neutrophil function and morphology. Biomaterials 23:3757–3764
Laube HR, Duwe J, Rutsch W, Konertz W (2000) Clinical experience with autologous endothelial cellseeded polytetrafluoroethylene coronary artery bypass grafts. J Thorac Cardiovasc Surg 120:134–141
Lee JS, Adrie C, Jacob HJ, Roberts JD, Jr., Zapol WM, Bloch KD (1996) Chronic inhalation of nitric oxide inhibits neointimal formation after balloon-induced arterial injury. Circ Res 78:337–342
Michel-Behnke I, Akinturk H, Schranz D (1999) [Reopening of a persistent left superior vena cava in the early postoperative period following bidirectional cavopulmonary anastomosis–treatment by coil embolization]. Z Kardiol 88:555–558
Morice MC, Serruys PW, Sousa JE, Fajadet J, Ban HE, Perin M, Colombo A, Schuler G, Barragan P, Guagliumi G, Molnar F, Falotico R (2002) A randomized comparison of a sirolimuseluting stent with a standard stent for coronary revascularization. N Engl J Med 346:1773–1780
Newby AC, Zaltsman AB (2000) Molecular mechanisms in intimal hyperplasia. J Pathol 190:300–309
Pauperio HM, Redington AN, Rigby ML (1996) Closing the patent ductus arterial duct-plugs, umbrellas and coils. Cardiol Young 6:252–254
Pearson JD (1999) Endothelial cell function and thrombosis. Baillieres Best Pract Res Clin Haematol 12:329–341
Peuster M, Reckers J, Fink C (2002) [Interventional therapy of large venovenous collaterals after univentricular palliation for congenital heart disease using the Starflex- and Amplatzer-PDA occluder]. Z Kardiol 91:853–857
Radomski MW, Palmer RM, Moncada S (1987) The anti-aggregating properties of vascular endothelium: interactions between prostacyclin and nitric oxide. Br J Pharmacol 92:639–646
Rafii S, Meeus S, Dias S, Hattori K, Heissig B, Shmelkov S, Rafii D, Lyden D (2002) Contribution of marrow-derived progenitors to vascular and cardiac regeneration. Semin Cell Dev Biol 13:61–67
Rajagopal V, Rockson SG (2003) Coronary restenosis: a review of mechanisms and management. Am J Med 115:547–553
Reul J, Weis J, Spetzger U, Konert T, Fricke C, Thron A (1997) Long-term angiographic and histopathologic findings in experimental aneurysms of the carotid bifurcation embolized with platinum and tungsten coils. Am J Neuroradiol 18:35–42
Ries MW, Kampmann C, Rupprecht HJ, Hintereder G, Hafner G, Meyer J (2003) Nickel release after implantation of the Amplatzer occluder. Am Heart J 145:737–741
Schwartz RS, Henry TD (2002) Pathophysiology of coronary artery restenosis. Rev Cardiovasc Med 3 (Suppl 5):S4–S9
Shi Q, Rafii S, Wu MH, Wijelath ES, Yu C, Ishida A, Fujita Y, Kothari S, Mohle R, Sauvage LR, Moore MA, Storb RF, Hammond WP (1998) Evidence for circulating bone marrow-derived endothelial cells. Blood 92:362–367
Sigler M, Handt S, Seghaye MC, von Bernuth G, Grabitz, RG (2000) Evaluation of in vivo biocompatibility of different devices for interventional closure of the patent ductus arteriosus in an animal model. Heart 83:570–573
van der Giessen WJ, van Beusekom HM, Eijgelshoven MH, Morel MA, Serruys PW (1998) Heparin-coating of coronary stents. Semin Interv Cardiol 3:173–176
van Kampen CL, Gibbons DF (1979) Effect of implant surface chemistry upon arterial thrombosis. J Biomed Mater Res 13:517–541
VanBelle E, Chen DH, Tio FO, Maillard L, Passeri J, Isner JM (1996) Accelerated endothelialization improves stent biocompatibility: Feasibility and effects of VEGF-gene transfer. Circulation 94:1517
Wataha JC, O’Dell NL, Singh BB, Ghazi M, Whitford GM, Lockwood PE (2001) Relating nickel-induced tissue inflammation to nickel release in vivo. J Biomed Mater Res 58:537–544
Wilcox JN, Waksman R, King SB, Scott NA (1996) The role of the adventitia in the arterial response to angioplasty: the effect of intravascular radiation. Int J Radiat Oncol Biol Phys 36:789–796
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Sigler, M., Paul, T. & Grabitz, R.G. Biocompatibility screening in cardiovascular implants. ZS Kardiologie 94, 383–391 (2005). https://doi.org/10.1007/s00392-005-0231-4
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/s00392-005-0231-4