Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Stabilizer Rényi entropy on qudits

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Magic is an important part of quantum resource theory. The quantitative study of magic is a difficult but important task, which means a suitable magic measure is needed. We generalize the magic measure introduced by Leone et al. (Phys Rev Lett 128:050402, 2022) and extend the Pauli operators acting on qubits to the discrete Heisenberg–Weyl operators (i.e., the generalized Pauli operators) acting on qudits. We show that it is a suitable magic measure. We use this measure to calculate some related qutrit magic states and compare it with other measures. Subsequently, a tighter upper bound of this measure is obtained by using the group covariant symmetric informationally complete (SIC) states. Moreover, we extend this measure to mixed states and calculate the corresponding mixed magic states. Then, it is shown that there are different fundamental limits for the distillation of four qutrit magic states by using the quantum hypothesis testing at the end of this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Leone, L., Oliviero, S.F.E., Hamma, A.: Stabilizer Rényi entropy. Phys. Rev. Lett. 128, 050402 (2022)

    ADS  Google Scholar 

  2. Nielsen, M.A., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University, Cambridge (2002)

    Google Scholar 

  3. Loss, D., DiVincenzo, D.P.: Quantum computation with quantum dots. Phys. Rev. A 57, 120 (1998)

    ADS  Google Scholar 

  4. Bravyi, S., Kitaev, A.: Universal quantum computation with ideal Clifford gates and noisy ancillas. Phys. Rev. A 71, 022316 (2005)

    ADS  MathSciNet  Google Scholar 

  5. Bravyi, S., Gosset, D.: Improved classical simulation of quantum circuits dominated by Clifford gates. Phys. Rev. Lett. 116, 250501 (2016)

    ADS  Google Scholar 

  6. Zhu, H., Kueng, R., Grassl, M., Gross, D.: The Clifford group fails gracefully to be a unitary 4-design. arXiv:1609.08172

  7. Poyatos, J.F., Cirac, J.I., Zoller, P.: Complete characterization of a quantum process: the two-bit quantum gate. Phys. Rev. Lett. 78, 390 (1997)

    ADS  Google Scholar 

  8. Gottesman, D.: The Heisenberg Representation of Quantum Computers. arXiv:quant-ph/9807006

  9. Bartlett, S.D., Sanders, B.C., Braunstein, S.L., Nemoto, K.: Efficient classical simulation of continuous variable quantum information processes. Phys. Rev. Lett. 88, 097904 (2002)

    ADS  Google Scholar 

  10. Aaronson, S., Gottesman, D.: Improved simulation of stabilizer circuits. Phys. Rev. A 70, 052328 (2004)

    ADS  Google Scholar 

  11. Howard, M., Campbell, E.: Application of a resource theory for magic states to fault-tolerant quantum computing. Phys. Rev. Lett. 118, 090501 (2017)

    ADS  Google Scholar 

  12. Coecke, B., Fritz, T., Spekkens, R.W.: A mathematical theory of resources. Inf. Comput. 250, 59 (2016)

    MathSciNet  Google Scholar 

  13. Chitambar, E., Gour, G.: Quantum resource theories. Rev. Mod. Phys. 91, 025001 (2019)

    ADS  MathSciNet  Google Scholar 

  14. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

    ADS  MathSciNet  Google Scholar 

  15. Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014)

    ADS  Google Scholar 

  16. Winter, A., Yang, D.: Operational resource theory of coherence. Phys. Rev. Lett. 116, 120404 (2016)

    ADS  Google Scholar 

  17. Ren, R., Li, P., Ye, M., Li, Y.: Tighter sum uncertainty relations based on metric-adjusted skew information. Phys. Rev. A 104, 052414 (2021)

    ADS  MathSciNet  Google Scholar 

  18. Vinjanampathy, S., Anders, J.: Quantum thermodynamics. Cont. Phys. 57, 4 (2016)

    Google Scholar 

  19. Kosloff, R.: Quantum thermodynamics: a dynamical viewpoint. Entropy 15, 6 (2013)

    MathSciNet  Google Scholar 

  20. Gour, G., Spekkens, R.W.: The resource theory of quantum reference frames: manipulations and monotones. New J. Phys. 10, 033023 (2008)

    ADS  Google Scholar 

  21. Gour, G., Marvian, I., Spekkens, R.W.: Measuring the quality of a quantum reference frame: the relative entropy of frameness. Phys. Rev. A 80, 012307 (2009)

    ADS  Google Scholar 

  22. Ahmadi, M., Jennings, D., Rudolph, T.: The Wigner-Araki-Yanase theorem and the quantum resource theory of asymmetry. New J. Phys. 15, 013057 (2013)

    ADS  MathSciNet  Google Scholar 

  23. Grudka, A., Horodecki, K., Horodecki, M., Horodecki, P., Horodecki, R., Joshi, P., Klobus, W., Wójcik, A.: Quantifying contextuality. Phys. Rev. Lett. 112, 120401 (2014)

    ADS  Google Scholar 

  24. Amaral, B.: Resource theory of contextuality. Philos. Trans. R. Soc. A 377, 20190010 (2019)

    ADS  MathSciNet  Google Scholar 

  25. Bennett, C.H., Di Vincenzo, D.P., Fuchs, C.A., Mor, T., Rains, E., Shor, P.W., Smolin, J.A., Wootters, W.K.: Quantum nonlocality without entanglement. Phys. Rev. A 59, 1070 (1999)

    ADS  MathSciNet  Google Scholar 

  26. Liu, Y., Ren, R., Li, P., Ye, M., Li, Y.: Quantum violation of average causal effects in multiple measurement settings. Phys. Rev. A 106, 032436 (2022)

    ADS  MathSciNet  Google Scholar 

  27. Veitch, V., Ferrie, C., Gross, D., Emerson, J.: Negative quasi-probability as a resource for quantum computation. New J. Phys. 14, 113011 (2012)

    ADS  Google Scholar 

  28. Veitch, V., Mousavian, S.H., Gottesman, D., Emerson, J.: The resource theory of stabilizer quantum computation. New J. Phys. 16, 013009 (2014)

    ADS  MathSciNet  Google Scholar 

  29. Seddon, J.R., Campbell, E.T.: Quantifying magic for multi-qubit operations. Proc. R. Soc. A 475, 20190251 (2019)

    ADS  MathSciNet  Google Scholar 

  30. Campbell, E., Howard, M.: Unifying gate synthesis and magic state distillation. Phys. Rev. Lett. 118, 060501 (2017)

    ADS  Google Scholar 

  31. Litinski, D.: Magic state distillation: not as costly as you think. Quantum 3, 205 (2019)

    Google Scholar 

  32. Datta, N.: Min- and max-relative entropies and a new entanglement monotone. IEEE Trans. Inf. Theory 55, 2816 (2009)

    MathSciNet  Google Scholar 

  33. Liu, Z.-W., Bu, K., Takagi, R.: One-Shot operational quantum resource theory. Phys. Rev. Lett. 123, 020401 (2019)

    ADS  Google Scholar 

  34. Bravyi, S., Browne, D., Calpin, P., Campbell, E., Gosset, D., Howard, M.: Simulation of quantum circuits by low-rank stabilizer decompositions. Quantum 3, 181 (2019)

    Google Scholar 

  35. Bravyi, S., Smith, G., Smolin, J.A.: Trading classical and quantum computational resources. Phys. Rev. X 6, 021043 (2016)

    Google Scholar 

  36. Pashayan, H., Wallman, J.J., Bartlett, S.D.: Estimating outcome probabilities of quantum circuits using quasiprobabilities. Phys. Rev. Lett. 115, 070501 (2015)

    ADS  Google Scholar 

  37. Wang, X., Wilde, M.M., Su, Y.: Efficiently computable bounds for magic state distillation. Phys. Rev. Lett. 124, 090505 (2020)

    ADS  MathSciNet  Google Scholar 

  38. Anwar, H., Campbell, E.T., Browne, D.E.: Qutrit magic state distillation. New J. Phys. 14, 063006 (2012)

    ADS  Google Scholar 

  39. Jain, A., Prakash, S.: Qutrit and ququint magic states. Phys. Rev. A 102, 042409 (2020)

    ADS  MathSciNet  Google Scholar 

  40. Huang, Y., Love, P.: Approximate stabilizer rank and improved weak simulation of Clifford-dominated circuits for qudits. Phys. Rev. A 99, 052307 (2019)

    ADS  Google Scholar 

  41. Schwinger, J.: Unitary operator bases. Proc. Natl. Acad. Sci. U.S.A. 46, 570 (1960)

    ADS  MathSciNet  Google Scholar 

  42. Appleby, D.M.: Symmetric informationally complete-positive operator valued measures and the extended Clifford group. J. Math. Phys. 46, 052107 (2005)

    ADS  MathSciNet  Google Scholar 

  43. Zhu, H.: Permutation symmetry determines the discrete Wigner function. Phys. Rev. Lett. 116, 040501 (2016)

    ADS  MathSciNet  Google Scholar 

  44. Gottesman, D.: Stabilizer codes and quantum error correction (Ph.D. thesis, California Institute of Technology) (1997)

  45. Takagi, R., Zhuang, Q.: Convex resource theory of non-Gaussianity. Phys. Rev. A 97, 062337 (2018)

    ADS  Google Scholar 

  46. Howard, M., Vala, J.: Qudit versions of the qubit \(\pi \)/8 gate. Phys. Rev. A 86, 022316 (2012)

    ADS  Google Scholar 

  47. Gross, D., Nezami, S., Walter, M.: Schur-Weyl duality for the Clifford group with applications: property testing, a robust Hudson theorem, and de Finetti representations. Commun. Math. Phys. 385, 1325–1393 (2021)

    ADS  MathSciNet  Google Scholar 

  48. Zauner, G.: Quantum designs: foundations of a noncommutative design theory. Int. J. Quantum Inform. 09, 445 (2011)

    MathSciNet  Google Scholar 

  49. Renes, J.M., Blume-Kohout, R., Scott, A.J., Caves, C.M.: Symmetric informationally complete quantum measuements. J. Math. Phys. 45, 2171 (2004)

    ADS  MathSciNet  Google Scholar 

  50. Grassl, M.: On SIC-POVMs and MUBs in dimension 6. arXiv:quant-ph/0406175

  51. Flammia, S.T.: On SIC-POVMs in prime dimensions. J. Phys. A 39, 13483 (2006)

    ADS  MathSciNet  Google Scholar 

  52. Zhu, H.: SIC POVMs and Clifford groups in prime dimensions. J Phys. A 43, 305305 (2010)

    MathSciNet  Google Scholar 

  53. Zhu, H.: Super-symmetric informationally complete measurements. Ann. Phys. 362, 311 (2015)

    ADS  MathSciNet  Google Scholar 

  54. Dai, H., Fu, S., Luo, S.: Detecting magic states via characteristic functions. Int. J. Theor. Phys. 61, 35 (2022)

    MathSciNet  Google Scholar 

  55. Andersson, D., Bengtsson, I., Blanchfield, K., Dang, H.: States that are far from being stabilizer states. J. Phys. A 48, 345301 (2015)

    ADS  MathSciNet  Google Scholar 

  56. Gross, D., Walter, M.: Stabilizer information inequalities from phase space distributions. J. Math. Phys. 54, 082201 (2013)

    ADS  MathSciNet  Google Scholar 

  57. Campbell, E.T.: Enhanced fault-tolerant quantum computing in D-level systems. Phys. Rev. Lett. 113, 230501 (2014)

    ADS  Google Scholar 

Download references

Acknowledgements

This paper was supported by the National Science Foundation of China (Grant Nos. 12071271, 11671244).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongming Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Li, Y. Stabilizer Rényi entropy on qudits. Quantum Inf Process 22, 444 (2023). https://doi.org/10.1007/s11128-023-04186-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-04186-9

Keywords