Abstract
Magic is an important part of quantum resource theory. The quantitative study of magic is a difficult but important task, which means a suitable magic measure is needed. We generalize the magic measure introduced by Leone et al. (Phys Rev Lett 128:050402, 2022) and extend the Pauli operators acting on qubits to the discrete Heisenberg–Weyl operators (i.e., the generalized Pauli operators) acting on qudits. We show that it is a suitable magic measure. We use this measure to calculate some related qutrit magic states and compare it with other measures. Subsequently, a tighter upper bound of this measure is obtained by using the group covariant symmetric informationally complete (SIC) states. Moreover, we extend this measure to mixed states and calculate the corresponding mixed magic states. Then, it is shown that there are different fundamental limits for the distillation of four qutrit magic states by using the quantum hypothesis testing at the end of this paper.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data availability
Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.
References
Leone, L., Oliviero, S.F.E., Hamma, A.: Stabilizer Rényi entropy. Phys. Rev. Lett. 128, 050402 (2022)
Nielsen, M.A., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University, Cambridge (2002)
Loss, D., DiVincenzo, D.P.: Quantum computation with quantum dots. Phys. Rev. A 57, 120 (1998)
Bravyi, S., Kitaev, A.: Universal quantum computation with ideal Clifford gates and noisy ancillas. Phys. Rev. A 71, 022316 (2005)
Bravyi, S., Gosset, D.: Improved classical simulation of quantum circuits dominated by Clifford gates. Phys. Rev. Lett. 116, 250501 (2016)
Zhu, H., Kueng, R., Grassl, M., Gross, D.: The Clifford group fails gracefully to be a unitary 4-design. arXiv:1609.08172
Poyatos, J.F., Cirac, J.I., Zoller, P.: Complete characterization of a quantum process: the two-bit quantum gate. Phys. Rev. Lett. 78, 390 (1997)
Gottesman, D.: The Heisenberg Representation of Quantum Computers. arXiv:quant-ph/9807006
Bartlett, S.D., Sanders, B.C., Braunstein, S.L., Nemoto, K.: Efficient classical simulation of continuous variable quantum information processes. Phys. Rev. Lett. 88, 097904 (2002)
Aaronson, S., Gottesman, D.: Improved simulation of stabilizer circuits. Phys. Rev. A 70, 052328 (2004)
Howard, M., Campbell, E.: Application of a resource theory for magic states to fault-tolerant quantum computing. Phys. Rev. Lett. 118, 090501 (2017)
Coecke, B., Fritz, T., Spekkens, R.W.: A mathematical theory of resources. Inf. Comput. 250, 59 (2016)
Chitambar, E., Gour, G.: Quantum resource theories. Rev. Mod. Phys. 91, 025001 (2019)
Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)
Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014)
Winter, A., Yang, D.: Operational resource theory of coherence. Phys. Rev. Lett. 116, 120404 (2016)
Ren, R., Li, P., Ye, M., Li, Y.: Tighter sum uncertainty relations based on metric-adjusted skew information. Phys. Rev. A 104, 052414 (2021)
Vinjanampathy, S., Anders, J.: Quantum thermodynamics. Cont. Phys. 57, 4 (2016)
Kosloff, R.: Quantum thermodynamics: a dynamical viewpoint. Entropy 15, 6 (2013)
Gour, G., Spekkens, R.W.: The resource theory of quantum reference frames: manipulations and monotones. New J. Phys. 10, 033023 (2008)
Gour, G., Marvian, I., Spekkens, R.W.: Measuring the quality of a quantum reference frame: the relative entropy of frameness. Phys. Rev. A 80, 012307 (2009)
Ahmadi, M., Jennings, D., Rudolph, T.: The Wigner-Araki-Yanase theorem and the quantum resource theory of asymmetry. New J. Phys. 15, 013057 (2013)
Grudka, A., Horodecki, K., Horodecki, M., Horodecki, P., Horodecki, R., Joshi, P., Klobus, W., Wójcik, A.: Quantifying contextuality. Phys. Rev. Lett. 112, 120401 (2014)
Amaral, B.: Resource theory of contextuality. Philos. Trans. R. Soc. A 377, 20190010 (2019)
Bennett, C.H., Di Vincenzo, D.P., Fuchs, C.A., Mor, T., Rains, E., Shor, P.W., Smolin, J.A., Wootters, W.K.: Quantum nonlocality without entanglement. Phys. Rev. A 59, 1070 (1999)
Liu, Y., Ren, R., Li, P., Ye, M., Li, Y.: Quantum violation of average causal effects in multiple measurement settings. Phys. Rev. A 106, 032436 (2022)
Veitch, V., Ferrie, C., Gross, D., Emerson, J.: Negative quasi-probability as a resource for quantum computation. New J. Phys. 14, 113011 (2012)
Veitch, V., Mousavian, S.H., Gottesman, D., Emerson, J.: The resource theory of stabilizer quantum computation. New J. Phys. 16, 013009 (2014)
Seddon, J.R., Campbell, E.T.: Quantifying magic for multi-qubit operations. Proc. R. Soc. A 475, 20190251 (2019)
Campbell, E., Howard, M.: Unifying gate synthesis and magic state distillation. Phys. Rev. Lett. 118, 060501 (2017)
Litinski, D.: Magic state distillation: not as costly as you think. Quantum 3, 205 (2019)
Datta, N.: Min- and max-relative entropies and a new entanglement monotone. IEEE Trans. Inf. Theory 55, 2816 (2009)
Liu, Z.-W., Bu, K., Takagi, R.: One-Shot operational quantum resource theory. Phys. Rev. Lett. 123, 020401 (2019)
Bravyi, S., Browne, D., Calpin, P., Campbell, E., Gosset, D., Howard, M.: Simulation of quantum circuits by low-rank stabilizer decompositions. Quantum 3, 181 (2019)
Bravyi, S., Smith, G., Smolin, J.A.: Trading classical and quantum computational resources. Phys. Rev. X 6, 021043 (2016)
Pashayan, H., Wallman, J.J., Bartlett, S.D.: Estimating outcome probabilities of quantum circuits using quasiprobabilities. Phys. Rev. Lett. 115, 070501 (2015)
Wang, X., Wilde, M.M., Su, Y.: Efficiently computable bounds for magic state distillation. Phys. Rev. Lett. 124, 090505 (2020)
Anwar, H., Campbell, E.T., Browne, D.E.: Qutrit magic state distillation. New J. Phys. 14, 063006 (2012)
Jain, A., Prakash, S.: Qutrit and ququint magic states. Phys. Rev. A 102, 042409 (2020)
Huang, Y., Love, P.: Approximate stabilizer rank and improved weak simulation of Clifford-dominated circuits for qudits. Phys. Rev. A 99, 052307 (2019)
Schwinger, J.: Unitary operator bases. Proc. Natl. Acad. Sci. U.S.A. 46, 570 (1960)
Appleby, D.M.: Symmetric informationally complete-positive operator valued measures and the extended Clifford group. J. Math. Phys. 46, 052107 (2005)
Zhu, H.: Permutation symmetry determines the discrete Wigner function. Phys. Rev. Lett. 116, 040501 (2016)
Gottesman, D.: Stabilizer codes and quantum error correction (Ph.D. thesis, California Institute of Technology) (1997)
Takagi, R., Zhuang, Q.: Convex resource theory of non-Gaussianity. Phys. Rev. A 97, 062337 (2018)
Howard, M., Vala, J.: Qudit versions of the qubit \(\pi \)/8 gate. Phys. Rev. A 86, 022316 (2012)
Gross, D., Nezami, S., Walter, M.: Schur-Weyl duality for the Clifford group with applications: property testing, a robust Hudson theorem, and de Finetti representations. Commun. Math. Phys. 385, 1325–1393 (2021)
Zauner, G.: Quantum designs: foundations of a noncommutative design theory. Int. J. Quantum Inform. 09, 445 (2011)
Renes, J.M., Blume-Kohout, R., Scott, A.J., Caves, C.M.: Symmetric informationally complete quantum measuements. J. Math. Phys. 45, 2171 (2004)
Grassl, M.: On SIC-POVMs and MUBs in dimension 6. arXiv:quant-ph/0406175
Flammia, S.T.: On SIC-POVMs in prime dimensions. J. Phys. A 39, 13483 (2006)
Zhu, H.: SIC POVMs and Clifford groups in prime dimensions. J Phys. A 43, 305305 (2010)
Zhu, H.: Super-symmetric informationally complete measurements. Ann. Phys. 362, 311 (2015)
Dai, H., Fu, S., Luo, S.: Detecting magic states via characteristic functions. Int. J. Theor. Phys. 61, 35 (2022)
Andersson, D., Bengtsson, I., Blanchfield, K., Dang, H.: States that are far from being stabilizer states. J. Phys. A 48, 345301 (2015)
Gross, D., Walter, M.: Stabilizer information inequalities from phase space distributions. J. Math. Phys. 54, 082201 (2013)
Campbell, E.T.: Enhanced fault-tolerant quantum computing in D-level systems. Phys. Rev. Lett. 113, 230501 (2014)
Acknowledgements
This paper was supported by the National Science Foundation of China (Grant Nos. 12071271, 11671244).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Wang, Y., Li, Y. Stabilizer Rényi entropy on qudits. Quantum Inf Process 22, 444 (2023). https://doi.org/10.1007/s11128-023-04186-9
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-023-04186-9