Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

PGD-Based Computational Vademecum for Efficient Design, Optimization and Control

  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

In this paper we are addressing a new paradigm in the field of simulation-based engineering sciences (SBES) to face the challenges posed by current ICT technologies. Despite the impressive progress attained by simulation capabilities and techniques, some challenging problems remain today intractable. These problems, that are common to many branches of science and engineering, are of different nature. Among them, we can cite those related to high-dimensional problems, which do not admit mesh-based approaches due to the exponential increase of degrees of freedom. We developed in recent years a novel technique, called Proper Generalized Decomposition (PGD). It is based on the assumption of a separated form of the unknown field and it has demonstrated its capabilities in dealing with high-dimensional problems overcoming the strong limitations of classical approaches. But the main opportunity given by this technique is that it allows for a completely new approach for classic problems, not necessarily high dimensional. Many challenging problems can be efficiently cast into a multidimensional framework and this opens new possibilities to solve old and new problems with strategies not envisioned until now. For instance, parameters in a model can be set as additional extra-coordinates of the model. In a PGD framework, the resulting model is solved once for life, in order to obtain a general solution that includes all the solutions for every possible value of the parameters, that is, a sort of computational vademecum. Under this rationale, optimization of complex problems, uncertainty quantification, simulation-based control and real-time simulation are now at hand, even in highly complex scenarios, by combining an off-line stage in which the general PGD solution, the vademecum, is computed, and an on-line phase in which, even on deployed, handheld, platforms such as smartphones or tablets, real-time response is obtained as a result of our queries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Ammar A, Mokdad B, Chinesta F, Keunings R (2006) A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids. J Non-Newton Fluid Mech 139:153–176

    Article  MATH  Google Scholar 

  2. Ammar A, Ryckelynck D, Chinesta F, Keunings R (2006) On the reduction of kinetic theory models related to finitely extensible dumbbells. J Non-Newton Fluid Mech 134:136–147

    Article  MATH  Google Scholar 

  3. Ammar A, Mokdad B, Chinesta F, Keunings R (2007) A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids. Part II: transient simulation using space-time separated representation. J Non-Newton Fluid Mech 144:98–121

    Article  MATH  Google Scholar 

  4. Ammar A, Chinesta F, Joyot P (2008) The nanometric and micrometric scales of the structure and mechanics of materials revisited: an introduction to the challenges of fully deterministic numerical descriptions. Int J Multiscale Comput Eng 6(3):191–213

    Article  Google Scholar 

  5. Ammar A, Pruliere E, Chinesta F, Laso M (2009) Reduced numerical modeling of flows involving liquid-crystalline polymeres. J Non-Newton Fluid Mech 160:140–156

    Article  Google Scholar 

  6. Ammar A, Normandin M, Daim F, Gonzalez D, Cueto E, Chinesta F (2010) Non-incremental strategies based on separated representations: applications in computational rheology. Commun Math Sci 8(3):671–695

    MathSciNet  MATH  Google Scholar 

  7. Ammar A, Chinesta F, Falco A (2010) On the convergence of a greedy rank-one update algorithm for a class of linear systems. Arch Comput Methods Eng 17(4):473–486

    Article  MathSciNet  Google Scholar 

  8. Ammar A, Chinesta F, Diez P, Huerta A (2010) An error estimator for separated representations of highly multidimensional models. Comput Methods Appl Mech Eng 199:1872–1880

    Article  MathSciNet  MATH  Google Scholar 

  9. Ammar A, Normandin M, Chinesta F (2010) Solving parametric complex fluids models in rheometric flows. J Non-Newton Fluid Mech 165:1588–1601

    Article  Google Scholar 

  10. Ammar A, Cueto E, Chinesta F (2012) Reduction of the chemical master equation for gene regulatory networks using proper generalized decompositions. Int J Numer Methods Biomed Eng 28(9):960–973

    Article  Google Scholar 

  11. Ammar A, Cueto E, Chinesta F Non-incremental PGD solution of parametric uncoupled models defined in evolving domains. Int J Numer Methods Eng. doi:10.1002/nme.4413

  12. Barrault M, Maday Y, Nguyen NC, Patera AT (2004) An “empirical interpolation” method: application to efficient reduced-basis discretization of partial differential equations. C R Math 339(9):667–672

    Article  MathSciNet  MATH  Google Scholar 

  13. Bellomo N (2008) Modeling complex living systems. Birkhäuser, Basel

    MATH  Google Scholar 

  14. Bernoulli Ch (1836) Vademecum des Mechanikers. Cotta, Stuttgart

    Google Scholar 

  15. Bialecki RA, Kassab AJ, Fic A (2005) Proper orthogonal decomposition and modal analysis for acceleration of transient FEM thermal analysis. Int J Numer Methods Eng 62:774–797

    Article  MATH  Google Scholar 

  16. Bird BB, Curtiss CF, Armstrong RC, Hassager O (1987) Dynamics of polymeric liquids. In: Kinetic theory, vol 2. Wiley, New York

    Google Scholar 

  17. Bognet B, Leygue A, Chinesta F, Poitou A, Bordeu F (2012) Advanced simulation of models defined in plate geometries: 3D solutions with 2D computational complexity. Comput Methods Appl Mech Eng 201:1–12

    Article  Google Scholar 

  18. Bordeu F, Leygue A, Modesto D, Gonzalez D, Cueto E, Chinesta F Real-time simulation techniques for augmented learning in science and engineering higher education. A PGD approach. Arch Comput Methods Eng, submitted

  19. Bui-Thanh T, Willcox K, Ghattas O, Van Bloemen Waanders B (2007) Goal-oriented, model-constrained optimization for reduction of large-scale systems. J Comput Phys 224(2):880–896

    Article  MathSciNet  MATH  Google Scholar 

  20. Burkardt J, Gunzburger M, Lee H-C (2006) POD and CVT-based reduced-order modeling of Navier-Stokes flows. Comput Methods Appl Mech Eng 196:337–355

    Article  MathSciNet  MATH  Google Scholar 

  21. Cancès E, Defranceschi M, Kutzelnigg W, Le Bris C, Maday Y (2003) Computational quantum chemistry: a primer. Handbook of numerical analysis, vol X. Elsevier, Amsterdam, pp 3–270

    Google Scholar 

  22. Chaturantabut S, Sorensen DC (2010) Nonlinear model reduction via discrete empirical interpolation. SIAM J Sci Comput 32:2737–2764

    Article  MathSciNet  MATH  Google Scholar 

  23. Chinesta F, Ammar A, Cueto E (2010) Proper generalized decomposition of multiscale models. Int J Numer Methods Eng 83(8–9):1114–1132

    Article  MathSciNet  MATH  Google Scholar 

  24. Chinesta F, Ammar A, Cueto E (2010) Recent advances and new challenges in the use of the proper generalized decomposition for solving multidimensional models. Arch Comput Methods Eng 17(4):327–350

    Article  MathSciNet  Google Scholar 

  25. Chinesta F, Ammar A, Leygue A, Keunings R (2011) An overview of the proper generalized decomposition with applications in computational rheology. J Non-Newton Fluid Mech 166:578–592

    Article  MATH  Google Scholar 

  26. Chinesta F, Ladeveze P, Cueto E (2011) A short review in model order reduction based on proper generalized decomposition. Arch Comput Methods Eng 18:395–404

    Article  Google Scholar 

  27. Chinesta F, Leygue A, Bognet B, Ghnatios Ch, Poulhaon F, Bordeu F, Barasinski A, Poitou A, Chatel S, Maison-Le-Poec S (2012) First steps towards an advanced simulation of composites manufacturing by automated tape placement. Int J Mater Forming. doi:10.1007/s12289-012-1112-9

    Google Scholar 

  28. Cochelin B, Damil N, Potier-Ferry M (1994) The asymptotic numerical method: an efficient perturbation technique for nonlinear structural mechanics. Rev Eur Elem Finis 3:281–297

    MathSciNet  MATH  Google Scholar 

  29. Darema F (1994) Engineering/scientific and commercial applications: differences, similarities, and future evolution. In: Proceedings of the second Hellenic European conference on mathematics and informatics. HERMIS, Paris, vol 1, pp 367–374

    Google Scholar 

  30. Dennis JE Jr., Schnabel RB (1996) Numerical methods for unconstrained optimization and nonlinear equations. Classics in applied mathematics, vol 16. Society for Industrial and Applied Mathematics (SIAM), Philadelphia. Corrected reprint of the 1983 original

    Book  MATH  Google Scholar 

  31. Ghnatios Ch, Chinesta F, Cueto E, Leygue A, Breitkopf P, Villon P (2011) Methodological approach to efficient modeling and optimization of thermal processes taking place in a die: application to pultrusion. Composites, Part A 42:1169–1178

    Article  Google Scholar 

  32. Ghnatios Ch, Masson F, Huerta A, Cueto E, Leygue A, Chinesta F (2012) Proper generalized decomposition based dynamic data-driven control of thermal processes. Comput Methods Appl Mech Eng 213:29–41

    Article  Google Scholar 

  33. Girault M, Videcoq E, Petit D (2010) Estimation of time-varying heat sources through inversion of a low order model built with the modal identification method from in-situ temperature measurements. Int J Heat Mass Transf 53:206–219

    Article  MATH  Google Scholar 

  34. Gonzalez D, Ammar A, Chinesta F, Cueto E (2010) Recent advances in the use of separated representations. Int J Numer Methods Eng 81(5):637–659

    MathSciNet  MATH  Google Scholar 

  35. Gonzalez D, Masson F, Poulhaon F, Leygue A, Cueto E, Chinesta F (2012) Proper generalized decomposition based dynamic data-driven inverse identification. Math Comput Simul 82(9):1677–1695

    Article  MathSciNet  Google Scholar 

  36. Gunzburger MD, Peterson JS, Shadid JN (2007) Reduced-order modeling of time-dependent PDEs with multiple parameters in the boundary data. Comput Methods Appl Mech Eng 196:1030–1047

    Article  MathSciNet  MATH  Google Scholar 

  37. http://www.epractice.eu/en/news/5304734

  38. http://www.ga-project.eu/

  39. http://www.humanbrainproject.eu/

  40. http://www.itfom.eu/

  41. http://robotcompanions.eu

  42. http://www.futurict.eu

  43. http://www.graphene-flagship.eu/

  44. Ladevèze P (1989) The large time increment method for the analyze of structures with nonlinear constitutive relation described by internal variables. C R Acad Sci Paris 309:1095–1099

    MATH  Google Scholar 

  45. Ladevèze P, Nouy A (2002) A multiscale computational method with time and space homogenization. C R, Méc 330(10):683–689

    Article  MATH  Google Scholar 

  46. Ladevèze P, Nouy A, Loiseau O (2002) A multiscale computational approach for contact problems. Comput Methods Appl Mech Eng 191(43):4869–4891

    Article  MATH  Google Scholar 

  47. Ladevèze P, Nouy A (2003) On a multiscale computational strategy with time and space homogenization for structural mechanics. Comput Methods Appl Mech Eng 192(28–30):3061–3087

    Article  MATH  Google Scholar 

  48. Ladevèze P, Néron D, Gosselet P (2007) On a mixed and multiscale domain decomposition method. Comput Methods Appl Mech Eng 96:1526–1540

    Article  Google Scholar 

  49. Ladevèze P, Passieux J-C, Néron D (2010) The Latin multiscale computational method and the proper generalized decomposition. Comput Methods Appl Mech Eng 199(21–22):1287–1296

    Article  MATH  Google Scholar 

  50. Ladevèze P, Chamoin L (2011) On the verification of model reduction methods based on the proper generalized decomposition. Comput Methods Appl Mech Eng 200:2032–2047

    Article  MATH  Google Scholar 

  51. Lamari H, Ammar A, Cartraud P, Legrain G, Jacquemin F, Chinesta F (2010) Routes for efficient computational homogenization of non-linear materials using the proper generalized decomposition. Arch Comput Methods Eng 17(4):373–391

    Article  MathSciNet  Google Scholar 

  52. Lamari H, Ammar A, Leygue A, Chinesta F (2012) On the solution of the multidimensional Langer’s equation by using the proper generalized decomposition method for modeling phase transitions. Model Simul Mater Sci Eng 20(1):015007

    Article  Google Scholar 

  53. Le Bris C, Lelièvre T, Maday Y (2009) Results and questions on a nonlinear approximation approach for solving high-dimensional partial differential equations. Constr Approx 30:621–651

    Article  MathSciNet  MATH  Google Scholar 

  54. Leygue A, Verron E (2010) A first step towards the use of proper general decomposition method for structural optimization. Arch Comput Methods Eng 17(4):465–472

    Article  MathSciNet  Google Scholar 

  55. Leygue A, Chinesta F, Beringhier M, Nguyen TL, Grandidier JC, Pasavento F, Schrefler B Towards a framework for non-linear thermal models in shell domains. Int J Numer Methods Heat Fluid Flow. doi:10.1108/09615531311289105

  56. Maday Y, Ronquist EM (2002) A reduced-basis element method. C R Acad Sci Paris, Ser I 335:195–200

    Article  MathSciNet  MATH  Google Scholar 

  57. Maday Y, Patera AT, Turinici G (2002) A priori convergence theory for reduced-basis approximations of single-parametric elliptic partial differential equations. J Sci Comput 17(1–4):437–446

    Article  MathSciNet  MATH  Google Scholar 

  58. Maday Y, Ronquist EM (2004) The reduced basis element method: application to a thermal fin problem. SIAM J Sci Comput 26(1):240–258

    Article  MathSciNet  MATH  Google Scholar 

  59. Néron D, Ladevèze P (2010) Proper generalized decomposition for multiscale and multiphysics problems. Arch Comput Methods Eng 17(4):351–372

    Article  MathSciNet  Google Scholar 

  60. Niroomandi S, Alfaro I, Cueto E, Chinesta F (2008) Real-time deformable models of non-linear tissues by model reduction techniques. Comput Methods Programs Biomed 91:223–231

    Article  Google Scholar 

  61. Niroomandi S, Alfaro I, Cueto E, Chinesta F (2010) Model order reduction for hyperelastic materials. Int J Numer Methods Eng 81(9):1180–1206

    MathSciNet  MATH  Google Scholar 

  62. Niroomandi S, Alfaro I, Cueto E, Chinesta F (2012) Accounting for large deformations in real-time simulations of soft tissues based on reduced order models. Comput Methods Programs Biomed 105:1–12

    Article  Google Scholar 

  63. Niroomandi S, Alfaro I, Gonzalez D, Cueto E, Chinesta F (2012) Real time simulation of surgery by reduced order modelling and X-FEM techniques. Int J Numer Methods Biomed Eng 28(5):574–588

    Article  MathSciNet  MATH  Google Scholar 

  64. Nouy A (2010) Proper generalized decompositions and separated representations for the numerical solution of high dimensional stochastic problems. Arch Comput Methods Eng 17:403–434

    Article  MathSciNet  Google Scholar 

  65. NSF Final Report (2006) DDDAS Workshop 2006, Arlington, VA, USA

  66. Oden JT, Belytschko T, Fish J, Hughes TJR, Johnson C, Keyes D, Laub A, Petzold L, Srolovitz D, Yip S (2006) Simulation-based engineering science: revolutionizing engineering science through simulation. NSF Blue Ribbon Panel on SBES

  67. Park HM, Cho DH (1996) The use of the Karhunen-Loève decomposition for the modelling of distributed parameter systems. Chem Eng Sci 51:81–98

    Article  Google Scholar 

  68. Passieux J-C, Ladevèze P, Néron D (2010) A scalable time-space multiscale domain decomposition method: adaptive time scale separation. Comput Mech 46(4):621–633

    Article  MathSciNet  MATH  Google Scholar 

  69. Pruliere E, Ferec J, Chinesta F, Ammar A (2010) An efficient reduced simulation of residual stresses in composites forming processes. Int J Mater Forming 3(2):1339–1350

    Article  Google Scholar 

  70. Pruliere E, Chinesta F, Ammar A (2010) On the deterministic solution of multidimensional parametric models by using the proper generalized decomposition. Math Comput Simul 81:791–810

    Article  MathSciNet  MATH  Google Scholar 

  71. Rozza G, Huynh DBP, Patera AT (2008) Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations—application to transport and continuum mechanics. Arch Comput Methods Eng 15(3):229–275

    Article  MathSciNet  MATH  Google Scholar 

  72. Ryckelynck D, Hermanns L, Chinesta F, Alarcon E (2005) An efficient a priori model reduction for boundary element models. Eng Anal Bound Elem 29:796–801

    Article  MATH  Google Scholar 

  73. Ryckelynck D, Chinesta F, Cueto E, Ammar A (2006) On the a priori model reduction: overview and recent developments. Arch Comput Methods Eng 13(1):91–128

    Article  MathSciNet  MATH  Google Scholar 

  74. Schmidt F, Pirc N, Mongeau M, Chinesta F (2011) Efficient mould cooling optimization by using model reduction. Int J Mater Forming 4(1):71–82

    Article  Google Scholar 

  75. Various authors (2006) Final report. DDDAS workshop 2006 at Arlington, VA, USA Technical report, National Science Foundation

  76. Veroy K, Patera A (2005) Certified real-time solution of the parametrized steady incompressible Navier-Stokes equations: rigorous reduced-basis a posteriori error bounds. Int J Numer Methods Fluids 47:773–788

    Article  MathSciNet  MATH  Google Scholar 

  77. Videcoq E, Quemener O, Lazard M, Neveu A (2008) Heat source identification and on-line temperature control by a branch eigenmodes reduced model. Int J Heat Mass Transf 51:4743–4752

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Chinesta.

Additional information

This work has been partially supported by the Spanish Ministry of Science and Competitiveness, through grants number CICYT-DPI2011-27778-C02-01/02. Professor Chinesta is also supported by the Institut Universitaire de France.

Appendix: Alternating Directions Separated Representation Constructor

Appendix: Alternating Directions Separated Representation Constructor

1.1 A.1 Computing R(x) from S(t) and W(k)

We consider the extended weighted residual form of Eq. (8):

$$ \int_{\varOmega\times\mathcal{I}_t \times \mathcal{I}_k} {u^{\ast}} \biggl( { \frac{\partial u}{\partial t}-k \cdot \varDelta u-f} \biggr)\,d\mathbf{x} \cdot dt \cdot dk=0 $$
(106)

where the trial and test functions write respectively:

$$ u^n ( {\mathbf{x},t,k} )=\sum _{i=1}^{n-1} {X_i ( \mathbf{x} )} \cdot T_i ( t )\cdot K_i ( k )+R ( \mathbf{x} )\cdot S ( t )\cdot W ( k ) $$
(107)

and, assuming S and W known from the previous iteration,

$$ u^{\ast} ( {\mathbf{x},t,k} )=R^{\ast} ( \mathbf{x} )\cdot S ( t )\cdot W ( k ) $$
(108)

Introducing (107) and (108) into (106) it results:

(109)

where \({\mathcal{R}}^{n-1}\) defines the residual related to u n−1(x,t,k):

$$ {\mathcal{R}}^{n-1} = {\sum_{i=1}^{n-1} {X_i \cdot} \frac{\partial T_i }{\partial t}\cdot K_i -\sum _{i=1}^{n-1} {k\cdot \varDelta X_i \cdot T_i \cdot K_i } -f} $$
(110)

Once all functions involving time and conductivity have been determined, we can integrate Eq. (109) along its respective domains \(\mathcal{I}_{t} \times\mathcal{I}_{k} \), and by taking into account the following notations:

$$ \mbox{\footnotesize $\left[ \begin{array}{c@{\quad}c@{\quad}c} w_{1} =\int_{\mathcal{I}_{k}} W^{2}\,dk & s_{1} =\int_{\mathcal{I}_{t}} S^{2}dt & r_{1} =\int_{\varOmega}R^{2}\,d\mathbf{x} \\[3pt] w_{2} =\int_{\mathcal{I}_{k}} kW^{2}\,dk & s_{2} =\int_{\mathcal{I}_{t}} S\cdot \frac{dS}{dt}\,dt & r_{2} =\int_{\varOmega}R\cdot \varDelta R\,d\mathbf{x} \\[3pt] w_{3} =\int_{\mathcal{I}_{k}} W\,dk & s_{3} =\int_{\mathcal{I}_{t}} S\,dt & r_{3} =\int_{\varOmega}R\,d\mathbf{x} \\[3pt] w_{4}^{i} =\int_{\mathcal{I}_{k}} W\cdot K_{i} \,dk & s_{4}^{i} =\int_{\mathcal{I}_{t}} S\cdot\frac{dT_{i} }{dt}\,dt & r_{4}^{i} =\int_{\varOmega}R\cdot \varDelta X_{i} \,d\mathbf{x}\\[3pt] w_{5}^{i} =\int_{\mathcal{I}_{k}} kW\cdot K_{i} \,dk & s_{5}^{i} =\int_{\mathcal{I}_{t}} S\cdot T_{i} \,dt & r_{5}^{i} =\int_{\varOmega} R\cdot X_{i} \,d\mathbf{x} \end{array} \right]$} $$
(111)

Equation (109) is reduced to:

(112)

Equation (112) defines an elliptic steady-state boundary value problem that can be solved by using any discretization technique operating on the weak form of the problem (finite elements, finite volumes, …). Another possibility consists in coming back to the strong form of Eq. (112):

(113)

that could be solved by using any classical collocation technique (finite differences, SPH, …).

1.2 A.2 Computing S(t) from R(x) and W(k)

In the present case the test function is written as:

$$ u^{\ast} ( {\mathbf{x},t,k} )=S^{\ast} ( t )\cdot R ( \mathbf{x} )\cdot W ( k ) $$
(114)

Now, the weighted residual form becomes:

(115)

that integrating in the space \(\varOmega\times\mathcal{I}_{k} \) and by taking into account the notation (111) results:

(116)

Equation (116) represents the weak form of the ODE defining the time evolution of the field S that can be solved by using any stabilized discretization technique (SU, Discontinuous Galerkin, …). The strong form of Eq. (116) reads:

(117)

Equation (117) can be solved by using backward finite differences, or higher order Runge-Kutta schemes, among many other possibilities.

1.3 A.3 Computing W(k) from R(x) and S(t)

In this part of the algorithm, the test function is written as:

$$ u^{\ast} ( {\mathbf{x},t,k} )=W^{\ast} ( k )\cdot R ( \mathbf{x} )\cdot S ( t ) $$
(118)

Now, the weighted residual form becomes:

(119)

Integrating Eq. (119) in \(\varOmega\times\mathcal{I}_{t}\) and considering the notations given by Eq. (111) leads to:

(120)

Equation (120) does not involve any differential operator. The strong form of Eq. (120) is:

(121)

Equation (121) represents an algebraic equation because the original model does not involve derivatives with respect to the conductivity. Thus, despite the introduction of parameters as additional model coordinates, the computational complexity remains essentially the same, however, the introduction of extra-coordinates implies in general the increase of the number of modes involved by the separated representation, and consequently the computing time.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chinesta, F., Leygue, A., Bordeu, F. et al. PGD-Based Computational Vademecum for Efficient Design, Optimization and Control. Arch Computat Methods Eng 20, 31–59 (2013). https://doi.org/10.1007/s11831-013-9080-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-013-9080-x

Keywords