Abstract
The highest possible resolution for printed colour images is determined by the diffraction limit of visible light. To achieve this limit, individual colour elements (or pixels) with a pitch of 250 nm are required, translating into printed images at a resolution of â¼100,000 dots per inch (d.p.i.). However, methods for dispensing multiple colourants or fabricating structural colour through plasmonic structures have insufficient resolution and limited scalability1,2,3,4,5,6. Here, we present a non-colourant method that achieves bright-field colour prints with resolutions up to the optical diffraction limit. Colour information is encoded in the dimensional parameters of metal nanostructures, so that tuning their plasmon resonance determines the colours of the individual pixels. Our colour-mapping strategy produces images with both sharp colour changes and fine tonal variations, is amenable to large-volume colour printing via nanoimprint lithography7,8, and could be useful in making microimages for security, steganography9, nanoscale optical filters6,10,11,12 and high-density spectrally encoded optical data storage.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Finlayson, C. E. et al. 3D bulk ordering in macroscopic solid opaline films by edge-induced rotational shearing. Adv. Mater. 23, 1540â1544 (2011).
Haverinen, H. M., Myllylae, R. A. & Jabbour, G. E. Inkjet printing of light emitting quantum dots. Appl. Phys. Lett. 94, 073108 (2009).
Kim, T-H. et al. Full-colour quantum dot displays fabricated by transfer printing. Nature Photon. 5, 176â182 (2011).
Lee, S. Y. et al. Plasmon-enhanced structural coloration of metal films with isotropic pinwheel nanoparticle arrays. Opt. Express 19, 23818â23830 (2011).
Ozaki, M., Kato, J. & Kawata, S. Surface-plasmon holography with white-light illumination. Science 332, 218â220 (2011).
Xu, T., Wu, Y-K., Kaplan, A. F., Ok, J. G. & Guo, J. L. Structural colors: from plasmonic to carbon nanostructures. Small 7, 3128â3136 (2011).
Ahn, S. H. & Guo, L. J. High-speed roll-to-roll nanoimprint lithography on flexible plastic substrates. Adv. Mater. 20, 2044â2049 (2008).
Kustandi, T. S., Low, H. Y., Teng, J. H., Rodriguez, I. & Yin, R. Mimicking domino-like photonic nanostructures on butterfly wings. Small 5, 574â578 (2009).
Javidi, B. Optical and Digital Techniques for Information Security (Springer, 2005).
Chen, Q. & Cumming, D. R. High transmission and low color cross-talk plasmonic color filters using triangular-lattice hole arrays in aluminum films. Opt. Express 18, 14056â14062 (2010).
Inoue, D. et al. Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes. Appl. Phys. Lett. 98, 093113 (2011).
Xu, T., Wu, Y-K., Luo, X. & Guo, J. L. Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging. Nature Commun. 1, 1â5 (2010).
Abbe, E. A contribution to the theory of the microscope and the nature of microscopic vision. Proc. Bristol Nat. Soc. 1, 200â261 (1874).
Huang, J., Wang, X. & Wang, Z. L. Controlled replication of butterfly wings for achieving tunable photonic properties. Nano Lett. 6, 2325â2331 (2006).
Huo, F. et al. Polymer pen lithography. Science 321, 1658â1660 (2008).
Piner, R. D., Zhu, J., Xu, F., Hong, S. & Mirkin, C. A. âDip-penâ nanolithography. Science 283, 661â663 (1999).
Ellenbogen, T., Seo, K. & Crozier, K. B. Chromatic plasmonic polarizers for active visible color filtering and polarimetry. Nano Lett. 12, 1026â1031 (2012).
Laux, E., Genet, C., Skauli, T. & Ebbesen, T. W. Plasmonic photon sorters for spectral and polarimetric imaging. Nature Photon. 2, 161â164 (2008).
Liu, H. & Lalanne, P. Microscopic theory of the extraordinary optical transmission. Nature 452, 728â731 (2008).
Luk'yanchuk, B. et al. The Fano resonance in plasmonic nanostructures and metamaterials. Nature Mater. 9, 707â715 (2010).
Ebbesen, T. W., Lezec, H. J., Ghaemi, H. F., Thio, T. & Wolff, P. A. Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391, 667â669 (1998).
Li, W-D., Ding, F., Hu, J. & Chou, S. Y. Three-dimensional cavity nanoantenna coupled plasmonic nanodots for ultrahigh and uniform surface-enhanced Raman scattering over large area. Opt. Express 19, 3925â3936 (2011).
Li, W-D., Hu, J. & Chou, S. Y. Extraordinary light transmission through opaque thin metal film with subwavelength holes blocked by metal disks. Opt. Express 19, 21098â21108 (2011).
Liu, Y. J. et al. Optically tunable plasmonic color filters. Appl. Phys. A 107, 49â54 (2011).
Caldwell, J. D. et al. Plasmonic nanopillar arrays for large-area, high-enhancement surface-enhanced Raman scattering sensors. ACS Nano 5, 4046â4055 (2011).
Chanda, D. et al. Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals. Nature Commun. 2, 1â7 (2011).
Wells, S. M., Polemi, A., Lavrik, N. V., Shuford, K. L. & Sepaniak, M. J. Efficient disc on pillar substrates for surface enhanced Raman spectroscopy. Chem. Commun. 47, 3814â3816 (2011).
Maier, S. A. Plasmonics: Fundamentals and Applications (Springer, 2007).
Jain, P. K., Lee, K. S., El-Sayed, I. H. & El-Sayed, M. A. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J. Phys. Chem. B 110, 7238â7248 (2006).
Mie, G. Contributions to the optical characteristis of turbid tubes, particularly of colloidal metal solutions (beitraege zur optik trueber Medien, speziell kolloidaler Metalloesungen). Ann. Phys. 25, 377â445 (1908).
Yang, J. K. W., Duan, H., Law, J. B. K., Low, H. Y. & Cord, B. Miniaturization of grayscale images. J. Vac. Sci. Technol. B 29, 06F313 (2011).
Yang, J. K. W. & Berggren, K. K. Using high-contrast salty development of hydrogen silsesquioxane for sub-10-nm half-pitch lithography. J. Vac. Sci. Technol., B 25, 2025â2029 (2007).
Palik, E. D. Handbook of Optical Constants of Solids Vol. 1, 386â350 (Elsevier, 1998).
Acknowledgements
This work was supported by the Agency for Science, Technology and Research (A*STAR) Young Investigatorship (grant no. 0926030138) and SERC (grant no. 092154099). The work made use of the SERC nano Fabrication, Processing and Characterization (SnFPC) facilities in IMRE. The authors thank S.H. Goh, I.Y. Phang, J. Deng and V.S.F. Lim for technical assistance, and M. Asbahi, M. Bosman, W.P. Goh and K.T.P. Lim (IMRE) and K.K. Berggren (MIT) for fruitful discussions.
Author information
Authors and Affiliations
Contributions
K.K., H.D. and J.K.W.Y. conceived the ideas and designed the experiments. K.K., H.D. and J.K.W.Y. fabricated and characterized the samples. R.S.H., S.C.W.K. and J.N.W. performed numerical simulations. All authors analysed the data and wrote the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary information
Supplementary information (PDF 4211 kb)
Rights and permissions
About this article
Cite this article
Kumar, K., Duan, H., Hegde, R. et al. Printing colour at the optical diffraction limit. Nature Nanotech 7, 557â561 (2012). https://doi.org/10.1038/nnano.2012.128
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nnano.2012.128
This article is cited by
-
A water-soluble label for food products prevents packaging waste and counterfeiting
Nature Food (2024)
-
High-speed laser writing of structural colors for full-color inkless printing
Nature Communications (2023)
-
Dielectric Mie voids: confining light in air
Light: Science & Applications (2023)
-
Versatile full-colour nanopainting enabled by a pixelated plasmonic metasurface
Nature Nanotechnology (2023)
-
Design of a widely adjustable electrochromic device based on the reversible metal electrodeposition of Ag nanocylinders
Nano Research (2023)