Abstract
The structure in the Universe is believed to have evolved from quantum fluctuations seeded by inflation in the early Universe. These fluctuations lead to density perturbations that grow via gravitational instability into large cosmological structures. In the linear regime, the growth of a structure is directly coupled to the velocity field because perturbations are amplified by attracting (and accelerating) matter. Surveys of galaxy redshifts and distances allow one to infer the underlying density and velocity fields. Here, assuming the lambda cold dark matter standard model of cosmology and applying a Hamiltonian Monte Carlo algorithm to the grouped Cosmicflows-4 (CF4) compilation of 38,000 groups of galaxies, the large-scale structure of the Universe is reconstructed out to a redshift corresponding to ~30,000âkmâsâ1. Our method provides a probabilistic assessment of the domains of gravitational potential minima: basins of attraction (BoA). Earlier Cosmicflows catalogues suggested that the Milky Way Galaxy was associated with a BoA called Laniakea. With the newer CF4 data, there is a slight probabilistic preference for Laniakea to be part of the much larger Shapley BoA. The largest BoA recovered from the CF4 data is associated with the Sloan Great Wall, with a volume within the sample of 15.5âÃâ106â(hâ1âMpc)3, which is more than twice the size of the second largest Shapley BoA.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 /Â 30Â days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
Data availability
The observational data used in this study were placed in the public domain in connection with the publication of Cosmicflows-4 (ref. 8). An interactive model illustrating the distribution of the Cosmicflows-4 sample of galaxies, an iso-contour of the mean HMC density reconstruction, mean velocity streamlines and the 50% probability inclusion shells of five prominent basins of attraction can be found at http://sketchfab.com/3d-models/pboas-p05-cf4-mean-field-delta-and-velocity-9ba49209e60c48de8469b01ee8ee772e. The estimated density and velocity fields are available upon reasonable request from the authors. We also offer an online tool that correlates distance and velocity using the constructed velocity field within this programme. Please access the tool at http://edd.ifa.hawaii.edu/CF4calculator/, and consult with the instruction on how to use the tool and interpret the results57. We will continuously update the calculator for better visualization and incorporate the latest improvements.
Code availability
The code used to produce this study is not publicly available but can be communicated in response to reasonable requests.
References
de Lapparent, V., Geller, M. J. & Huchra, J. P. A slice of the Universe. Astrophys. J. Lett. 302, L1 (1986).
York, D. G. et al. The Sloan Digital Sky Survey: technical summary. Astron. J. 120, 1579â1587 (2000).
Jones, D. H. et al. The 6dF Galaxy Survey: final redshift release (DR3) and southern large-scale structures. Mon. Not. R. Astron. Soc. 399, 683â698 (2009).
Tully, R. B., Scaramella, R., Vettolani, G. & Zamorani, G. Possible geometric patterns in 0.1c scale structure. Astrophys. J. 388, 9 (1992).
Einasto, M., Einasto, J., Tago, E., Dalton, G. B. & Andernach, H. The structure of the Universe traced by rich clusters of galaxies. Mon. Not. R. Astron. Soc. 269, 301â322 (1994).
Rubin, V. C., Ford Jr, W. K. & Thonnard, N. Rotational properties of 21 SC galaxies with a large range of luminosities and radii, from NGC 4605 (R=4kpc) to UGC 2885 (R=122kpc). Astrophys. J. 238, 471â487 (1980).
Kaiser, N. Clustering in real space and in redshift space. Mon. Not. R. Astron. Soc. 227, 1â21 (1987).
Tully, R. B. et al. Cosmicflows-4. Astrophys. J. 944, 94 (2023).
Bertschinger, E. & Dekel, A. Recovering the full velocity and density fields from large-scale redshift-distance samples. Astrophys. J. Lett. 336, L5 (1989).
Planck Collaborationet al. Planck 2015 results. XIII. Cosmological parameters. Astron. Astrophys. 594, A13 (2016).
Hoffman, Y. & Ribak, E. Primordial Gaussian perturbation fieldsâconstrained realizations. Astrophys. J. 384, 448 (1992).
Zaroubi, S., Hoffman, Y., Fisher, K. B. & Lahav, O. Wiener reconstruction of the large-scale structure. Astrophys. J. 449, 446 (1995).
Zaroubi, S., Hoffman, Y. & Dekel, A. Wiener reconstruction of large-scale structure from peculiar velocities. Astrophys. J. 520, 413â425 (1999).
Doumler, T., Hoffman, Y., Courtois, H. & Gottlöber, S. Reconstructing cosmological initial conditions from galaxy peculiar velocitiesâI. reverse Zeldovich approximation. Mon. Not. R. Astron. Soc. 430, 888â901 (2013).
Sorce, J. G. Minimization of biases in galaxy peculiar velocity catalogues. Mon. Not. R. Astron. Soc. 450, 2644â2657 (2015).
Hoffman, Y., Nusser, A., Valade, A., Libeskind, N. I. & Tully, R. B. From Cosmicflows distance moduli to unbiased distances and peculiar velocities. Mon. Not. R. Astron. Soc. 505, 3380â3392 (2021).
Kitaura, F. S. et al. Cosmic cartography of the large-scale structure with Sloan Digital Sky Survey data release 6. Mon. Not. R. Astron. Soc. 400, 183â203 (2009).
Jasche, J. & Wandelt, B. D. Bayesian physical reconstruction of initial conditions from large-scale structure surveys. Mon. Not. R. Astron. Soc. 432, 894â913 (2013).
Wang, H., Mo, H. J., Yang, X., Jing, Y. P. & Lin, W. P. ELUCIDâexploring the local Universe with the reconstructed initial density field. I. Hamiltonian Markov Chain Monte Carlo method with particle mesh dynamics. Astrophys. J. 794, 94 (2014).
Lavaux, G. Bayesian 3D velocity field reconstruction with Virbius. Mon. Not. R. Astron. Soc. 457, 172â197 (2016).
Graziani, R. et al. The peculiar velocity field up to z ~ 0.05 by forward-modelling Cosmicflows-3 data. Mon. Not. R. Astron. Soc. 488, 5438â5451 (2019).
Valade, A., Hoffman, Y., Libeskind, N. I. & Graziani, R. Hamiltonian Monte Carlo reconstruction from peculiar velocities. Mon. Not. R. Astron. Soc. 513, 5148â5161 (2022).
Neal, R. MCMC using Hamiltonian dynamics. Preprint at https://doi.org/10.48550/arXiv.1206.1901 (2011).
Valade, A., Libeskind, N. I., Hoffman, Y. & Pfeifer, S. Testing Bayesian reconstruction methods from peculiar velocities. Mon. Not. R. Astron. Soc. 519, 2981â2994 (2023).
Tully, R. B., Courtois, H., Hoffman, Y. & Pomarède, D. The Laniakea supercluster of galaxies. Nature 513, 71â73 (2014).
Dupuy, A. & Courtois, H. M. Dynamic cosmography of the local Universe: Laniakea and five more watershed superclusters. Astron. Astrophys. 678, A176 (2023).
Courtois, H. M., Pomarède, D., Tully, R. B., Hoffman, Y. & Courtois, D. Cosmography of the local Universe. Astron. J. 146, 69 (2013).
Pomarède, D., Hoffman, Y., Courtois, H. M. & Tully, R. B. The Cosmic V-Web. Astrophys. J. 845, 55 (2017).
Raychaudhury, S. The distribution of galaxies in the direction of the âGreat Attractorâ. Nature 342, 251â255 (1989).
Scaramella, R., Baiesi-Pillastrini, G., Chincarini, G., Vettolani, G. & Zamorani, G. A marked concentration of galaxy clusters: is this the origin of large-scale motions? Nature 338, 562â564 (1989).
Pomarède, D. et al. Cosmicflows-3: the South Pole Wall. Astrophys. J. 897, 133 (2020).
Haynes, M. P. & Giovanelli, R. in Large-Scale Motions in the Universe: A Vatican Study Week (eds Rubin, V. C. & Coyne, G. V.) 31â70 (Princeton University Press, 1988).
Einasto, M., Einasto, J., Tago, E., Müller, V. & Andernach, H. Optical and X-ray clusters as tracers of the supercluster-void network. I. Superclusters of Abell and X-ray clusters. Astron. J. 122, 2222â2242 (2001).
Wakamatsu, K. I. & Malkan, M. A. Optical structure of the nearby cluster of galaxies in the direction of the galactic center: the optical counterpart of 4U 1708-23. Publ. Astron. Soc. Jpn. 33, 57â66 (1981).
Hasegawa, T. et al. Large-scale structure of galaxies in the Ophiuchus region. Mon. Not. R. Astron. Soc. 316, 326â344 (2000).
Dressler, A. et al. Spectroscopy and photometry of elliptical galaxies: a large-scale streaming motion in the local Universe. Astrophys. J. Lett. 313, L37 (1987).
Gott III, J. R. et al. A map of the Universe. Astrophys. J. 624, 463â484 (2005).
Tully, R. B. & Fisher, J. R. Reprint of 1977A&Aâ¦.54â¥661T. A new method of determining distance to galaxies. Astron. Astrophys. 500, 105â117 (1977).
Djorgovski, S. & Davis, M. Fundamental properties of elliptical galaxies. Astrophys. J. 313, 59 (1987).
Dressler, A. et al. Spectroscopy and photometry of elliptical galaxies. I. New distance estimator. Astrophys. J. 313, 42 (1987).
Howlett, C. et al. The Sloan Digital Sky Survey peculiar velocity catalogue. Mon. Not. R. Astron. Soc. 515, 953â976 (2022).
Springob, C. M. et al. The 6dF Galaxy Survey: peculiar velocity field and cosmography. Mon. Not. R. Astron. Soc. 445, 2677â2697 (2014).
Qin, F., Howlett, C., Staveley-Smith, L. & Hong, T. Bulk flow in the combined 2MTF and 6dFGSv surveys. Mon. Not. R. Astron. Soc. 477, 5150â5166 (2018).
Kourkchi, E., Tully, R. B., Courtois, H. M., Dupuy, A. & Guinet, D. Cosmicflows-4: the baryonic TullyâFisher relation providing 10â000 distances. Mon. Not. R. Astron. Soc. 511, 6160â6178 (2022).
Tully, R. B. Galaxy groups: a 2MASS catalog. Astron. J. 149, 171 (2015).
Tempel, E., Tuvikene, T., Kipper, R. & Libeskind, N. I. Merging groups and clusters of galaxies from the SDSS data. The catalogue of groups and potentially merging systems. Astron. Astrophys. 602, A100 (2017).
Sorce, J. G., Stoica, R. S. & Tempel, E. Statistically bias-minimized peculiar velocity catalogs from Gibbs point processes and Bayesian inference. Astron. Astrophys. 679, A1 (2023).
Strauss, M. A. & Willick, J. A. The density and peculiar velocity fields of nearby galaxies. Phys. Rep. 261, 271â431 (1995).
Hinton, S. R., Kim, A. & Davis, T. M. Accounting for sample selection in Bayesian analyses. Preprint at https://doi.org/10.48550/arXiv.1706.03856 (2017).
Calcino, J. & Davis, T. The need for accurate redshifts in supernova cosmology. J. Cosmol. Astropart. Phys. 2017, 038 (2017).
Betancourt, M. A Conceptual introduction to Hamiltonian Monte Carlo. Preprint at https://doi.org/10.48550/arXiv.1701.02434 (2017).
Hoffman, M. D. & Gelman, A. The no-u-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo. Preprint at https://doi.org/10.48550/arXiv.1111.4246 (2011).
Dupuy, A., Courtois, H. M., Libeskind, N. I. & Guinet, D. Segmenting the Universe into dynamically coherent basins. Mon. Not. R. Astron. Soc. 493, 3513â3520 (2020).
Pomarède, D., Tully, R. B., Hoffman, Y. & Courtois, H. M. The arrowhead mini-supercluster of galaxies. Astrophys. J. 812, 17 (2015).
Einasto, M. et al. Multiscale cosmic web detachments, connectivity, and preprocessing in the supercluster SCl A2142 cocoon. Astron. Astrophys. 641, A172 (2020).
Malzer, C. & Baum, M. A hybrid approach to hierarchical density-based cluster selection. 2020 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI) 223â228 (2020).
Kourkchi, E. et al. Cosmicflows-3: two distanceâvelocity calculators. Astron. J. 159, 67 (2020).
Author information
Authors and Affiliations
Contributions
A.V. developed the key ideas of this study, designed the reconstruction of the density and velocity fields, as well as the computation of the streamlines, and participated in the writing of this article. N.I.L., Y.H. and S.P. took active parts in the development of the methods described in this article, as well as in its redaction. D.P. analyzed the cosmography and generated all the visualizations (figures and videos) that accompanied this study. R.B.T. led the writing of this article and was deeply involved in designing its scientific goals. E.K. built an online CF4 distance calculator.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Astronomy thanks Joseph Ribaudo and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisherâs note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Extended data
Supplementary information
Supplementary Video 1
Thirteen-minute video following the discussion in the text and illustrating the properties of the large-scale structure in the volume of the Universe sampled by Cosmicflows-4.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Valade, A., Libeskind, N.I., Pomarède, D. et al. Identification of basins of attraction in the local Universe. Nat Astron (2024). https://doi.org/10.1038/s41550-024-02370-0
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41550-024-02370-0