Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Identification of basins of attraction in the local Universe

Abstract

The structure in the Universe is believed to have evolved from quantum fluctuations seeded by inflation in the early Universe. These fluctuations lead to density perturbations that grow via gravitational instability into large cosmological structures. In the linear regime, the growth of a structure is directly coupled to the velocity field because perturbations are amplified by attracting (and accelerating) matter. Surveys of galaxy redshifts and distances allow one to infer the underlying density and velocity fields. Here, assuming the lambda cold dark matter standard model of cosmology and applying a Hamiltonian Monte Carlo algorithm to the grouped Cosmicflows-4 (CF4) compilation of 38,000 groups of galaxies, the large-scale structure of the Universe is reconstructed out to a redshift corresponding to ~30,000 km s−1. Our method provides a probabilistic assessment of the domains of gravitational potential minima: basins of attraction (BoA). Earlier Cosmicflows catalogues suggested that the Milky Way Galaxy was associated with a BoA called Laniakea. With the newer CF4 data, there is a slight probabilistic preference for Laniakea to be part of the much larger Shapley BoA. The largest BoA recovered from the CF4 data is associated with the Sloan Great Wall, with a volume within the sample of 15.5 × 106 (h−1 Mpc)3, which is more than twice the size of the second largest Shapley BoA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: High-density perturbations δ in the distribution of matter in the local Universe with the mean of many HMC trials.
Fig. 2: Streamlines constructed from the mean HMC velocity field.
Fig. 3: Velocity streamlines seeded at arbitrary locations within the reconstructed volume, with coloured envelopes associated with separate BoA extracted from the mean field.
Fig. 4: Sinks of velocity streamlines from individual HMC trials.
Fig. 5: Envelopes of major BoA superimposed on the sinks of HMC trials shown in the previous figure.
Fig. 6: Cyan surface envelopes Ophiuchus/Laniakea BoA at 20% probability.

Similar content being viewed by others

Data availability

The observational data used in this study were placed in the public domain in connection with the publication of Cosmicflows-4 (ref. 8). An interactive model illustrating the distribution of the Cosmicflows-4 sample of galaxies, an iso-contour of the mean HMC density reconstruction, mean velocity streamlines and the 50% probability inclusion shells of five prominent basins of attraction can be found at http://sketchfab.com/3d-models/pboas-p05-cf4-mean-field-delta-and-velocity-9ba49209e60c48de8469b01ee8ee772e. The estimated density and velocity fields are available upon reasonable request from the authors. We also offer an online tool that correlates distance and velocity using the constructed velocity field within this programme. Please access the tool at http://edd.ifa.hawaii.edu/CF4calculator/, and consult with the instruction on how to use the tool and interpret the results57. We will continuously update the calculator for better visualization and incorporate the latest improvements.

Code availability

The code used to produce this study is not publicly available but can be communicated in response to reasonable requests.

References

  1. de Lapparent, V., Geller, M. J. & Huchra, J. P. A slice of the Universe. Astrophys. J. Lett. 302, L1 (1986).

    Article  ADS  Google Scholar 

  2. York, D. G. et al. The Sloan Digital Sky Survey: technical summary. Astron. J. 120, 1579–1587 (2000).

    Article  ADS  Google Scholar 

  3. Jones, D. H. et al. The 6dF Galaxy Survey: final redshift release (DR3) and southern large-scale structures. Mon. Not. R. Astron. Soc. 399, 683–698 (2009).

    Article  ADS  Google Scholar 

  4. Tully, R. B., Scaramella, R., Vettolani, G. & Zamorani, G. Possible geometric patterns in 0.1c scale structure. Astrophys. J. 388, 9 (1992).

    Article  ADS  Google Scholar 

  5. Einasto, M., Einasto, J., Tago, E., Dalton, G. B. & Andernach, H. The structure of the Universe traced by rich clusters of galaxies. Mon. Not. R. Astron. Soc. 269, 301–322 (1994).

    Article  ADS  Google Scholar 

  6. Rubin, V. C., Ford Jr, W. K. & Thonnard, N. Rotational properties of 21 SC galaxies with a large range of luminosities and radii, from NGC 4605 (R=4kpc) to UGC 2885 (R=122kpc). Astrophys. J. 238, 471–487 (1980).

    Article  ADS  Google Scholar 

  7. Kaiser, N. Clustering in real space and in redshift space. Mon. Not. R. Astron. Soc. 227, 1–21 (1987).

    Article  ADS  Google Scholar 

  8. Tully, R. B. et al. Cosmicflows-4. Astrophys. J. 944, 94 (2023).

    Article  ADS  Google Scholar 

  9. Bertschinger, E. & Dekel, A. Recovering the full velocity and density fields from large-scale redshift-distance samples. Astrophys. J. Lett. 336, L5 (1989).

    Article  ADS  Google Scholar 

  10. Planck Collaborationet al. Planck 2015 results. XIII. Cosmological parameters. Astron. Astrophys. 594, A13 (2016).

    Article  Google Scholar 

  11. Hoffman, Y. & Ribak, E. Primordial Gaussian perturbation fields—constrained realizations. Astrophys. J. 384, 448 (1992).

    Article  ADS  Google Scholar 

  12. Zaroubi, S., Hoffman, Y., Fisher, K. B. & Lahav, O. Wiener reconstruction of the large-scale structure. Astrophys. J. 449, 446 (1995).

    Article  ADS  Google Scholar 

  13. Zaroubi, S., Hoffman, Y. & Dekel, A. Wiener reconstruction of large-scale structure from peculiar velocities. Astrophys. J. 520, 413–425 (1999).

    Article  ADS  Google Scholar 

  14. Doumler, T., Hoffman, Y., Courtois, H. & Gottlöber, S. Reconstructing cosmological initial conditions from galaxy peculiar velocities—I. reverse Zeldovich approximation. Mon. Not. R. Astron. Soc. 430, 888–901 (2013).

    Article  ADS  Google Scholar 

  15. Sorce, J. G. Minimization of biases in galaxy peculiar velocity catalogues. Mon. Not. R. Astron. Soc. 450, 2644–2657 (2015).

    Article  ADS  Google Scholar 

  16. Hoffman, Y., Nusser, A., Valade, A., Libeskind, N. I. & Tully, R. B. From Cosmicflows distance moduli to unbiased distances and peculiar velocities. Mon. Not. R. Astron. Soc. 505, 3380–3392 (2021).

    Article  ADS  Google Scholar 

  17. Kitaura, F. S. et al. Cosmic cartography of the large-scale structure with Sloan Digital Sky Survey data release 6. Mon. Not. R. Astron. Soc. 400, 183–203 (2009).

    Article  ADS  Google Scholar 

  18. Jasche, J. & Wandelt, B. D. Bayesian physical reconstruction of initial conditions from large-scale structure surveys. Mon. Not. R. Astron. Soc. 432, 894–913 (2013).

    Article  ADS  Google Scholar 

  19. Wang, H., Mo, H. J., Yang, X., Jing, Y. P. & Lin, W. P. ELUCID—exploring the local Universe with the reconstructed initial density field. I. Hamiltonian Markov Chain Monte Carlo method with particle mesh dynamics. Astrophys. J. 794, 94 (2014).

    Article  ADS  Google Scholar 

  20. Lavaux, G. Bayesian 3D velocity field reconstruction with Virbius. Mon. Not. R. Astron. Soc. 457, 172–197 (2016).

    Article  ADS  Google Scholar 

  21. Graziani, R. et al. The peculiar velocity field up to z ~ 0.05 by forward-modelling Cosmicflows-3 data. Mon. Not. R. Astron. Soc. 488, 5438–5451 (2019).

    Article  ADS  Google Scholar 

  22. Valade, A., Hoffman, Y., Libeskind, N. I. & Graziani, R. Hamiltonian Monte Carlo reconstruction from peculiar velocities. Mon. Not. R. Astron. Soc. 513, 5148–5161 (2022).

    Article  ADS  Google Scholar 

  23. Neal, R. MCMC using Hamiltonian dynamics. Preprint at https://doi.org/10.48550/arXiv.1206.1901 (2011).

  24. Valade, A., Libeskind, N. I., Hoffman, Y. & Pfeifer, S. Testing Bayesian reconstruction methods from peculiar velocities. Mon. Not. R. Astron. Soc. 519, 2981–2994 (2023).

    Article  ADS  Google Scholar 

  25. Tully, R. B., Courtois, H., Hoffman, Y. & Pomarède, D. The Laniakea supercluster of galaxies. Nature 513, 71–73 (2014).

    Article  ADS  Google Scholar 

  26. Dupuy, A. & Courtois, H. M. Dynamic cosmography of the local Universe: Laniakea and five more watershed superclusters. Astron. Astrophys. 678, A176 (2023).

    Article  ADS  Google Scholar 

  27. Courtois, H. M., Pomarède, D., Tully, R. B., Hoffman, Y. & Courtois, D. Cosmography of the local Universe. Astron. J. 146, 69 (2013).

    Article  ADS  Google Scholar 

  28. Pomarède, D., Hoffman, Y., Courtois, H. M. & Tully, R. B. The Cosmic V-Web. Astrophys. J. 845, 55 (2017).

    Article  ADS  Google Scholar 

  29. Raychaudhury, S. The distribution of galaxies in the direction of the ‘Great Attractor’. Nature 342, 251–255 (1989).

    Article  ADS  Google Scholar 

  30. Scaramella, R., Baiesi-Pillastrini, G., Chincarini, G., Vettolani, G. & Zamorani, G. A marked concentration of galaxy clusters: is this the origin of large-scale motions? Nature 338, 562–564 (1989).

    Article  ADS  Google Scholar 

  31. Pomarède, D. et al. Cosmicflows-3: the South Pole Wall. Astrophys. J. 897, 133 (2020).

    Article  ADS  Google Scholar 

  32. Haynes, M. P. & Giovanelli, R. in Large-Scale Motions in the Universe: A Vatican Study Week (eds Rubin, V. C. & Coyne, G. V.) 31–70 (Princeton University Press, 1988).

  33. Einasto, M., Einasto, J., Tago, E., Müller, V. & Andernach, H. Optical and X-ray clusters as tracers of the supercluster-void network. I. Superclusters of Abell and X-ray clusters. Astron. J. 122, 2222–2242 (2001).

    Article  ADS  Google Scholar 

  34. Wakamatsu, K. I. & Malkan, M. A. Optical structure of the nearby cluster of galaxies in the direction of the galactic center: the optical counterpart of 4U 1708-23. Publ. Astron. Soc. Jpn. 33, 57–66 (1981).

    ADS  Google Scholar 

  35. Hasegawa, T. et al. Large-scale structure of galaxies in the Ophiuchus region. Mon. Not. R. Astron. Soc. 316, 326–344 (2000).

    Article  ADS  Google Scholar 

  36. Dressler, A. et al. Spectroscopy and photometry of elliptical galaxies: a large-scale streaming motion in the local Universe. Astrophys. J. Lett. 313, L37 (1987).

    Article  ADS  Google Scholar 

  37. Gott III, J. R. et al. A map of the Universe. Astrophys. J. 624, 463–484 (2005).

    Article  ADS  Google Scholar 

  38. Tully, R. B. & Fisher, J. R. Reprint of 1977A&A….54‥661T. A new method of determining distance to galaxies. Astron. Astrophys. 500, 105–117 (1977).

    ADS  Google Scholar 

  39. Djorgovski, S. & Davis, M. Fundamental properties of elliptical galaxies. Astrophys. J. 313, 59 (1987).

    Article  ADS  Google Scholar 

  40. Dressler, A. et al. Spectroscopy and photometry of elliptical galaxies. I. New distance estimator. Astrophys. J. 313, 42 (1987).

    Article  ADS  Google Scholar 

  41. Howlett, C. et al. The Sloan Digital Sky Survey peculiar velocity catalogue. Mon. Not. R. Astron. Soc. 515, 953–976 (2022).

    Article  ADS  Google Scholar 

  42. Springob, C. M. et al. The 6dF Galaxy Survey: peculiar velocity field and cosmography. Mon. Not. R. Astron. Soc. 445, 2677–2697 (2014).

    Article  ADS  Google Scholar 

  43. Qin, F., Howlett, C., Staveley-Smith, L. & Hong, T. Bulk flow in the combined 2MTF and 6dFGSv surveys. Mon. Not. R. Astron. Soc. 477, 5150–5166 (2018).

    Article  ADS  Google Scholar 

  44. Kourkchi, E., Tully, R. B., Courtois, H. M., Dupuy, A. & Guinet, D. Cosmicflows-4: the baryonic Tully–Fisher relation providing 10 000 distances. Mon. Not. R. Astron. Soc. 511, 6160–6178 (2022).

    Article  ADS  Google Scholar 

  45. Tully, R. B. Galaxy groups: a 2MASS catalog. Astron. J. 149, 171 (2015).

    Article  ADS  Google Scholar 

  46. Tempel, E., Tuvikene, T., Kipper, R. & Libeskind, N. I. Merging groups and clusters of galaxies from the SDSS data. The catalogue of groups and potentially merging systems. Astron. Astrophys. 602, A100 (2017).

    Article  ADS  Google Scholar 

  47. Sorce, J. G., Stoica, R. S. & Tempel, E. Statistically bias-minimized peculiar velocity catalogs from Gibbs point processes and Bayesian inference. Astron. Astrophys. 679, A1 (2023).

    Article  ADS  Google Scholar 

  48. Strauss, M. A. & Willick, J. A. The density and peculiar velocity fields of nearby galaxies. Phys. Rep. 261, 271–431 (1995).

    Article  ADS  Google Scholar 

  49. Hinton, S. R., Kim, A. & Davis, T. M. Accounting for sample selection in Bayesian analyses. Preprint at https://doi.org/10.48550/arXiv.1706.03856 (2017).

  50. Calcino, J. & Davis, T. The need for accurate redshifts in supernova cosmology. J. Cosmol. Astropart. Phys. 2017, 038 (2017).

    Article  MathSciNet  Google Scholar 

  51. Betancourt, M. A Conceptual introduction to Hamiltonian Monte Carlo. Preprint at https://doi.org/10.48550/arXiv.1701.02434 (2017).

  52. Hoffman, M. D. & Gelman, A. The no-u-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo. Preprint at https://doi.org/10.48550/arXiv.1111.4246 (2011).

  53. Dupuy, A., Courtois, H. M., Libeskind, N. I. & Guinet, D. Segmenting the Universe into dynamically coherent basins. Mon. Not. R. Astron. Soc. 493, 3513–3520 (2020).

    Article  ADS  Google Scholar 

  54. Pomarède, D., Tully, R. B., Hoffman, Y. & Courtois, H. M. The arrowhead mini-supercluster of galaxies. Astrophys. J. 812, 17 (2015).

    Article  ADS  Google Scholar 

  55. Einasto, M. et al. Multiscale cosmic web detachments, connectivity, and preprocessing in the supercluster SCl A2142 cocoon. Astron. Astrophys. 641, A172 (2020).

    Article  Google Scholar 

  56. Malzer, C. & Baum, M. A hybrid approach to hierarchical density-based cluster selection. 2020 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI) 223–228 (2020).

  57. Kourkchi, E. et al. Cosmicflows-3: two distance–velocity calculators. Astron. J. 159, 67 (2020).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

A.V. developed the key ideas of this study, designed the reconstruction of the density and velocity fields, as well as the computation of the streamlines, and participated in the writing of this article. N.I.L., Y.H. and S.P. took active parts in the development of the methods described in this article, as well as in its redaction. D.P. analyzed the cosmography and generated all the visualizations (figures and videos) that accompanied this study. R.B.T. led the writing of this article and was deeply involved in designing its scientific goals. E.K. built an online CF4 distance calculator.

Corresponding author

Correspondence to A. Valade.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Joseph Ribaudo and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Table 1 Probability (in %) of some known features of the Local Universe to be part of probabilistic basins of attraction
Extended Data Table 2 Properties of the p-BoAs appearing in Extended Data Table 1

Supplementary information

Supplementary Video 1

Thirteen-minute video following the discussion in the text and illustrating the properties of the large-scale structure in the volume of the Universe sampled by Cosmicflows-4.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valade, A., Libeskind, N.I., Pomarède, D. et al. Identification of basins of attraction in the local Universe. Nat Astron (2024). https://doi.org/10.1038/s41550-024-02370-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41550-024-02370-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing