Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

The Fourier transform in analytical science

Abstract

Numerous data analysis methodologies depend on the Fourier transform (FT), especially in analytical chemistry. The FT is a potent and versatile tool, influencing many scientific disciplines. Despite its prominence, the FT is often an enigma for many. In response, this Primer aims to provide an all-encompassing elucidation of the FT for readers not well versed in advanced mathematics. The article explores the theoretical underpinnings of the FT, alongside practical applications, to demystify the fundamental concepts of the method. Its utility is demonstrated through diverse examples, such as mass spectrometry, NMR, infrared spectroscopy and other analytical techniques. Potential extensions of the FT are explored, including potential future developments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A complex plane representation, showing the real (horizontal axis) and imaginary (vertical axis) parts.
Fig. 2: Examples of overlap integrals between a main sine wave s (solid line) and an additional one (dashed line).
Fig. 3: The real-time signal with three components and its Fourier transform.
Fig. 4: Relations between the symmetries in the signal (left) and the properties of the Fourier transform spectrum (right).
Fig. 5: Pairs of functions and their Fourier transform.
Fig. 6: Effect of apodization.

Similar content being viewed by others

Code availability

The code used to generate the figures can be found at https://github.com/delsuc/Fourier-Transform-Review.

References

  1. Bracewell, R. N. The Fourier Transform and Its Applications (McGraw Hill, 2000).

  2. Fourier, J. B. J. Théorie Analytique de la Chaleur (Firmin Didot Père et Fils, 1822).

  3. Freeman, A. The Analytical Theory of Heat (Cambridge Univ. Press, 1878).

  4. Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948).

    Article  MathSciNet  Google Scholar 

  5. Hogan, J. A. & Lakey, J. D. Fourier uncertainty principles. in Time-Frequency and Time-Scale Methods: Adaptive Decompositions, Uncertainty Principles, and Sampling 191–243 (Birkhäuser, 2005).

  6. Cooley, J. W. & Tukey, J. W. An algorithm for the machine calculation of complex Fourier series. Math. Comput. 19, 297–301 (1965).

    Article  MathSciNet  Google Scholar 

  7. Qi, Y. & O’Connor, P. B. Data processing in Fourier transform ion cyclotron resonance mass spectrometry. Mass. Spectrom. Rev. 33, 333–352 (2014).

    Article  ADS  Google Scholar 

  8. Mallat, S. A Wavelet Tour of Signal Processing, The Sparse Way (Elsevier, 2008).

  9. Qi, Y. et al. Absorption-mode: the next generation of Fourier transform mass spectra. Anal. Chem. 84, 2923–2929 (2012).

    Article  Google Scholar 

  10. Marshall, A. G., Hendrickson, C. L. & Jackson, G. S. Fourier transform ion cyclotron resonance mass spectrometry: a primer. Mass Spectrom. Rev. 17, 1–35 (1998).

    Article  ADS  Google Scholar 

  11. Marshall, A. G. & Chen, T. 40 years of Fourier transform ion cyclotron resonance mass spectrometry. Int. J. Mass Spectrom. 377, 410–420 (2015).

    Article  Google Scholar 

  12. Makarov, A. Electrostatic axially harmonic orbital trapping: a high-performance technique of mass analysis. Anal. Chem. 72, 1156–1162 (2000).

    Article  Google Scholar 

  13. Hardman, M. & Makarov, A. A. Interfacing the orbitrap mass analyzer to an electrospray ion source. Anal. Chem. 75, 1699–1705 (2003).

    Article  Google Scholar 

  14. Scigelova, M. & Makarov, A. Orbitrap mass analyzer — overview and applications in proteomics. Proteomics 6, 16–21 (2006).

    Article  Google Scholar 

  15. Lozano, D. C. P. et al. Pushing the analytical limits: new insights into complex mixtures using mass spectra segments of constant ultrahigh resolving power. Chem. Sci. 10, 6966–6978 (2019).

    Article  Google Scholar 

  16. Ernst, R. R. Nuclear magnetic resonance Fourier transform spectroscopy (nobel lecture). Angew. Chem. Int. Ed. Engl. 31, 805–823 (1992).

    Article  Google Scholar 

  17. Ernst, R. R., Bodenhausen, G. & Wokaun, A. Principles of Nuclear Magnetic Resonance in One and Two Dimensions (Clarendon Press, 1990).

  18. Wüthrich, K. NMR studies of structure and function of biological macromolecules (nobel lecture). Angew. Chem. Int. Ed. 42, 3340–3363 (2003).

    Article  Google Scholar 

  19. Berthomieu, C. & Hienerwadel, R. Fourier transform infrared (FTIR) spectroscopy. Photosynth. Res. 101, 157–170 (2009).

    Article  Google Scholar 

  20. Fellgett, P. Theory of Infra-red Sensitivities and Its Application to Investigations of Stellar Radiation in the Near Infra-red (Univ. Cambridge, 1951).

  21. Connes, J. & Connes, P. Near-infrared planetary spectra by Fourier spectroscopy I instruments and results. J. Opt. Soc. Am. 56, 896 (1966).

    Article  ADS  Google Scholar 

  22. Naraoka, H. et al. Soluble organic molecules in samples of the carbonaceous asteroid (162173) Ryugu. Science 379, eabn9033 (2023).

    Article  ADS  Google Scholar 

  23. De Miguel-Hernández, J., Hoyland, R. J., Gómez Reñasco, M. F., Rubiño-Martín, J. A. & Viera-Curbelo, T. A. A high-sensitivity Fourier transform spectrometer for cosmic microwave background observations. IEEE Trans. Instru. Meas. 69, 4516–4523 (2020).

    Article  ADS  Google Scholar 

  24. Georgescu, I. The first decade of XFELs. Nat. Rev. Phys. 2, 345–345 (2020).

    Article  Google Scholar 

  25. Jeener, J. The Unpublished Basko Polje (1971) Lecture Notes About Two-dimensional NMR Spectroscopy (Editions de la Physique, 1994).

  26. Jeener, J. & Alewaeters, G. ‘Pulse pair technique in high resolution NMR’ a reprint of the historical 1971 lecture notes on two-dimensional spectroscopy. Prog. Nucl. Magn. Reson. Spectrosc. 94–95, 75–80 (2016).

    Article  Google Scholar 

  27. Ernst, R. R., Bodenhausen, G. & Wokaun, A. Principles of Nuclear Magnetic Resonance in One and Two Dimensions (Oxford Univ. Press, 1987).

  28. Delsuc, M. A. Spectral representation of 2D NMR spectra by hypercomplex numbers. J. Magn. Reson. 77, 119–124 (1988).

    ADS  Google Scholar 

  29. Orekhov, V., Kasprzak, P. & Kazimierczuk, K. in Two‐Dimensional NMR Methods Ch. 2 (eds Ivanov, K., Madhu, P. K. & Rajalakshmi, G.) 19–46 (Wiley, 2023).

  30. Aue, W. P., Bartholdi, E. & Ernst, R. R. Two-dimensional spectroscopy. Application to nuclear magnetic resonance. J. Chem. Phys. 64, 2229–2246 (1976).

    Article  ADS  Google Scholar 

  31. Jeener, J. Jeener, Jean: reminiscences about the early days of 2D NMR. eMagRes https://doi.org/10.1002/9780470034590.emrhp0087 (2007).

  32. Keeler, J. Understanding NMR Spectroscopy 2nd edn (Wiley, 2010).

  33. Fritzsch, R. et al. Two-dimensional infrared spectroscopy: an emerging analytical tool? Analyst 145, 2014–2024 (2020).

    Article  ADS  Google Scholar 

  34. Agthoven, M. A. et al. Two-dimensional mass spectrometry: new perspectives for tandem mass spectrometry. Eur. Biophys. J. 48, 213–229 (2019).

    Article  Google Scholar 

  35. Baker, M. 1,500 scientists lift the lid on reproducibility. Nature 533, 452–454 (2016).

    Article  ADS  Google Scholar 

  36. Munafò, M. R. et al. A manifesto for reproducible science. Nat. Hum. Behav. 1, 0021 (2017).

    Article  Google Scholar 

  37. Winn, M. D. et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. Sect. D Biol. Crystallogr. 67, 235–242 (2011).

    Article  ADS  Google Scholar 

  38. Helmus, J. J. & Jaroniec, C. P. Nmrglue: an open source python package for the analysis of multidimensional NMR data. J. Biomol. NMR 55, 355–367 (2013).

    Article  Google Scholar 

  39. Chiron, L., Coutouly, M.-A., Starck, J.-P., Rolando, C. & Delsuc, M.-A. SPIKE a processing software dedicated to Fourier spectroscopies. Preprint at https://arxiv.org/abs/10.48550/ARXIV.1608.067771608.06777 (2016).

  40. Maciejewski, M. W. et al. NMRbox: a resource for biomolecular NMR computation. Biophys. J. 112, 1529–1534 (2017).

    Article  ADS  Google Scholar 

  41. Rusconi, F. Free open source software for protein and peptide mass spectrometry-based science. Curr. Protein Peptide Sci. 22, 134–147 (2021).

    Article  Google Scholar 

  42. Wilkinson, M. D. et al. The FAIR guiding principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016).

    Article  Google Scholar 

  43. Deutsch, E. mzML: a single, unifying data format for mass spectrometer output. Proteomics 8, 2776–2777 (2008).

    Article  Google Scholar 

  44. Srivastava, D. J., Vosegaard, T., Massiot, D. & Grandinetti, P. J. Core scientific dataset model: a lightweight and portable model and file format for multi-dimensional scientific data. PLoS ONE 15, e0225953 (2020).

    Article  Google Scholar 

  45. Choi, M. et al. MassIVE.quant: a community resource of quantitative mass spectrometry-based proteomics datasets. Nat. Methods 17, 981–984 (2020).

    Article  Google Scholar 

  46. Wilhelm, M., Kirchner, M., Steen, J. A. J. & Steen, H. mz5: space- and time-efficient storage of mass spectrometry data sets. Mol. Cell. Proteom. 11, O111.011379 (2012).

    Article  Google Scholar 

  47. Sundling, M., Sukumar, N., Zhang, H., Embrechts, M. J. & Breneman, C. M. in Reviews in Computational Chemistry Vol. 22 (eds Lipkowitz, K. B., Cundari, T. R., Gillet, V. J. & Boyd, D. B.) 295–329 (Wiley, 2006).

  48. Hoang, V. D. Wavelet-based spectral analysis. Trends Anal. Chem. 62, 144–153 (2014).

    Article  Google Scholar 

  49. Wiener, N. Extrapolation, Interpolation, and Smoothing of Stationary Time Series (Wiley, 1949).

  50. Cadzow, J. A. Signal enhancement — a composite property mapping algorithm. IEEE Trans. Acoust. Speech Signal Process. 36, 49–62 (1988).

    Article  Google Scholar 

  51. Chiron, L. et al. Efficient denoising algorithms for large experimental datasets and their applications in Fourier transform ion cyclotron resonance mass spectrometry. Proc. Natl Acad. Sci. USA 111, 1385–1390 (2014).

    Article  ADS  Google Scholar 

  52. Stern, A. S. & Hoch, J. C. A new approach to compressed sensing for NMR. Magn. Reson. Chem. 53, 908–912 (2015).

    Article  Google Scholar 

  53. Gamez, G. Compressed sensing in spectroscopy for chemical analysis. J. Anal. At. Spectrom. 31, 2165–2174 (2016).

    Article  Google Scholar 

  54. Xie, Y. R., Castro, D. C., Rubakhin, S. S., Sweedler, J. V. & Lam, F. Enhancing the throughput of FT mass spectrometry imaging using joint compressed sensing and subspace modeling. Anal. Chem. 94, 5335–5343 (2022).

    Article  Google Scholar 

  55. Kazimierczuk, K. & Orekhov, V. Non-uniform sampling: post-Fourier era of NMR data collection and processing. Magn. Reson. Chem. 53, 921–926 (2015).

    Article  Google Scholar 

  56. Bray, F. et al. Nonuniform sampling acquisition of two-dimensional Fourier transform ion cyclotron resonance mass spectrometry for increased mass resolution of tandem mass spectrometry precursor ions. Anal. Chem. 89, 8589–8593 (2017).

    Article  Google Scholar 

  57. Pustovalova, Y., Mayzel, M. & Yu Orekhov, V. XLSY: extra‐large NMR spectroscopy. Angew. Chem. Int. Ed. 130, 14239–14241 (2018).

    Article  ADS  Google Scholar 

  58. Rajaby, E. & Sayedi, S. M. A structured review of sparse fast Fourier transform algorithms. Digital Signal Process. 123, 103403 (2022).

    Article  Google Scholar 

  59. Candes, E. J., Romberg, J. & Tao, T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52, 489–509 (2006).

    Article  MathSciNet  Google Scholar 

  60. Donoho, D. L. Compressed sensing. IEEE Trans. Inf. Theory 52, 1289–1306 (2006).

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank P. Kern for correcting the text and helpful advice on its content.

Author information

Authors and Affiliations

Authors

Contributions

Introduction (M.-A.D. and P.O.C.); Experimentation (M.-A.D. and P.O.C.); Results (M.-A.D. and P.O.C.); Applications (M.-A.D. and P.O.C.); Reproducibility and data deposition (M.-A.D. and P.O.C.); Limitations and optimizations (M.-A.D. and P.O.C.); Outlook (M.-A.D. and P.O.C.); overview of the Primer (M.-A.D. and P.O.C.).

Corresponding author

Correspondence to Marc-André Delsuc.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Methods Primers thanks Javier Segurado and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

HDF5: https://www.hdfgroup.org/solutions/hdf5/

Glossary

Apodization

Also known as windowing. Consists of multiplying the signal before Fourier transform by a usually decaying adequate function to improve the signal-to-noise ratio. This enables correction of truncation artefacts and improvement of peak line shapes.

Convolution

An integral transformation that combines two independent functions into a resulting function and appears in many aspects of the spectral analysis.

Discrete Fourier transform

A linear algebra transformation that can be represented by a square matrix. It shares many properties with the analytical Fourier transform operation applied to continuous functions.

Exponential decay

A signal decaying with an exponential dependency to a characteristic time s(t) \(\propto \) exp(−t/τ).

Fast discrete Fourier transform

An algorithm that performs the discrete Fourier transform computation more rapidly than the naive matrix approach, enabling processing of large vectors if their size is decomposable into small prime numbers.

Fellgett effect

Also known as multiplex advantage. Improvement of the signal-to-noise ratio observed for stationary signals.

Fourier series

A series of sinusoidal functions that can approximate any periodic function.

Full width at half maximum

A standardized measure of the width of a spectral peak obtained by computing its width at 50% of the maximum point of the peak.

Gate function

Also known as the box-car function. A function null everywhere except in a continuous interval [a, ..., b] in which it is equal to 1. Used to express the measurement process of a signal during this interval. Its Fourier transform is the sinc function.

Gaussian decay

A signal decaying with a Gaussian dependency to a characteristic time τ: s(t) \(\propto \) exp(−t2/τ2).

Sampling criterion

Also known as the Nyquist criterion. Determines the highest frequency faithfully sampled by a given periodic sampling.

Signal-to-noise ratio

Ratio of the intensity of a frequency signal in the spectrum to the background noise observed in the same spectrum, measured either from its standard deviation or by peak-to-peak extension.

Sinc function

Also referred to as a sine cardinal function. A function defined as sinc x = sin x/x with a characteristic bell shape around zero and oscillating tails decaying away from the centre. Its Fourier transform is the gate function.

White noise

A random signal, with no characteristic frequency and a flat frequency spectrum.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delsuc, MA., O’Connor, P. The Fourier transform in analytical science. Nat Rev Methods Primers 4, 49 (2024). https://doi.org/10.1038/s43586-024-00326-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s43586-024-00326-2

Search

Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics