Abstract
We survey the history of resolution enhancement techniques in microscopy and their impact on current research in biomedicine. Often these techniques are labeled superresolution, or enhanced resolution microscopy, or light-optical nanoscopy. First, we introduce the development of diffraction theory in its relation to enhanced resolution; then we explore the foundations of resolution as expounded by the astronomers and the physicists and describe the conditions for which they apply. Then we elucidate Ernst Abbe’s theory of optical formation in the microscope, and its experimental verification and dissemination to the world wide microscope communities. Second, we describe and compare the early techniques that can enhance the resolution of the microscope. Third, we present the historical development of various techniques that substantially enhance the optical resolution of the light microscope. These enhanced resolution techniques in their modern form constitute an active area of research with seminal applications in biology and medicine. Our historical survey of the field of resolution enhancement uncovers many examples of reinvention, rediscovery, and independent invention and development of similar proposals, concepts, techniques, and instruments. Attribution of credit is therefore confounded by the fact that for understandable reasons authors stress the achievements from their own research groups and sometimes obfuscate their contributions and the prior art of others. In some cases, attribution of credit is also made more complex by the fact that long term developments are difficult to allocate to a specific individual because of the many mutual connections often existing between sometimes fiercely competing, sometimes strongly collaborating groups. Since applications in biology and medicine have been a major driving force in the development of resolution enhancing approaches, we focus on the contribution of enhanced resolution to these fields.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
Abbe, E. 1873. Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. M. Schultze’s Archive für Mikroskopische Anatomie IX: 413-468
Abbe, E. 1989a. Abhandlungen über die Theorie des Mikroskops I, Goerg Olms Verlag, Hildescheim, Germany
Abbe, E. 1989b. Gesammelte Abhandlungen, four volumes, Goerg Olms Verlag, Hildesheim, Germany
Ach, T., G. Best, S. Rossberger, R. Heintzmann, C. Cremer and S. Dithmar. 2012. Autofluorescence imaging of human RPE cell granules using structured illumination microscopy, Br. J. Ophthalmology, DOI 10.1136/bjophthalmol-2012-301547
Agard, D.A. and J. Sedat. 1983. Three-dimensional architecture of a polytene nucleus. Nature 302: 676-681
Airy, G.B. 1835. On the Diffraction of an Object-glass with Circular Aperture. Trans. Cambridge Philos. Soc. 5: 283-291
Albrecht, B.A., V. Failla, R. Heintzmann and C. Cremer. 2001. Spatially modulated illumination microscopy: online visualization of intensity distribution and prediction of nanometer precision of axial distance measurements by computer simulations. Journal of Biomedical Optics 6: 292-292
Albrecht, B.A., A. Failla, A. Schweitzer and C. Cremer. 2002. Spatially modulated illumination microscopy allows axial distance resolution in the nanometer range. Appl. Opt. 41: 80-87
Andresen, M., A.C. Stiel, F. Jonas, D. Wenzel, A. Schönle, A. Egner, C. Eggeling, S.W. Hell and S. Jakobs. 2008. Photoswitchable fluorescent proteins enable monochromatic multilabel imaging and dual color fluorescence nanoscopy. Nature Biotechnology 26: 1035-1040
Ash, E.A. and G. Nichols, 1972. Super-resolution aperture scanning microscope, Nature 237: 510-512
Baddeley, D., C. Carl and C. Cremer. 2006. 4Pi microscopy deconvolution with a variable point-spread function. Appl. Optics 45: 7056-7064
Baddeley, D., C. Batram, Y. Weiland, C. Cremer and U.J. Birk. 2007. Nanostructure analysis using spatially modulated illumination microscopy. Nature Protocols 2: 2640-2646
Baddeley, D., I.D. Jayasinghe, C. Cremer, M.B. Cannell and C. Soeller. 2009a. Light-induced dark states of organic fluorochromes enable 30 nm resolution imaging in standard media. Biophys. J. 96: L22-L24
Baddeley, D., I.D. Jayasinghe, L. Lam, S. Rossberger, M.B. Cannell and C. Soeller. 2009b. Optical single-channel resolution imaging of the ryanodine receptor distribution in rat cardiac myocytes. Proc. Natl. Acad. Sci. USA 106: 22275-22280
Baddeley, D., Y. Weiland, C. Batram, U. Birk and C. Cremer. 2010a. Model based precision structural measurements on barely resolved objects. J. of Microscopy 237: 70-78
Baddeley, D., V.O. Chagin, L. Schermelleh, S. Martin, A. Pombo, P.M. Carlton, A. Gahl, P. Domaing, U. Birk, H. Leonhardt, C. Cremer and M.C. Cardoso. 2010b. Measurement of replication structures at the nanometer scale using super-resolution light microscopy. Nucleic Acids Res 38: e81-11. doi: 10.1093/nar/gkp901
Baddeley, D., D. Crossman, S. Rossberger, J.E. Cheyne, J.M. Montgomery, I.D. Jayasinghe, C. Cremer, M.B. Cannell and C. Soeller. 2011. 4D Super-Resolution Microscopy with Conventional Fluorophores and Single Wavelength Excitation in Optically Thick Cells and Tissues. PLoS ONE 6: e20645. doi: 10.1371/journal.pone.0020645
Baer, S.C. “Method and Apparatus for improving resolution in scanned optical system”, Filed: July 15, 1994, Date of Patent: February 2, 1999. U. S. Patent number: 5, 866, 911
Bahlmann, K., S. Jakobs and S.W. Hell. 2001. 4Pi-confocal microscopy of live cells. Ultramicroscopy 87: 155-164
Bailey, B., D. Farkas, D.L. Taylor and F. Lanni. 1993. Enhancement of axial resolution in fluorescence microscopy by standing-wave excitation. Nature 366: 44-48
Bates, M., B. Huang, G. Dempsey and X. Zhuang. 2007. Multicolor super-resolution imaging with photoswitchable fluorescent probes. Science 317: 1749-1753
Best, G., R. Amberger, D. Baddeley, T. Ach, S. Dithmar, R. Heintzmann and C. Cremer. 2011. Structured illumination microscopy of autofluorescent aggregations in human tissue. Micron 42: 330-335
Bethe, H.A. 1944. Theory of diffraction by small holes. The Physical Review 66: 163-182
Betzig, E. 1995. Proposed method for molecular optical imaging. Optics Letters 20: 237-239
Betzig, E., A. Lewis, M. Isaacson, A. Murray and A. Harootunian. 1986. Near Field Scanning Optical Microscopy (NSOM): Development and Biophysical Applications. Biophysical Journal 49: 269-279
Betzig, E., G.H. Patterson, R. Sougrat, O.W. Lindwasser, S. Olenych, J.S. Bonifacino, M.W. Davidson, J. Lippincott-Schwartz and H.F. Hess. 2006. Imaging Intracellular Fluorescent Proteins at Nanometer Resolution. Science 313: 1642-1645
Bewersdorf, J., B.T. Bennett and K.L. Knight. 2006. H2AX chromatin structures and their response to DNA damage revealed by 4Pi microscopy. Proc. Natl. Acad. Sci. USA 103: 18137-18142
Binnig, G. and H. Rohrer. 1982. Scanning tunneling microscopy. Helvetica Physica Acta 55: 726-735
Binnig, G., C.F. Quate and Ch. Gerber. 1986. Atomic force microscope, Physical Review Letters 56: 930-933
Birk, U.J., I. Upmann, D. Toomre, C. Wagner and C. Cremer. 2007. Size Estimation of Protein Clusters in the Nanometer Range by Using Spatially Modulated Illumination Microscopy, in: Modern Research and Educational Topics in Microscopy, edited by A. Mendez-Vilas, J. Diaz. FORMATEX Microscopy Series, Vol. 1, pp. 272-279
Biteen, J.S., M.A. Thompson, N.K. Tselentis, G.R. Bowman, L. Shapiro and W.E. Moerner. 2008. Single-moldecule active-control microscopy (SMACM) with photo-reactivable EYFP for imaging biophysical processes in live cells. Nature Methods 5: 947-949
Bock, H., C. Geisler, C.A. Wurm, C. von Middendorff, S. Jakobs, A. Schönle, A. Egner, S.W. Hell and C. Eggeling. 2007. Two-color far-field fluorescence nanoscopy based on photoswitchable emitters. Appl. Phys. B 88: 161-165
Bohn, M., P. Diesinger, R. Kaufmann, Y. Weiland, P. Müller, M. Gunkel, A. von Ketteler, P. Lemmer, M. Hausmann and C. Cremer. 2010. Localization Microscopy reveals expression dependent parameters of chromatin nanostructure. Biophys. J. 99: 1358-1367
Born, M. and E. Wolf. 1980. Principles of optics, Electromagnetic theory of propagation, interference and diffraction of light. 7th edn. (Expanded). Cambridge, Cambridge University Press
Bornfleth, H., K. Sätzler, R. Eils and C. Cremer. 1998. High precision distance measurements and volume-conserving segmentation of objects near and below the resolution limit in three-dimensional confocal fluorescence microscopy. J. Microscopy 189: 118-136
Bradl, J., M. Hausmann, V. Ehemann, D. Komitowski and C. Cremer. 1992. A tilting device for three-dimensional microscopy: application to in situ imaging of interphase cell nuclei. J. Microscopy 168: 47-57
Bradl, J., M. Hausmann, B. Schneider, B. Rinke and C. Cremer. 1994. A versatile 2pi-tilting device for fluorescence microscopes. J. Microscopy 176: 211-221
Bradl, J., B. Rinke, B. Schneider, M. Hausmann and C. Cremer. 1996a. Improved resolution in ‘practical’ light microscopy by means of a glass fibre 2pi-tilting device, in: Optical and Imaging Techniques for Biomonitoring, edited by Hans-Jochen Foth, Renato Marchesini, Halina Podbielska, Michel Robert-Nicoud, Herbert Schneckenburger, Proc. SPIE 2628: 140-146
Bradl, J., B. Rinke, A. Esa, P. Edelmann, H. Krieger, B. Schneider, M. Hausmann and C. Cremer. 1996b. Comparative study of three-dimensional localization accuracy in conventional, confocal laser scanning and axial tomographic fluorescence light microscopy. Proc. SPIE 2926: 201-206
Brakenhoff, G.J., P. Blom and P. Barends. 1979. Confocal scanning light microscopy with high aperture immersion lenses. Journal of Microscopy 117: 219-232
Brakenhoff, G.J., H.T.M. van der Voort, E.A. van Spronsen, W.A.M. Linnemanns and N. Nanninga. 1985. Three-dimensional chromatin distribution in neuroblastoma nuclei shown by confocal laserscanning microscopy. Nature 317: 748-749
Born, M. and E. Wolf. 1975. Principles of Optics, Pergamon, Oxford
Bretschneider, S., C. Eggeling and S.W. Hell. 2007. Breaking the diffraction barrier in fluorescence microscopy by optical shelving. Phys. Rev. Lett. 98: 218103-1-21803-4
Brunner, A., G. Best, P. Lemmer, R. Amberger, T. Ach, S. Dithmar, R. Heintzmann and C. Cremer. 2011. Fluorescence Microscopy with Structured Excitation Illumination, in: Handbook of Biomedical Optics, edited by D.A. Boas, C. Pitris and N. Ramanujam. CRC Press, Boca Raton
Burns, D.H., J.B. Callis, G.D. Christian and E.R. Davidson. 1985. Strategies for attaining enhanced resolution using spectroscopic data as constraints. Appl. Optics 24: 154-161
Chao, W., B.D. Harteneck, J.A. Liddle, E.H. Anderson and D.T. Attwood. 2005. Soft X-ray microscopy at a spatial resolution better than 15 nm. Nature 435: 1210-1213
Chen, K.R. 2009. Focusing of light beyond the diffraction limit. arXiv.org/pdf/4623v1
Courjon, D. 2003. Near-Field Microscopy and Near-Field Optics, Imperial College Press, London
Cremer, C. 2011. Lichtmikroskopie unterhalb des Abbe-Limits. Physik in Unserer Zeit 42: 21-29 (in German)
Cremer, C. 2011. Mikroskope und Mikroben. In: Viren und andere Mikroben: Heil oder Plage? Zum hundertsten Todestag von Robert Koch (Karlheinz Sonntag, Hg.). Studium Generale der Universität Heidelberg 2010. Universitätsverlag Winter, Heidelberg (in German)
Cremer, C. 2012. Optics far Beyond the Diffraction Limit From Focused Nanoscopy to Spectrally Assigned Localization Microscopy. Springer Handbook of Lasers and Optics, 2nd edition (F. Träger, Editor, pp. 1351–1389 Springer Verlag, Berlin
Cremer, C. and T. Cremer. 1972. Procedure for the Imaging and modification of object details with dimensions below the range of visible wavelengths. German Patent Application No. 2116521 (in German)
Cremer, C. et al., German Patent Application No. 196.54.824.1/DE, submitted Dec 23, 1996, European Patent EP 1997953660, 08.04.1999, Japanese Patent JP 1998528237, 23.06.1999, United States Patent US 09331644, 25.08.1999
Cremer, C., A.V. Failla and B. Albrecht. 2002. Far-field light microscopical method, system and computer program product for analysing at least one object having a subwavelength size. US Patent7, 298, 461, filed Oct. 9, 2002, date of patent Nov 20, 2007
Cremer, C., C. Zorn and T. Cremer. 1974. An ultraviolet laser microbeam for 257 nm. Microsc. Acta 75: 331-337
Cremer, C. and T. Cremer. 1978. Considerations on a Laser-Scanning-Microscope with high resolution and depth of field. Microsc. Acta 81: 31-44
Cremer, C., A. von Ketteler, P. Lemmer, R. Kaufmann, Y. Weiland, P. Mueller, M. Hausmann, D. Baddeley and A. Amberger. 2010. Far field fluorescence microscopy of cellular structures @ molecular resolution, in: Nanoscopy and Multidimensional Optical Fluorescence Microscopy, edited by A. Diaspro. Taylor and Francis. Abingdon, Oxford, UK, pp. 3/1-3/35
Cremer, C., R. Kaufmann, M. Gunkel, S. Pres, Y. Weiland, P. Müller, T. Ruckelshausen, P. Lemmer, F. Geiger, S. Degenhard, C. Wege, N.A.W. Lemmermann, R. Holtappels, H. Strickfaden and M. Hausmann. 2011. Enhanced resolution Imaging of Biological Nanostructures by Spectral Precision Distance Microscopy (SPDM). Biotechnology Journal 6: 1037-1051
Cremer, C., P. Edelmann, H. Bornfleth, G. Kreth, H. Muench, H. Luz and M. Hausmann. 1999. Principles of Spectral Precision Distance confocal microscopy for the analysis of molecular nuclear structure. Handbook of Computer Vision and Applications, edited by B. Jähne, H. Haußecker, P. Geißler, Vol. 3, pp. 839-857
Cremer, T. and C. Cremer. 2001. Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nature Reviews Genetics 2: 292-301
Cseresnyes, Z., U. Schwarz and C.M. Green. 2009. Analysis of replication factories in human cells by super-resolution light microscopy. BMC Cell Biology 10: 88 doi: 10.1186/1471-2121-10-88
Czapski, S. 1910. Theorie der optischen Instrumente nach Abbe. O. Lummer and F. Reiche, Die Lehre von der Bildentstehung im Mikroskop von Ernst Abbe, Friedrich View und Sohn, Braunschweig
Davidovits, P. and M.D. Egger. 1971. Scanning Laser Microscope for Biological Investigations. Appl. Optics 10: 1615-1619
Dekker, A.J. and A. Van den Bos. 1997. Resolution: a survey. J. Opt. Soc. Am. A 14: 547-55
Dertinger, T., R. Colyer, G. Iyer, S. Weiss and J. Enderlein. 2009. Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI). Proc. Natl. Acad. Sci. 106: 22287-22292
Dertinger, T., R. Colyer, R. Vogel, J. Enderlein and S. Weiss. 2010a. Achieving increased resolution and more pixels with superresolution optical fluctuation imaging (SOFI). Optics Express 18: 18875-18885
Dertinger, T., M. Heilemann, R. Vogel, M. Sauer and S. Weiss. 2010b. Superresolution optical fluctuation imaging with organic dyes. Angew. Chemie. Int. Ed. 49: 9441-9443
Dickson, R.M., A.B. Cubitt, R.Y. Tsien and W.E. Moerner. 1997. On/off blinking and switching behaviour of single molecules of green fluorescent protein. Nature 388: 355-358
Dierolf, M., A. Menzel, P. Thibault, P. Schneider, C.M. Kewish, R. Wepf, O. Bunk and F. Pfeiffer. 2010. Ptychographic X-ray computed tomography at the Nanoscale. Nature 467: 436-439
Dietzel, S., E. Weilandt, R. Eils, C. Münkel, C. Cremer and T. Cremer. 1995. Three-dimensional distribution of centromeric or paracentromeric heterochromatin of chromosomes 1, 7, 15, and 17 in human lymphocyte nuclei studied with light microscopic axial tomography. Bioimaging 3: 121-133
Donnert, G., J. Keller, R. Medda, M.A. Andrei, S.O. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling and S.W. Hell. 2006. Macromolecular-scale resolution in biological fluorescence microscopy. Proc. Natl. Acad. Sci. USA 103: 11440-11445
Donnert, G., J. Keller, C.A. Wurm, S.O. Rizzoli, V. Westphal, A. Schönle, R. Jahn, S. Jakobs, C. Eggeling and S.W. Hell. 2007. Two-Color Far-Field Fluorescence Nanoscopy. Biophys. J. 92: L67-L69
Edelmann, P., A. Esa, M. Hausmann and C. Cremer. 1999. Confocal laser scanning microscopy: In situ determination of the confocal point-spread function and the chromatic shifts in intact cell nuclei. Optik 110: 194-198
Egner, A., M. Schrader and S.W. Hell. 1998. Refractive index mismatch induced intensity and phase variations in fluorescence confocal, multiphoton and 4Pi-microscopy. Opt. Commun. 153: 211-217
Egner, A., C. Geisler, C. von Middendorff, H. Bock, D. Wenzel, R. Medda, M. Andresen, A.C. Stiel, S. Jakobs, C. Eggeling, A. Schönle and S.W. Hell. 2007. Fluorescence nanoscopy in whole cells by asynchronous localization of photoswitching emitters. Biophysical Journal 93: 3285-3290
Egner, A., S. Jakobs and S.W. Hell. 2002. Fast 100-nm resolution three-dimensional microscope reveals structural plasticity of mitochondria in live yeast. Proc. Natl. Acad. Sci. USA 99: 3370-3375
Egner, A., S. Verrier, A. Goroshkov, H.-D. Söling and S.W. Hell. 2004. 4Pi-microscopy of the Golgi apparatus in live mammalian cells. J. Struct. Biol. 147: 70-76
Esa, A., A.E. Coleman, P. Edelmann, S. Silva, C. Cremer and S. Janz. 2001. Conformational differences in the 3D-nanostructure of the immunoglobulin heavy-chain locus, a hotspot of chromosomal translocations in B lymphocytes. Cancer Genetics and Cytogenetics 127: 168-173
Esa, A., P. Edelmann, L. Trakthenbrot, N. Amariglio, G. Rechavi, M. Hausmann and C. Cremer. 2000. 3D-spectral precision distance microscopy (SPDM) of chromatin nanostructures after triple-colour labelling a study of the BCR region on chromosome 22 and the Philadelphia chromosome. J. Microscopy 199: 96-105
Failla, A.V., and C. Cremer. 2001. Virtual Spatially Modulated Illumination Microscopy Prediction of Axial Distance Measurement. Proc. SPIE 4260: 120-125
Failla, A.V., B. Albrecht, U. Spoeri, A. Schweitzer, A. Kroll, M. Bach and C. Cremer. 2003. Nanotopology analysis using spatially modulated illumination (SMI) microscopy. Complexus 1: 29-40
Failla, A.V., A. Cavallo and C. Cremer. 2002a. Subwavelength size determination by spatially modulated illumination virtual microscopy. Appl. Optics 41: 6651-6659
Failla, A.V., U. Spöri, B. Albrecht, A. Kroll and C. Cremer. 2002b. Nanosizing of fluorescent objects by spatially modulated illumination microscopy. Appl. Optics 41: 7275-7283
Fang, N., H. Lee, C. Sun and X. Zhang. 2005. Sub–Diffraction-Limited Optical Imaging with a Silver Superlens. Science 308: 534-537
Fölling, J., M. Bossi, H. Bock, R. Medda, C.A. Wurm, B. Hein, S. Jakobs, C. Eggeling and S.W. Hell. 2008. Fluorescence nanoscopy by ground-state depletion and single-molecule return. Nature Methods 5: 943-945
Frohn, J., H. Knapp and A. Stemmer. 2000. True optical resolution beyond the Rayleigh limit achieved by standing wave illumination. Proc. Natl. Acad. Sci. USA 97: 7232-7236
Gaskill, J.D. 1978. Linear Systems, Fourier Transforms, and Optics, John Wiley and Sons, New York, Vol. 38, pp. 165-169
Geisler, C., A. Schönle, C. von Middendorff, H. Bock, C. Eggeling, A. Egner and S.W. Hell. 2007. Resolution of λ/10 in fluorescence microscopy using fast single molecule photo-switching. Applied Physics A: Materials Science and Processing 88: 223-226
Glaschick, S., C. Röcker, K. Deuschle, J. Wiedenmann, F. Oswald, V. Mailänder and G.U. Nienhaus. 2007. Axial Resolution Enhancement by 4Pi Confocal Fluorescence Microscopy with Two-Photon Excitation. J Biol Phys. 33: 433-443
Gordon, M.P., T. Ha and P.R. Selvin. 2004. Single-molecule high-resolution imaging with photobleaching. Proc. Natl. Acad. Sci. USA 101: 6462-6465
Gould, T.J. M.S. Gunewardene, M.V. Gudheti, V.V. Verkhusha, S. Yin, J.A. Gosse and S.T. Hess. 2008. Nanoscale Imaging of Molecular Positions and Anisotropies. Nature Methods 5: 1027-1030
Grab, A.L. 2011. In situ Nachweis von Proteinadsorptionsprozessen mittels kombinierter Schwingquarzmikrowägung und Plasmonenresonanz in Nanopartikelfilmen sowie Detektion einzelner Alexa Moleküle mit SPDM. Diploma Thesis, Faculty of Physics & Astronomy, University Heidelberg
Greger, K., M.J. Neetz, E.G. Reynaud and E.H. Stelzer. 2011. Three-dimensional Fluorescence Lifetime Imaging with a Single Plane Illumination Microscope provides an improved Signal to Noise Ratio. Optics Express 19: 20743-20750
Gross, L., F. Mohn, N. Moll, P. Liljeroth and G. Meyer. 2009. The chemical structure of a molecule resolved by atomic force microscopy, Science 325: 1110-1114
Grotjohann, T., I. Testa, M. Leutenegger, H. Bock, N.T. Urban, F. Lavoie-Cardinal, K.I. Willig, C. Eggeling, S. Jakobs and S.W. Hell. 2011. Diffraction-unlimited all-optical imaging and writing with a photochromic GFP. Nature 478: 204-208
Grüll, F., M. Kirchgessner, R. Kaufmann, M. Hausmann and U. Kebschull. 2011. Accelerating Image Analysis For Localization Microscopy With FPGAs. International Conference on Field Programmable Logic and Applications 2011, Chania, Greece, 2011
Gugel, H., J. Bewersdorf, S. Jakobs, J. Engelhardt, R. Storz and S.W. Hell. 2004. Cooperative 4Pi Excitation and Detection Yields Sevenfold Sharper Optical Sections in Live-Cell Microscopy. Biophys J. 87: 4146-4152
Gunkel, M., F. Erdel, K. Rippe, P. Lemmer, R. Kaufmann, C. Hörmann, C., R. Amberger and C. Cremer. 2009. Dual Color Localization Microscopy of Cellular Nanostructures. Biotechnology J. 4: 927-938
Gustafsson, M.G.L. 1999. Extended resolution fluorescence microscopy. Curr. Opinion Struct. Biol. 9: 627-634
Gustafsson, M.G.L. 2000. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J. Microsc. 198: 82-87
Gustafsson, M. 2005. Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution. Proc. Natl. Acad. Sci. USA 102: 13081-13086
Gustafsson, M., L. Shao, P.M. Carlton, C.J.R. Wang, I.N. Golubovskaya, W.Z. Cande, D.A. Agard and J.W. Sedat. 2008. Three-Dimensional Resolution Doubling in Wide-Field Fluorescence Microscopy by Structured Illumination. Biophysical Journal 94: 4957-4970
Ha, T., Th. Enderle, D.S. Chemla and S. Weiss. 1996. Dual-Molecule Spectroscopy: Molecular Rulers for the Study of Biological Macromolecules IEEE Journal of selected topics in Quantum Electronics 2: 1115-1128
Hänninen, P.E., S.W. Hell, J. Salo, E. Soini and C. Cremer. 1995. Two-photon excitation 4Pi confocal microscope: Enhanced axial resolution microscope for biological research. Appl. Phys. Lett. 66: 1698-1700
Hausmann, M., B. Schneider, J. Bradl and C. Cremer. 1997. High-precision distance microscopy of 3D-nanostructures by a spatially modulated excitation fluorescence microscope. Proc. SPIE 3197: 217-222
Heilemann, M. 2008. Subdiffraction-resolution fluorescence imaging withconventional fluorescent probes. Angew. Chem. 47: 6172-6176
Heintzmann, R. 2003. Saturated patterned excitation microscopy with two-dimensional excitation patterns. Micron 34: 283-291
Heilemann, M., D.P. Herten, R. Heintzmann, C. Cremer, C. Müller, P. Tinnefeld, K.D. Weston, J. Wolfrum and M. Sauer. 2002. High-resolution colocalization of single dye molecules by fluorescence lifetime imaging microscopy. Analytical Chemistry 74: 3511-3517
Heintzmann, R. and C. Cremer. 1999. Lateral modulated excitation microscopy: Improvement of resolution by using a diffraction grating. Proc. SPIE 356: 185-196
Heintzmann, R. and C. Cremer. 2002. Axial tomographic confocal fluorescence microscopy. J. of Microscopy 206: 7-23
Heintzmann, R., T. Jovin and C. Cremer. 2002. Saturated patterned excitation microscopy – a concept for optical resolution improvement. J. Opt. Soc. Am. A 19: 1599-1609
Hell, S. 1990a. “Abbildung transparenter Mikrostrukturen im Konfokalen Mikroskop” (Imaging of transparant microstructures in the confocal microscope), Ph.D. Dissertation Physics, University Heidelberg, Germany
Hell, S.W. 1990b. Double confocal microscope. European Patent 91121368 (July 2, 1992); German patent application P40 40 441.2 (filed December 18, 1990; published 1992)
Hell, S.W. 2003. Toward fluorescence nanoscopy. Nature Biotechnology 2: 1347-1355
Hell, S.W. 2007. Far-Field Optical Nanoscopy, Science 316: 1153-1158
Hell, S.W. 2009. Microscopy and its focal switch. Nature Methods 6: 24-32
Hell, S.W. and M. Kroug. 1995. Ground-state-depletion fluorescence microscopy: A concept for breaking the diffraction resolution limit. Appl. Phys. B 5: 495-497
Hell, S.W. and M. Nagorni. 1998. 4Pi confocal microscopy with alternate interference. Optics Letters 23: 1567-1569
Hell, S. and E.H.K. Stelzer. 1992a. Properties of a 4Pi confocal fluorescence microscope. J. Opt. Soc. Am. A 9: 2159-2166
Hell, S. and E.H.K. Stelzer. 1992b. Fundamental improvement of resolution with a 4Pi-confocal fluorescence microscope using two-photon excitation. Optics Communications 93: 277-282
Hell, S.W. and J. Wichmann. 1994. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Optics Letters 19: 780-782
Hell, S.W., S. Lindek, C. Cremer and E.H.K. Stelzer. 1994a. Measurement of the 4Pi-confocal point spread function proves 75 nm axial resolution. Applied Physics Letters 64: 1335-1337
Hell, S.W., E.H.K. Stelzer, S. Lindek and C. Cremer. 1994b. Confocal microscopy with an increased detection aperture: true-B 4Pi confocal microscopy. Optics Lett. 19: 222-224
Helmholtz, H. 1874. Die theoretische Grenze für die Leistungsfähigkeit der Mikroskope. Annalen der Physik, (Leipzig) Jubelband, 557-585
Herzenberg, L.A., D. Parks, B. Sahaf, O. Perez, M. Roederer and L.A. Herzenberg. 2002. Activated Cell Sorter and Flow Cytometry: A View from Stanford. Clinical Chemistry 48: 1819-1827
Hess, S., T. Girirajan and M. Mason. 2006. Ultra-High Resolution Imaging by Fluorescence Photoactivation Localization Microscopy. Biophysical Journal 91: 4258-4272
Hess, S.T., T.J. Gould, M.V. Gudheti, S.A. Maas, K.D. Mills and J. Zimmerberg. 2007. Dynamic clustered distribution of hemagglutinin resolved at 40 nm in living cell membranes discriminates between raft theories. Proc. Natl. Acad. Sci. 104: 17370-17375
Hildenbrand, G., A., Rapp, U. Spori, C. Wagner, C. Cremer and M. Hausmann. 2005. Nano-Sizing of Specific Gene Domains in Intact Human Cell Nuclei by Spatially Modulated Illumination Light Microscopy. Biophysical Journal 88: 4312-4318
Hofmann, M., C. Eggeling, S. Jakobs and S.W. Hell. 2005. Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins. Proc. Natl. Acad. Sci. USA 102: 17565-17569
Huang, B., W. Wang, M. Bates, X. Zhuang. 2008. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319: 810-813
Huber, O., A. Brunner, P. Maier, R. Kaufmann, P.-O. Couraud, C. Cremer and G. Fricker. 2012. Localization microscopy (SPDM) reveals clustered formations of P-Glycoprotein in a human blood-brain barrier model. PLoS ONE 7 e44776: 1-10
Hüve, J., R. Wesselmann, M. Kahms and R. Peters. 2008. 4Pi microscopy of the nuclear pore complex. Biophysical J. 95: 877-885
Jones, S., S.-H. Shim, J. He, X. Zhuang. 2011. Fast three-dimensional super-resolution imaging of live cells. Nature Methods 8: 499-505
Jutamulia, S. 2002. Selected Papers on Near-Field Optics, SPIE Milestone Series, SPIE Optical Engineering Press, Bellingham, Vol. MS 172
Kaufmann, R., P. Lemmer, M. Gunkel, Y. Weiland, P. Müller, M. Hausmann, D. Baddeley, R. Amberger and C. Cremer. 2009. SPDM–Single Molecule Superresolution of Cellular Nanostructures. Proc. SPIE 7185: 71850J-1-71850-19
Kaufmann, R., P. Müller, M. Hausmann and C. Cremer. 2011a. Analysis of Her2/neu membrane protein clusters in different types of breast cancer cells using localization microscopy. J. of Microscopy 242: 46-54
Kaufmann, R., P. Müller, M. Hausmann and C. Cremer. 2011b. Nanoimaging cellular structures in label-free human cells by spectrally assigned localization microscopy. Micron 42: 348-352
Kaufmann, R., J. Piontek, F. Grüll, M. Kirchgessner, J. Rossa, H. Wolburg, I.E. Blasig and C. Cremer. 2012a. Visualization and quantitative analysis of reconstituted tight junctions using localization microscopy. PLoS ONE 7 e31128: 1-9
Kaufmann, R., C. Cremer and J.G. Gall. 2012b. Superresolution imaging of transcription units on newt lampbrush chromosomes, Chromosome Research, doi: 10.1007/s10577-012-9306-z-
Keller, P.J., F. Pampaloni, and E.H. Stelzer. 2007. Three-dimensional preparation and imaging reveal intrinsic microtubule properties. Nature Methods 4: 843-846
Keller, P.J., A.D. Schmidt, J. Wittbrodt, E.H. Stelzer. 2008. Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy. Science 322: 1065-1069
Klein, T., A. Löschberger, S. Proppert, S. Wolter, S. van de Linde, M. Sauer. 2011. Live-cell dSTORM with SNAP-tag fusion proteins. Nature Methods 8: 7-9
Köhler, H. 1981. On Abbe’s theory of image formation in the microscope. Optica Acta 28: 1691-1701
Lacoste, T.D., X. Michalet, F. Pinaud, D.S. Chemla, A.P. Alivisatos and S. Weiss. 2000. Ultrahigh-resolution multicolor colocalization of single fluorescent probes. Proc. Natl. Acad. Sci. USA 97: 9461-9466
Lang, M., T. Jegou, I. Chung, K. Richter, S. Münch, A. Udvarhelyi, C. Cremer, P. Hemmerich, J. Engelhardt, S.W. Hell and K. Rippe. 2010. Three-dimensional organization of promyelocytic leukemia nuclear bodies. J. of Cell Science 123: 392-412
Lanni, F., B. Bailey, D.L. Farkas and D.L. Taylor. 1993. Excitation field synthesis as a means for obtaining enhanced axial resolution in fluorescence microscopes. Bioimaging 1: 187-196
Lemmer, P., M. Gunkel, D. Baddeley, R. Kaufmann, A. Urich, Y. Weiland, J. Reymann, P. Müller, M. Hausmann and C. Cremer. 2008. SPDM: Light microscopy with single-molecule resolution at the nanoscale. Applied Physics B 93: 1-12
Lemmer, P., M. Gunkel, D. Baddeley, R. Kaufmann, Y. Weiland, P. Müller, A. Urich, R. Amberger, H. Eipel, M. Hausmann and C. Cremer. 2009. Using Conventional Fluorescent Markers for Far-field Fluorescence Localization Nanoscopy allows Resolution in the 10 nm Regime. J. of Microscopy 235: 163-171
Lewis, A., M. Isaacson, A. Harootunian and A. Muray. 1984. Development of a 500 Å spatial resolution light microscope. I. Light is efficiently transmitted through λ/16 diameter apertures. Ultramicroscopy 13: 227-231
Lidke, K.A., B. Rieger, T.M. Jovin and R. Heintzmann. 2005. Superresolution by localization of quantum dots using blinking statistics. Opt. Express 13: 7052-7062
Lindek, S., C. Cremer and E.H.K. Stelzer. 1994. Theta microscopy allows phase regulation in 4Pi(A)-confocal two-photon fluorescence microscopy. Optik 98: 15-20
Lindek, S., C. Cremer and E.H.K. Stelzer. 1996. Confocal theta fluorescence microscopy with annular apertures. Appl. Optics 35: 126-130
Lipson, A., S.G. Lipson, H. Lipson. 2010. Optical Physics, 4th edn., Cambridge University Press, Cambridge
Liu, Y. and X. Zhang. 2011. Metamaterials: a new frontier of science and technology. Chem. Soc. Rev. 40: 2494-2507
Löschberger, A., S. van de Linde, M.-C. Dabauvalle, B. Rieger, M. Heilemann, G. Krohne and M. Sauer. 2012. Super-resolution imaging visualizes the eightfold symmetry of gp210 proteins around the nuclear pore complex and resolves the central channel with nanometer resolution. J. of Cell Science 125: 570-575
Lukosz, W. 1966. Optical systems with resolving powers exceeding the classical limit, Part 1. J. Opt. Soc. Am. 56: 1463-1472
Lukosz, W. 1967. Optical systems with resolving powers exceeding the classical limit. II. J. Opt. Soc. Am. 57: 932-941
Lummer, O. and F. Reiche. 1910. Die Lehre von der Bildentstehung im Mikroskop von Ernst Abbe, Friedrich View und Sohn, Braunschweig
Mahajan, V.N. 2001. Optical Imaging and Aberrations, Part II, Wave Diffraction. SPIE Press, Bellingham
Markaki, Y., M. Gunkel, L. Schermelleh, S. Beichmanis, J. Neumann, M. Heidemann, H. Leonhardt, D. Eick, C. Cremer and T. Cremer. 2011. Functional nuclear organization of transcription and DNA replication: a topographical marriage between chromatin domains and the interchromatin compartment. Cold Spring Harbor Symposia on Quantitative Biology 75: 1-18, doi: 10.1101/sqb.2010.75.042
Martin, Y. 1995. Selected Papers on Scanning Probe Microscopes, SPIE Milestone Series, SPIE Optical Engineering Press, Bellingham, Vol. MS 107
Martin, S., A.V. Failla, U. Spoeri, C. Cremer and A. Pombo. 2004. Measuring the Size of Biological Nanostructures with Spatially Modulated Illumination Microscopy. Molecular Biology of the Cell 15: 2449-2455
Masters, B.R. 1996. Selected Papers on Confocal Microscopy, SPIE Milestone Series, volume MS 131, SPIE Optical Engineering Press, Bellingham
Masters, B.R. 2001. Selected Papers on Optical Low-Coherence Reflectometry & Tomography, SPIE Milestone Series, SPIE Optical Engineering Press, Bellingham, Vol. MS 165
Masters, B.R. 2003. Selected Papers on Multiphoton Excitation Microscopy, SPIE Milestone Series, volume MS 175, SPIE Optical Engineering Press, Bellingham
Masters, B.R. 2007. Ernst Abbe and the Foundation of Scientific Microscopes. Optics and Photonics, News Optical Society of America, Washington, DC 18: 18-23
Masters, B.R. 2008. History of the Optical Microscope in Cell Biology and Medicine, in: Encyclopedia of Life Sciences (ELS), John Wiley and Sons, Ltd: Chichester, UK, doi: 10.1002/9780470015902.a0003082
Masters, B.R. 2009a. The Development of Fluorescence Microscopy, in: Encyclopedia of Life Sciences (ELS), John Wiley and Sons, Ltd: Chichester, UK, DOI: 10.1002/9780470015902.a0022093
Masters, B.R. 2009b. History of the Electron Microscope in Cell Biology, in: Encyclopedia of Life Sciences (ELS), Chichester, UK. John Wiley and Sons, Ltd: September 2009, DOI: 10.1002/9780470015902.a0021539
Masters, B.R. 2010. Three-Dimensional Confocal Microscopy of the Living Human Cornea, in: Handbook of Optics, Vision and Vision Optics, 3rd edn., edited by M. Bass, J. M. Enoch, V. Lakshminarayanan, 17.1-17.11, McGraw-Hill, New York, Vol. III
Masters, B.R. and P.T.C. So. 2008. Handbook of Biomedical Nonlinear Optical Microscopy, Oxford University Press, New York
Mathée, H., D. Baddeley, C. Wotzlaw, J. Fandrey, C. Cremer and U. Birk. 2006. Nanostructure of specific chromatin regions and nuclear complexes. Histochem. Cell Biology 125: 75-82
Mathee, H., D. Baddeley, C. Wotzlaw, C. Cremer and U. Birk. 2007. Spatially Modulated Illumination Microscopy using one objective lens. Optical Engineering 46: 083603/1-083603/8
Matsuda, A., L. Shao, J. Boulanger, C. Kervrann, P.M. Carlton, P. Kner, D. Agard and J.W. Sedat. 2010. Condensed Mitotic Chromosome Structure at Nanometer Resolution Using PALM and EGFP- Histones. PLoS ONE 5 e12768: 1-12
McCutchen, C.W. 1967. Superresolution in microscopy and the Abbe resolution limit. J. Opt. Soc. Am. 57: 1190-1192
McEvoy, A.L., D. Greenfield, M. Bates and J. Liphardt. 2010. Single-molecule localization microscopy for biological imaging. BMC Biology 8: 106, http://www.biomedcentral.com/1741-7007/8/106
McMullan, D. 1990. The prehistory of scanned image microscopy. Part 1: Scanned optical microscopes. Proceedings of the Royal Microscopical Society 25: 127-131
Müller, E.W. 1937. Beobachtungen über die Feldemission und die Kathodenzerstäubung an thoriertem Wolfram. Z. für Physik 106: 132-140
Müller, E.W. and T.T. Tsong. 1969. Field Ion Microscopy, Principles and Applications. American Elsevier Publishing Company, New York
Nagerl, U.V., K.I. Willig, B. Hein et al. 2008. Live-cell imaging of dendritic spines by STED microscopy. Proc. Natl. Acad. Sci. USA 105: 18982-18987
Nagorni, M. and S.W. Hell. 1998. 4Pi-Confocal Microscopy Provides Three-Dimensional Images of the Microtubule Network with 100- to 150-nm Resolution. J. Struct. Biol. 123: 236-247
Newberry, S.P. and N.Y. Schenectady. 1959. X-ray Microscope. US Patent 2, 877, 353, granted March 10
Paesler, M.A. and P.J. Moyer. 1996. Near-field optics. Theory, Instrumentation, and Applications. John Wiley and Sons, Inc., New York
Pendry, J.B. 2000. Negative Refraction Makes a Perfect Lens, Phys. Rev. Lett. 85: 3966-3969
Pereira, C.F., J. Rossy, D. M. Owen, J. Mak and K. Gaus. 2012. HIV taken by STORM: Super-resolution fluorescence microscopy of a viral infection. Virology Journal 9: 84, doi: 10.1186/1743-422X-9-84
Perinetti, G., T. Müller, A. Spaar, R. Polishchuk, A. Luini and A. Egner. 2009. Correlation of 4Pi and electron microscopy to study transport through single Golgi stacks in living cells with super resolution. Traffic 10: 379-391
Pertsinidis, A., Y. Zhang and S. Chu. 2010. Subnanometre single-molecule localization, registration and distance measurements. Nature 466: 647-651
Pohl, D.W., W. Denk and M. Lanz. 1984. Optical stethoscopy: Image recording with resolution λ/20. Appl. Phys. Lett. 44: 651-654
Porter, A.B. 1906. On the Diffraction Theory of Microscopic Vision. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 11: 154-166
Rauch, J., M. Hausmann, I. Solovei, B. Horsthemke, T. Cremer and C. Cremer. 2000. Measurement of local chromatin compaction by Spectral Precision Distance microscopy. in: Laser Microscopy, edited by K. Koenig, H.J. Tanke, H. Schneckenburger, Proc. SPIE 4164: 1-9
Rauch, J., T.A. Knoch, I. Solovei, K. Teller, S. Stein, K. Buiting, B. Horsthemke, J. Langowski, T. Cremer, M. Hausmann and C. Cremer. 2008. Light-Optical precision measurements of the active and inactive Prader-Willi Syndrome imprinted regions in human cell nuclei. Differentiation 76: 66-83
Rayleigh, L. 1880a. Investigations in Optics, with special reference to the spectroscope. 1. Resolving or separating, power of optical instruments. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, VIII XXXI: 261-274
Rayleigh, L. 1880b. On the resolving-power of telescopes. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science X: 116-119
Rayleigh, L. 1896. On the Theory of Optical Images, with Special Reference to the microscope. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 42, Part XV: 167-195
Rayleigh, L. 1899. Investigations in optics, with special reference to the spectroscope. In: Scientific papers by John William Strutt, Baron Rayleigh, Cambridge, Cambridge University Press, Cambridge, 1899, Vol. 1, pp. 415-459
Reymann, J., D. Baddeley, M. Gunkel, P. Lemmer, W. Stadter, T. Jegou, K. Rippe, C. Cremer and U. Birk. 2008. High-precision structural analysis of subnuclear complexes in fixed and live cells via spatially modulated illumination (SMI) microscopy. Chromosome Research 16: 367-382
Ries, J., C. Kaplan, E. Platonova, H. Eghlidi and H. Ewers. 2012. A simple, versatile method for GFP-based super-resolution microscopy via nanobodies. Nature Methods 9: 582-584
Rittweger, E., K.Y. Han, S.E. Irvine, C. Eggeling and S.W. Hell. 2009. STED microscopy reveals crystal colour centres with nanometric resolution. Nature Photonics 3: 144-147
Rouquette, J., C. Cremer, T. Cremer and S. Fakan. 2010. Functional nuclear architecture studied by microscopy: state of research and perspectives. Int. Rev. Cell. Mol. Bio. 282: 1-90
Ruska, E. 1979. Die frühe Entwicklung der Elektronenlisen und der Elektronmikroskopie, Acta Historica Leopoldina, 12, Halle/Saale, Deutsche Akademie der Naturforscher Leopoldina
Ruska, E. 1986. The development of the electron microscope and of electron microscopy. Nobel Lecture December 8, 1986
Rust, M., M. Bates and X. Zhuang. 2006. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nature Methods 3: 793-795
Schellenberg, F.M. 2004. Selected Papers on Resolution Enhancement Techniques in Optical Lithography, SPIE Milestone Series, SPIE Press, Bellingham, Vol. MS 178
Schermelleh, L., P.M. Carlton, S. Haase, L. Shao, L. Winoto, P. Kner, B. Burke, M.C. Cardoso, D.A. Agard, M.G.L. Gustafsson, H. Leonhardt and J.W. Sedat. 2008. Subdiffraction multicolor imaging of the nuclear periphery with 3d structured illumination microscopy. Science 320: 1332-1336
Schmahl, G. and D. Rudolph. 1989. X-ray microscope. US Patent 4, 870, 674
Schmidt, M., M. Nagorni and S.W. Hell. 2000. Subresolution axial distance measurements in far-field fluorescence microscopy with precision of 1 nanometer. Review of Scientific Instruments 71: 2742-2745
Schmidt, R., C.A. Wurm, S. Jakobs, J. Engelhardt, A. Egner and S.W. Hell. 2008. Spherical nanosized focal spot unravels the interior of cells. Nature Methods 5: 539-544
Schneider, G., P.G. Guttmann, S. Heim, S. Rehbein, F. Mueller, K. Nagashima, J.B. Heymann, W.G. Müller and J.G. McNally. 2010. Three-dimensional cellular ultrastructure resolved by X-ray microscopy. Nature Methods 7: 985-987
Schneider, B., B. Albrecht, P. Jaeckle, D. Neofotistos, S. Söding, Th. Jäger and C. Cremer. 2000. Nanolocalization measurements in spatially modulated illumination microscopy using two coherent illumination beams. Proc. SPIE 3921: 321-330
Schrader, M., F. Meinecke, K. Bahlmann, M. Kroug, C. Cremer, E. Soini and S.W. Hell. 1995. Monitoring the excited state of a dye in a microscope by stimulated emission. Bioimaging 3: 147-153
Schwentker, A., H. Bock, M. Hofmann, S. Jakobs, J. Bewersdorf, C. Eggeling and S.W. Hell. 2007. Wide-field subdiffraction RESOLFT microscopy using fluorescent protein photoswitching. Microscopy Research and Technique 70: 269-280
Schwering, M., A.A. Kiel, A. Kurz, K. Lymperopoulos, A. Sprödefeld, R. Krämer and D.P. Herten. 2011. Far-Field Nanoscopy with Reversible Chemical Reactions. Angew. Chem. Int. Edit. 50: 2940-2945
Sengupta, P., T. Jovanovic-Talisman, D. Skoko, M. Renz, S.L. Veatch and J. Lippincott-Schwartz. 2011. Probing protein heterogeneity in the plasma membrane using PALM and pair correlation analysis. Nature Methods 8: 969-975
Sheppard, C.J.R. 2007. Fundamentals of superresolution. Micron 38: 165-169
Sheppard, C.J.R. and T. Wilson. 1978. Image formation in scanning microscopes with partially coherent source and detector. Optica Acta 25: 315-325
Shroff, H., C.G. Galbraith, J.A. Galbraith and E. Betzig. 2008. Live-cell photoactivated Localization Microscopy of nanoscale adhesion dynamics. Nature Methods 5: 417-423
Shtengel, G., J.A. Galbraith, C.G. Galbraith, J. Lippincott-Schwartz, J.M. Gillette, S. Manleyd, R. Sougrat, C.M. Watermane, P. Kanchanawong, M.W. Davidson, R.D. Fetter and H.F. Hess. 2009. Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure. Proc. Natl. Acad. Sci. USA 106: 3125-3130
Sinnecker, D., P. Voigt, N. Hellwig and M. Schaefer. 2005. Reversible photobleaching of enhanced green fluorescent proteins. Biochemistry 44: 7085-7094
Smolyaninov, I.I., Y.-J. Hung and C.C. Davis. 2007. Magnifying Superlens in the Visible Frequency Range. Science 315: 1699-1701
Sparrow, C.M. 1916. On spectroscopic resolving power. The Astrophysical Journal XLIV: 76-86
Staier, F., H. Eipel, P. Matula, A.V. Evsikov, M. Kozubek, C. Cremer and M. Hausmann. 2011. Micro Axial Tomography: a miniaturized, versatile stage device to overcomeresolution anisotropy in fluorescence light microscopy. Rev. Sci. Instr. 82: 09370. doi: 10.1063/1.3632115
Steinhauer, C., C.C. Forthmann, J. Vogelsang and P. Tinnefeld. 2008. Super resolution Microscopy on the Basis of Engineered Dark States. J. Amer. Chemical Soc. 130: 16840-16841
Stelzer, E.H.K. 2002. Beyond the diffraction limit? Nature 417: 806-807
Stelzer, E.H., I. Wackerand, J.R. De Mey. 1991. Confocal fluorescence microscopy in modern cell biology. Semin. Cell Biol. 2: 145-52
Strehl, K. 1894. Die Theorie des Fernrohrs auf Grund der Beugung des Lichts. JA Barth, Leipzig
Synge, E.H. 1928. A suggested method for extending microscopic resolution into the ultra-microscopic region. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 6: 356-362
Toraldo di Francia, G. 1955. Resolving power and information. J. Opt. Soc. Am. 45: 497-501
Travis J Gould, T.J., M.S. Gunewardene, M.V. Gudheti, V.V. Verkhusha, S.-R. Yin, J.A. Gosse and S.T. Hess. 2008. Knowledge on nanoscale imaging of molecular positions and anisotropies. Nature Methods 5: 1027-1030
Tykocinski, L.-O., A. Sinemus, E. Rezavandy, Y. Weiland, D. Baddeley, C. Cremer, S. Sonntag, K. Willeke, J. Derbinski and B. Kyewski. 2010. Epigenetic regulation of promiscuous gene expression in thymic medullary epithelial cells. Proc. Natl. Acad. Sci. USA 107: 19426-19431
Van Aert, S., A.J. den Dekker, D. Van Dyck and A. Van den Bos. 2007. The Notion of Resolution, in: Science of Microscopy, edited by Peter W. Hawkes, John C. H. Spence, Springer, New York, Vol. II
Van Aert, S., D. Van Dyck and A.J. den Dekker. 2006. Resolution of coherent and incoherent imaging systems reconsidered – Classical criteria and a statistical alternative. Optics Express 14: 3830-3839
vande Linde, S., A. Löschberger, T. Klein, M. Heidbreder, S. Wolter, M. Heilemann and Markus Sauer. 2011. Direct stochastic optical reconstruction microscopy with standard fluorescent probes. Nature Protocols 6: 991-1009
van Oijen, A.M., J. Köhler, J. Schmidt, M. Müller and G.J. Brakenhoff. 1998. 3-Dimensional super-resolution by spectrally selective imaging. Chemical Physics Letters 192: 182-187
Veselago, V.G. 1968. The electrodynamics of substances with simultaneously negative values of permittivity and permeability. Sov. Phys. Usp. 10: 509
Volkmann, H. 1966. Ernst Abbe, and His Work, Applied Optics 5: 1720-1731
Warren, W.S., H. Rabitz and M. Dahleh. 1993. Coherent Control of Quantum Dynamics: The Dream Is Alive. Science 259: 1581-1589
Westphal, V., S.O. Rizzoli, M.A. Lauterbach, D. Kamin, R. Jahn and S.W. Hell. 2008. Video-rate far-field optical nanoscopy dissects synaptic vesicle movement. Science 320: 246-249
Williams, C.S. and O.A. Becklund. 1989. Introduction to the Optical Transfer Function. Wiley-Interscience, New York
Willig, K.I., B. Harke, R. Medda and S.W. Hell. 2007. STED microscopy with continuous wave beams. Nature Methods 4: 915-918
Willig, K.I., S.O. Rizzoli, V. Westphal, R. Jahn and S.W. Hell. 2006. STED-microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis. Nature 440: 935-939
Wombacher, R., M. Heidbreder, M. van de Linde, P. Sheetz, M. Heilemann, V.W. Cornish and M. Sauer. 2010. Live-cell super-resolution imaging with trimethoprim conjugates. Nature Methods 7: 717-719
Zhuang, X. 2009. Nano-imaging with Storm. Nature Photonics 3: 365-367
Zsigmondy, R. 1907. Über Kolloid-Chemie mit besonderer Berücksichtigung der anorganischen Kolloide, Verlag von Johann Ambrosius Barth, Leipzig
Zsigmondy, R. 1909. Colloids and the Ultramicroscope: A Manual of Colloid Chemistry and Ultramicroscopy, tr. Jerome Alexander, Wiley, New York
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
About this article
Cite this article
Cremer, C., Masters, B. Resolution enhancement techniques in microscopy. EPJ H 38, 281–344 (2013). https://doi.org/10.1140/epjh/e2012-20060-1
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1140/epjh/e2012-20060-1