Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Full text of this article is only available in PDF format.

Heikki Hänninen (email), Seppo Kellomäki, Kaisa Laitinen, Brita Pajari, Tapani Repo

Effect of increased winter temperature on the onset of height growth of Scots pine: a field test of a phenological model.

Hänninen H., Kellomäki S., Laitinen K., Pajari B., Repo T. (1993). Effect of increased winter temperature on the onset of height growth of Scots pine: a field test of a phenological model. Silva Fennica vol. 27 no. 4 article id 5518. https://doi.org/10.14214/sf.a15679

Abstract

According to a recently presented hypothesis, the predicted climatic warming will cause height growth onset of trees during mild spells in winter and heavy frost damage during subsequent periods of frost in northern conditions. The hypothesis was based on computer simulations involving a model employing air temperature as the only environmental factor influencing height growth onset. In the present study, the model was tested in the case of eastern Finnish Scots pine (Pinus sylvestris L.) saplings. Four experimental saplings growing on their natural site were surrounded by transparent chambers in autumn 1990. The air temperature in the chambers was raised during the winter to present an extremely warm winter under the predicted conditions of a double level of atmospheric carbon dioxide. The temperature treatment hastened height growth onset by two months as compared to the control saplings, but not as much as expected on the basis of the previous simulation study. This finding suggests that 1) the model used in the simulation study needs to be developed further, either by modifying the modelled effect of air temperature or by introducing other environmental factors, and 2) the predicted climatic warming will not increase the risk of frost damage in trees as much as suggested by the previous simulation study.

The PDF includes an abstract in Finnish.

Keywords
Pinus sylvestris; height growth; frost damage; bud burst; climatic change

Published in 1993

Views 4103

Available at https://doi.org/10.14214/sf.a15679 | Download PDF

Creative Commons License CC BY-SA 4.0

Click this link to register to Silva Fennica.
If you are a registered user, log in to save your selected articles for later access.
Sign up to receive alerts of new content

Your selected articles
Your search results