Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Russian olive, Elaeagnus angustifolia, alters patterns in soil nitrogen pools along the Rio Grande River, New Mexico, USA

  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

Russian olive (Elaeagnus angustifolia L.) is an invasive non-native tree in western North America capable of nitrogen fixation through symbiotic actinorhizal associations. The high abundance of the tree may have important effects on ecosystem nutrient dynamics and consequent community responses. This study explored the influence of Russian olive on soil nitrogen along a section of the Rio Grande River riparian zone in Rio Grande Valley State Park, Albuquerque, New Mexico. Cottonwood trees (Populus deltoides, var. wislizenii) without subcanopy trees were paired with cottonwood having a Russian olive under the canopy, and soil nitrogen pools were assessed. Relative to open interplant areas, soils under subcanopy Russian olive showed a 55% increase in total nitrogen and nearly four times the amount of available nitrogen compared to soils under cottonwood alone. Organic matter accumulation followed a similar pattern relative to open areas with 73% more accumulation under subcanopy Russian olive compared with cottonwood trees alone. Acetylene reduction and δ15N revealed that nitrogen fixation occurred in Russian olive at the site during the time of sampling, and foliar chemistry averaged 2.58% nitrogen for Russian olive compared to 0.54% for cottonwood. Both soil texture and Russian olive presence proved to be important factors affecting the observed soil nitrogen patterns. Despite these nitrogen inputs, cottonwood trees appeared to utilize sources other than that derived from Russian olive. A soil respiration experiment assessed the influence of Russian olive on soil microbial productivity, which revealed that soils at this location are carbon limited and not nitrogen limited. Even after imposing a nitrogen limitation through the addition of carbon, Russian olive did not affect microbial productivity despite higher nitrogen levels in soils associated with it. The results of this study show that Russian olive enhances soil nitrogen resources in this semi-arid riparian environment, but the added nitrogen is not likely to facilitate cottonwood tree growth or further exotic weed invasion. Russian olive may instead compete with cottonwood for other resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Aerts, R. and F. Chapin. 2000. The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Advances in Ecological Research 30: 1–67.

    Article  CAS  Google Scholar 

  • Allen, A. and W. Schlesinger. 2004. Nutrient limitations to soil microbial biomass and activity in loblolly pine forests. Soil Biology & Biochemistry 36: 581–89.

    Article  CAS  Google Scholar 

  • Andersen, D. C., S. M. Nelson, and D. Binkley. 2003. Flood flows, leaf breakdown, and plant-available nitrogen on a dryland river floodplain. Wetlands 23: 180–89.

    Article  Google Scholar 

  • Bechtold, J. and R. Naiman. 2006. Soil texture and nitrogen mineralization potential across a riparian toposequence in a semi-arid savanna. Soil Biology & Biochemistry 38: 1325–33.

    Article  CAS  Google Scholar 

  • Binkley, D. 2005. How nitrogen-fixing trees change soil carbon. p. 155–64. In D. Binkley and O. Menyailo (eds.) Tree Species Effects on Soils: Implications for Global Change. NATO Science Series, Springer, Dordrecht, The Netherlands.

    Chapter  Google Scholar 

  • Carman, J. and J. Brotherson. 1982. Comparisons of sites infested and not infested with saltcedar (Tamarix pentandra) and Russian olive (Elaeagnus angustifolia). Weed Science 30: 360–64.

    Google Scholar 

  • Ehrenfeld, J. 2003. Effects of exotic plant invasions on soil nutrient cycling processes. Ecosystems 6: 503–23.

    Article  CAS  Google Scholar 

  • Ellis, L., M. Molles, and C. Crawford. 1999. Influence of experimental flooding on litter dynamics in a Rio Grande riparian forest, New Mexico. Restoration Ecology 7: 193–204.

    Article  Google Scholar 

  • Evans, R. and J. Johansen. 1999. Microbiotic crusts and ecosystem processes. Critical Reviews in Plant Sciences 18: 183–225.

    Article  Google Scholar 

  • Facelli, J. M. and D. J. Brock. 2000. Patch dynamics in arid lands: localized effects of Acacia papyrocarpa on soils and vegetation of open woodlands of south Australia. Ecography 23: 479–91.

    Article  Google Scholar 

  • Frias-Hernandez, J., A. Aguilar-Ledezma, V. Olalde-Portugal, J. Balderas-Lopez, G. Gutierrez-Juarez, J. Alvarado-Gil, J. Castro, H. Vargas, A. Albores, L. Dendooven, J. Balderas-Lopez, L. Miranda, and J. Frias-Hernandez. 1999. Soil characteristics in semiarid highlands of central Mexico as affected by mesquite trees (Prosopis laevigata). Arid Soil Research and Rehabilitation 13: 305–12.

    Article  Google Scholar 

  • Friedman, J., G. Auble, P. Shafroth, M. Scott, M. Merigliano, M. Preehling, and E. Griffin. 2005. Dominance of non-native riparian trees in western USA. Biological Invasions 7: 747–51.

    Article  Google Scholar 

  • Gee, G. W. and J. W. Bauder. 1986. Particle-size analysis. p. 383–411. In A. L. Page (ed.) Methods of Soil Analysis, Part 1, Physical and Mineralogical Methods. American Society of Agronomy, Madison, WI, USA.

    Google Scholar 

  • Hobbie, S. 1992. Effects of plant-species on nutrient cycling. Trends in Ecology & Evolution 7: 336–39.

    Article  Google Scholar 

  • Hogberg, P. 1997. Tansley review No 95 —N-15 natural abundance in soil-plant systems. New Phytologist 137: 179–203.

    Article  Google Scholar 

  • Howe, W. and F. Knopf. 1991. On the imminent decline of Rio-Grande cottonwoods in central New Mexico. Southwestern Naturalist 36: 218–24.

    Article  Google Scholar 

  • Katz, G. and P. Shafroth. 2003. Biology, ecology and management of Elaeagnus angustifolia L. (Russian olive) in western North America. Wetlands 23: 763–77.

    Article  Google Scholar 

  • Lake, J. C. and M. R. Leishman. 2004. Invasion success of exotic in natural ecosystems: the role of disturbance, plant attributes and freedom from herbivores. Biological Conservation 117: 215–26.

    Article  Google Scholar 

  • Lesica, P. and S. Miles. 1999. Russian olive invasion into cottonwood forests along a regulated river in north-central Montana. Canadian Journal of Botany-Revue Canadienne de Botanique 77: 1077–83.

    Article  Google Scholar 

  • Levine, J., M. Vila, C. D’Antonio, J. Dukes, K. Grigulis, and S. Lavorel. 2003. Mechanisms underlying the impacts of exotic plant invasions. Proceedings of the Royal Society of London Series B-Biological Sciences 270: 775–81.

    Article  Google Scholar 

  • Li, Y. and M. Norland. 2001. The role of soil fertility in invasion of Brazilian pepper (Schinus terebinthifolius) in Everglades National Park, Florida. Soil Science 166: 400–05.

    Article  CAS  Google Scholar 

  • Llinares, F., D. Munozmingarro, J. Pozuelo, B. Ramos, and F. Decastro. 1993. Microbial inhibition and nitrification potential in soils incubated with Elaeagnus angustifolia leaf litter. Geomicrobiology Journal 11: 149–56.

    Article  CAS  Google Scholar 

  • Lovett, G., K. Weathers, M. Arthur, and J. Schultz. 2004. Nitrogen cycling in a northern hardwood forest: do species matter? Biogeochemistry 67: 289–308.

    Article  CAS  Google Scholar 

  • Maron, J. and P. Connors. 1996. A native nitrogen-fixing shrub facilitates weed invasion. Oecologia 105: 302–12.

    Article  Google Scholar 

  • McNabb, D. and J. Geist. 1979. Acetylene reduction assay of symbiotic N2 fixation under field conditions. Ecology 60: 1070–72.

    Article  CAS  Google Scholar 

  • Miller, I. and D. Baker. 1985. The initiation, development and structure of root nodules in Elaeagnus angustifolia L. (Elaeagnaceae). Protoplasma 128: 107–19.

    Article  Google Scholar 

  • Molles, M., C. Crawford, and L. Ellis. 1995. Effects of an experimental flood on litter dynamics in the middle Rio Grande riparian ecosystem. Regulated Rivers-Research & Management 11: 275–81.

    Article  Google Scholar 

  • Pearce, C. and D. Smith. 2001. Plains cottonwood’s last stand: can it survive invasion of Russian olive onto the milk river, Montana floodplain? Environmental Management 28: 623–37.

    Article  CAS  PubMed  Google Scholar 

  • Rhoades, C. 1997. Single-tree influences on soil properties in agroforestry: lessons from natural forest and savanna ecosystems. Agroforestry Systems 35: 71–94.

    Article  Google Scholar 

  • Rhoades, C., H. Oskarsson, D. Binkley, and B. Stottlemyer. 2001. Alder (Alnus crispa) effects on soils in ecosystems of the Agashashok River valley, northwest Alaska. Ecoscience 8: 89–95.

    Google Scholar 

  • Rice, S., B. Westerman, and R. Federici. 2004. Impacts of the exotic, nitrogen-fixing black locust (Robinia pseudoacacia) on nitrogen-cycling in a pine-oak ecosystem. Plant Ecology 174: 97–107.

    Article  Google Scholar 

  • Royer, T., M. Monaghan, and G. Minshall. 1999. Processing of native and exotic leaf litter in two Idaho (USA) streams. Hydrobiologia 400: 123–28.

    Article  Google Scholar 

  • Schade, J. and S. Hobbie. 2005. Spatial and temporal variation in islands of fertility in the Sonoran Desert. Biogeochemistry 73: 541–53.

    Article  Google Scholar 

  • Schade, J., R. Sponseller, S. Collins, and A. Stiles. 2003. The influence of Prosopis canopies on understorey vegetation: effects of landscape position. Journal of Vegetation Science 14: 743–50.

    Google Scholar 

  • Schlesinger, W. and A. Pilmanis. 1998. Plant-soil interactions in deserts. Biogeochemistry 42: 169–87.

    Article  Google Scholar 

  • Schlesinger, W., J. Raikes, A. Hartley, and A. Cross. 1996. On the spatial pattern of soil nutrients in desert ecosystems. Ecology 77: 364–74.

    Article  Google Scholar 

  • Shafroth, P., G. Auble, and M. Scott. 1995. Germination and establishment of the native plains cottonwood (Populus deltoides Marshall subsp monilifera) and the exotic Russian olive (Elaeagnus angustifolia). Conservation Biology 9: 1169–75.

    Article  Google Scholar 

  • Sher, A., D. Marshall, and J. Taylor. 2002. Establishment patterns of native Populus and Salix in the presence of invasive nonnative Tamarix. Ecological Applications 12: 760–72.

    Article  Google Scholar 

  • Simons, S. and T. Seastedt. 1999. Decomposition and nitrogen release from foliage of cottonwood (Populus deltoides) and Russian-olive (Elaeagnus angustifolia) in a riparian ecosystem. Southwestern Naturalist 44: 256–60.

    Google Scholar 

  • Stock, W., K. Wienand, and A. Baker. 1995. Impacts of invading N-2 fixing Acacia species on patterns of nutrient cycling in 2 cape ecosystems —evidence from soil incubation studies and N-15 natural abundance values. Oecologia 101: 375–82.

    Article  Google Scholar 

  • Stohlgren, T., G. Chong, L. Schell, K. Rimar, Y. Otsuki, M. Lee, M. Kalkhan, and C. Villa. 2002. Assessing vulnerability to invasion by nonnative plant species at multiple spatial scales. Environmental Management 29: 566–77.

    Article  PubMed  Google Scholar 

  • Tibbets, T. and M. Molles. 2005. C: N: P stoichiometry of dominant riparian trees and arthropods along the Middle Rio Grande. Freshwater Biology 50: 1882–94.

    Article  CAS  Google Scholar 

  • Vidra, R., T. Shear, and T. Wentworth. 2006. Testing the paradigms of exotic species invasion in urban riparian forests. Natural Areas Journal 26: 339–50.

    Article  Google Scholar 

  • Vitousek, P. and L. Walker. 1989. Biological invasion by Myrica faya in Hawaii —plant demography, nitrogen fixation, ecosystem effects. Ecological Monographs 59: 247–65.

    Article  Google Scholar 

  • Yelenik, S., W. Stock, and D. Richardson. 2004. Ecosystem level impacts of invasive Acacia saligna in the South African fynbos. Restoration Ecology 12: 44–51.

    Article  Google Scholar 

  • Young, J. A. and C. G. Young. 1992. Seeds of Woody Plants in North America. Dioscorides Press, Portland, OR, USA.

    Google Scholar 

  • Zitzer, S. and J. Dawson. 1989. Seasonal changes in nodular nitrogenase activity of Alnus-glutinosa and Elaeagnus-angustifolia. Tree Physiology 5: 185–94.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph P. DeCant.

Rights and permissions

Reprints and permissions

About this article

Cite this article

DeCant, J.P. Russian olive, Elaeagnus angustifolia, alters patterns in soil nitrogen pools along the Rio Grande River, New Mexico, USA. Wetlands 28, 896–904 (2008). https://doi.org/10.1672/07-160.1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1672/07-160.1

Key Words