Hot-Pressing of Ti-Al-N Multiphase Composite: Microstructure and Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Sintering Process
2.3. µCT Data Acquisition and Analysis
2.4. Corrosion Resistance
3. Results and Discussion
3.1. Microstructure, Chemical, and Phase Composition Analysis
3.2. CT Analysis
3.3. Hardness Measurements
3.4. Corrosion Response Analysis
4. Conclusions
- The hot pressing process successfully synthesized a AlN-TiN(BN) composite with a uniform and dense microstructure. The addition of boron nitride significantly influenced the distribution of phases and contributed to the overall integrity of the material.
- The composite exhibited desirable mechanical properties, including a homogeneous hardness distribution (500–540 HV2), suitable for industrial applications requiring durable cutting tools. These properties result from the synergistic interaction of the TiN, Ti₂AlN, Ti₃AlN, and BN phases within the matrix.
- Electrochemical analysis demonstrated that the composite forms a passive oxide layer in neutral chloride environments, providing a moderate level of protection. However, under high chloride concentrations, localized pitting corrosion was evident, primarily in regions of electrochemical heterogeneity.
- Despite the promising results, improvements are needed to fully integrate the benefits of BN admixture. Future studies should focus on refining sintering parameters and exploring post-treatment processes to enhance corrosion resistance and mechanical durability, particularly in aggressive environments.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fan, G.; Zhang, J.; Chen, H.; Xiao, G.; Chen, Z.; Yi, M.; Xu, C.; Fan, L.; Li, G. Analysis of tool wear of TiAlN coated tool, machined surface morphology and chip during titanium alloy milling. Tribol. Int. 2024, 197, 109751. [Google Scholar] [CrossRef]
- Andersen, K.N.; Bienk, E.J.; Schweitz, K.O.; Reitz, H.; Chevalier, J.; Kringhoj, P.; Bottiger, J. Deposition, microstructure and mechanical and tribological properties of magnetron sputtered TiN/TiAlN multilayers. Surf. Coat. Technol. 2000, 123, 219–226. [Google Scholar] [CrossRef]
- Smith, I.J.; Gillibrand, D.; Brooks, J.S.; Munz, W.D.; Harvey, S.; Goodwin, R. Dry cutting performance of HSS twist drills coated with improved TiAlN. Surf. Coat. Technol. 1997, 90, 164–171. [Google Scholar] [CrossRef]
- Yoon, S.Y.; Kim, J.K.; Kim, K.H. A comparative study on tribological behavior of TiN and TiAlN coatings prepared by arc ion plating technique. Surf. Coat. Technol. 2002, 161, 237–242. [Google Scholar] [CrossRef]
- Wang, D.Y.; Chang, C.L.; Wong, K.W.; Li, Y.W.; Ho, W.Y. Improvement of the interfacial integrity of (Ti, Al)N hard coatings deposited on high speed steel cutting tools. Surf. Coat. Technol. 1999, 120, 388–394. [Google Scholar] [CrossRef]
- Keunecke, M.; Stein, C.; Bewilogua, K.; Koelker, W.; Kassel, D.; van den Berg, H. Modified TiAlN coatings prepared by d.c. pulsed magnetron sputtering. Surf. Coat. Technol. 2010, 205, 1273–1278. [Google Scholar] [CrossRef]
- Matei, A.A.; Pencea, I.; Branzei, M.; Trancă, D.E.; Ţepeş, G.; Sfet, C.E.; Ciovica, E.; Gherghilescu, A.I.; Stanciu, G.A. Corrosion resistance appraisal of TiN, TiCN and TiAlN coatings deposited by CAE-PVD method on WC-Co cutting tools exposed to artificial sea water. Appl. Surf. Sci. 2015, 358, 572–578. [Google Scholar] [CrossRef]
- Nnaji, M.O.; Tavakoli, D.A.; Hitchcock, D.A.; Vogel, E.M. Low-temperature formation of Ti₂AlN during post-deposition annealing of reactive multilayer systems. J. Appl. Phys. 2024, 136, 115302. [Google Scholar] [CrossRef]
- He, Q.; Paiva, J.M.; Kohlscheen, J.; Beake, B.D.; Veldhuis, S.C. An integrative approach to coating/carbide substrate design of CVD and PVD coated cutting tools during the machining of austenitic stainless steel. Ceram. Int. 2020, 46, 5149–5158. [Google Scholar] [CrossRef]
- Liu, L.; Zhou, L.; Tang, W.; Ruan, Q.; Li, X.; Wu, Z.; Qasim, A.M.; Cui, S.; Li, T.; Tian, X.; et al. Study of TiAlN coatings deposited by continuous high power magnetron sputtering (C-HPMS). Surf. Coat. Technol. 2020, 402, 126315. [Google Scholar] [CrossRef]
- Ananthakumar, R.; Subramanian, B.; Kobayashi, A.; Jayachandran, M. Electrochemical corrosion and materials properties of reactively sputtered TiN/TiAlN multilayer coatings. Ceram. Int. 2012, 38, 477–485. [Google Scholar] [CrossRef]
- PalDey, S.; Deevi, S.C. Single layer and multilayer wear resistant coatings of (Ti, Al)N: A review. Mater. Sci. Eng. A 2003, 342, 58–79. [Google Scholar] [CrossRef]
- Chen, L.; Paulitsch, J.; Du, Y.; Mayrhofer, P.H. Thermal stability and oxidation resistance of Ti–Al–N coatings. Surf. Coat. Technol. 2012, 206, 2954–2960. [Google Scholar] [CrossRef] [PubMed]
- Hörling, A.; Hultman, L.; Oden, M.; Sjölen, J.; Karlsson, L. Mechanical properties and machining performance of Ti₁₋ₓAlₓN-coated cutting tools. Surf. Coat. Technol. 2005, 191, 384–392. [Google Scholar] [CrossRef]
- Mayrhofer, P.H.; Hörling, A.; Karlsson, L.; Sjölen, J.; Larsson, T.; Mitterer, C.; Hultman, L. Self-organized nanostructures in the Ti–Al–N system. Appl. Phys. Lett. 2003, 83, 2049–2051. [Google Scholar] [CrossRef]
- Walczak, M.; Pasierbiewicz, K.; Szala, M. Adhesion and mechanical properties of TiAlN and AlTiN magnetron sputtered coatings deposited on the DMSL titanium alloy substrate. Acta Phys. Pol. A 2019, 136, 294–298. [Google Scholar] [CrossRef]
- Ibrahim, M.A.M.; Korablov, S.F.; Yoshimura, M. Corrosion of stainless steel coated with TiN, (TiAl)N and CrN in aqueous environments. Corros. Sci. 2002, 44, 815–828. [Google Scholar] [CrossRef]
- Kayali, Y. The corrosion and wear behavior of TiN and TiAlN coated AISI 316 L stainless steel. Prot. Met. Phys. Chem. Surf. 2014, 50, 412–419. [Google Scholar] [CrossRef]
- Tkadletz, M.; Hofer, C.; Wüstefeld, C.; Schalk, N.; Motylenko, M.; Rafaja, D.; Holzschuh, H.; Bürgin, W.; Sartory, B.; Mitterer, C.; et al. Thermal stability of nanolamellar fcc-Ti1-xAlxN grown by chemical vapor deposition. Acta Mater. 2019, 174, 195–205. [Google Scholar] [CrossRef]
- Dobrzański, L.A.; Lukaszkowicz, K.; Zarychta, A.; Cunha, L. Corrosion resistance of multilayer coatings deposited by PVD techniques onto the brass substrate. J. Mater. Process. Technol. 2005, 164, 816–821. [Google Scholar] [CrossRef]
- Stock, S.R. X-ray microtomography of materials. Int. Mater. Rev. 1999, 44, 141–164. [Google Scholar] [CrossRef]
- Akhtar, S.S.; Laghari, R.A.; Alotaibi, A.D.; Abubakar, A.A.; Mekid, S.; Al-Athel, K.S. A critical review on functionally graded ceramic materials for cutting tools: Current trends and future prospects. Rev. Adv. Mater. Sci. 2023, 62, 20230141. [Google Scholar] [CrossRef]
- Hu, C.; Li, F.; Qu, D.; Wang, Q.; Xie, R. Developments in Hot Pressing and Hot Isostatic Pressing of Ceramic Composites. Mater. Sci. Eng. A 2013, 205, 164–172. [Google Scholar] [CrossRef]
- Kaczmarczyk, G.P.; Cała, M. Possible Application of Computed Tomography for Numerical Simulation of the Damage Mechanism of Cementitious Materials—A Method Review. Buildings 2023, 13, 587. [Google Scholar] [CrossRef]
- Brabant, L.; Pauwels, E.; Dierick, M.; Van Loo, D.; Boone, M.A.; Van Hoorebeke, L. A novel beam hardening correction method requiring no prior knowledge, incorporated in an iterative reconstruction algorithm. NDT&E Int. 2012, 51, 68–73. [Google Scholar] [CrossRef]
- Nguyen, V.; Sanctorum, J.G.; Van Wassenbergh, S.; Dirckx, J.J.J.; Sijbers, J.; De Beenhouwer, J. Geometry Calibration of a Modular Stereo Cone-Beam X-ray CT System. J. Imaging 2021, 7, 54. [Google Scholar] [CrossRef]
- Chlewicka, M.; Dobkowska, A.; Sitek, R.; Adamczyk-Cieślak, B.; Mizera, J. Microstructure and corrosion resistance characteristics of Ti–AlN composite produced by selective laser melting. Mater. Corros. 2022, 73, 451–459. [Google Scholar] [CrossRef]
Environment | Dielectric Layer | Double Layer | ||
---|---|---|---|---|
R (Ωcm2) | 7 | 3.75 × 102 | 9.85 × 105 | |
QCPE | Y0 CPE (Fcm−2 sn−1) | 2.65 × 10−4 | 2.83 × 10−5 | |
n | 0.77 | 0.93 |
Corrosion Potential, Ecorr. (mV) | Corrosion Current Density, Icorr. (µA/cm2) | |
---|---|---|
AlN-TiN(BN) | −285 | 0.078 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sitek, R.; Bochenek, K.; Maj, P.; Marczak, M.; Żaba, K.; Kopec, M.; Kaczmarczyk, G.P.; Kamiński, J. Hot-Pressing of Ti-Al-N Multiphase Composite: Microstructure and Properties. Appl. Sci. 2025, 15, 1341. https://doi.org/10.3390/app15031341
Sitek R, Bochenek K, Maj P, Marczak M, Żaba K, Kopec M, Kaczmarczyk GP, Kamiński J. Hot-Pressing of Ti-Al-N Multiphase Composite: Microstructure and Properties. Applied Sciences. 2025; 15(3):1341. https://doi.org/10.3390/app15031341
Chicago/Turabian StyleSitek, Ryszard, Kamil Bochenek, Piotr Maj, Michał Marczak, Krzysztof Żaba, Mateusz Kopec, Grzegorz Piotr Kaczmarczyk, and Janusz Kamiński. 2025. "Hot-Pressing of Ti-Al-N Multiphase Composite: Microstructure and Properties" Applied Sciences 15, no. 3: 1341. https://doi.org/10.3390/app15031341
APA StyleSitek, R., Bochenek, K., Maj, P., Marczak, M., Żaba, K., Kopec, M., Kaczmarczyk, G. P., & Kamiński, J. (2025). Hot-Pressing of Ti-Al-N Multiphase Composite: Microstructure and Properties. Applied Sciences, 15(3), 1341. https://doi.org/10.3390/app15031341