Computer Science > Logic in Computer Science
[Submitted on 9 Aug 2022]
Title:On Composing Communicating Systems
View PDFAbstract:Communication is an essential element of modern software, yet programming and analysing communicating systems are difficult tasks. A reason for this difficulty is the lack of compositional mechanisms that preserve relevant communication properties.
This problem has been recently addressed for the well-known model of communicating systems, that is sets of components consisting of finite-state machines capable of exchanging messages. The main idea of this approach is to take two systems, select a participant from each of them, and derive from those participants a pair of coupled gateways connecting the two systems. More precisely, a message directed to one of the gateways is forwarded to the gateway in the other system, which sends it to the other system. It has been shown that, under some suitable compatibility conditions between gateways, this composition mechanism preserves deadlock freedom for asynchronous as well as symmetric synchronous communications (where sender and receiver play the same part in determining which message to exchange).
This paper considers the case of asymmetric synchronous communications where senders decide independently which message should be exchanged. We show here that preservation of lock freedom requires sequentiality of gateways, while this is not needed for preservation of either deadlock freedom or strong lock freedom.
Submission history
From: EPTCS [view email] [via EPTCS proxy][v1] Tue, 9 Aug 2022 09:54:02 UTC (57 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.