
1 1

1 1

ISSN0252–9742

Bulletin
of the

European Association for

Theoretical Computer Science

EATCS

EA
T

C
S

Number 87 October 2005

2 2

2 2

3 3

3 3

C  

E A 

T C S

B:
P: M N D

V P: J  L T N
P S G

T: D J B

S: B R S

B E: V S U K

O C M:
P D I
M. D-C I
J D́ S
Z́ É H
J E G
H G USA
A G UK
K I J
J-P J F

J K̈ F
D P I
J̌́ S C R
A T P
W T G
DW G
EW S
GW̈ T N
U Z I

EATCS M  TCS:
M E: W B G

G R T N
A S F

TCS E: G A I
M M USA
D S U K

P P:
M N (1972–1977) M P (1977–1979)
A S (1979–1985) G R (1985–1994)
W B (1994–1997) J D́ (1997–2002)

4 4

4 4

EATCS C M
 

Giorgio Ausiello .ausiello@dis.uniroma1.it

Wilfried Brauerbrauer@informatik.tu-muenchen.de

Pierpaolo Degano .degano@di.unipi.it

Mariangiola Dezani-Ciancaglinidezani@di.unito.it

Josep Díaz .diaz@lsi.upc.es

Zoltán Ésik .ze@inf.u-szeged.hu

Javier Esparzaesparza@informatik.uni-stuttgart.de

Hal Gabow .hal@research.cs.colorado.edu

Alan Gibbons .amg@dcs.kcl.ac.uk

Kazuo Iwama .iwama@kuis.kyoto-u.ac.jp

Dirk Janssens .Dirk.Janssens@ua.ac.be

Jean-Pierre Jouannaudjouannaud@lix.polytechnique.fr

Juhani Karhumäki .karhumak@cs.utu.fi

Jan van Leeuwen .jan@cs.uu.nl

Michael Mislove .mwm@math.tulane.edu

Mogens Nielsen .mn@brics.dk

David Peleg .peleg@wisdom.weizmann.ac.il

Jǐrí Sgall .sgall@math.cas.cz

Branislav Rovan .rovan@fmph.uniba.sk

Grzegorz Rozenberg .rozenber@liacs.nl

Arto Salomaa .asalomaa@utu.fi

Don Sannella .dts@dcs.ed.ac.uk

Vladimiro Sassone .vs@susx.ac.uk

Paul Spirakis .spirakis@cti.gr

Andrzej Tarlecki .tarlecki@mimuw.edu.pl

Wolfgang Thomasthomas@informatik.rwth-aachen.de

Dorothea WagnerDorothea.Wagner@uni-konstanz.de

Emo Welzl .emo@inf.ethz.ch

Gerhard Wöegingerg.j.woeginger@math.utwente.nl

Uri Zwick .zwick@post.tau.ac.il

5 5

5 5

Bulletin Editor: Vladimiro Sassone, Sussex, BN1 9QH, United Kingdom
Cartoons: DADARA, Amsterdam, The Netherlands

The bulletin is entirely typeset by TEX and CTEX in TX. The Ed-
itor is grateful to Uffe H. Engberg, Hans Hagen, Marloes van der Nat, and
Grzegorz Rozenberg for their support.

All contributions are to be sent electronically to

bulletin@eatcs.org

and must be prepared in LATEX 2ε using the class beatcs.cls (a version of
the standard LATEX 2ε article class). All sources, including figures, and a
reference PDF version must be bundled in a ZIP file.

Pictures are accepted in EPS, JPG, PNG, TIFF, MOV or, preferably, in PDF.
Photographic reports from conferences must be arranged in ZIP files layed out
according to the format described at the Bulletin’s web site. Please, consult
http://www.eatcs.org/bulletin/howToSubmit.html.

We regret we are unfortunately not able to accept submissions in other for-
mats, or indeed submission not strictly adhering to the page and font layout
set out in beatcs.cls. We shall also not be able to include contributions not
typeset at camera-ready quality.

The details can be found at http://www.eatcs.org/bulletin, including
class files, their documentation, and guidelines to deal with things such as
pictures and overfull boxes. When in doubt, email bulletin@eatcs.org.

Deadlines for submissions of reports are January, May and September 15th,
respectively for the February, June and October issues. Editorial decisions
about submitted technical contributions will normally be made in 6/8 weeks.
Accepted papers will appear in print as soon as possible thereafter.

The Editor welcomes proposals for surveys, tutorials, and thematic issues of
the Bulletin dedicated to currently hot topics, as well as suggestions for new
regular sections.

The EATCS home page is http://www.eatcs.org

6 6

6 6

7 7

7 7

i

T  C

EATCS MATTERS
L   P .
L   E .
R   EATCS G A . 

T EATCS A 2005 .

S S: F V  R, by R. Milner 

EATCS A 2006 .

G̈ P 2006 .

F C
T J C .

INSTITUTIONAL SPONSORS
IPA – I  P R  A 

EATCS NEWS
N  A, by C.J. Fidge .

N  I, by M. Mukund .

N  I, by A.K. Seda .

N  N Z, by C.S. Calude . 

THE EATCS COLUMNS
T A C, by J. D́ıaz

S N T  D  A  E
(E) A, by F.V. Fomin, F. Grandoni, and D. Kratsch

T C C, by J. Torán
L B  Q Q C, by P. Høyer and
R. Špalek .

T C C, by L. Aceto
R  R  P C: E,
by C. Palamidessi and F.D. Valencia. 

T F S C, by H. Ehrig
A – A T   A  G T
S, by B. König and V. Kozioura . 

I   G C C  S
M  A HLR S, by J. Padberg 

8 8

8 8

ii

T L  C S C, by Y. Gurevich
F-O T P, by J. Van den Bussche. 

T N C C, by G. Rozenberg
D   B C: F   F
A      , by Y. Sakakibara. 

TECHNICAL CONTRIBUTIONS
A       NFA, by P. Garćıa and
M. Vázquez de Parga. .

O D P  T A, by O. Finkel 

T L  PW   R:  
, by P. Dömösi and G. Horváth. .

THE PUZZLE CORNER,by L. Rosaz .

REPORTS FROM CONFERENCES
ICALP 2005/ PPDP 2005 .

APC 25 .

CPM 2005 .

WG 2005 .

AFL 2005 .

WSA 2005 .

N P  M  C 

DNA 11 .

ABSTRACTS OF PHD THESES .

EATCS LEAFLET .

9 9

9 9

EATCS M

EA
T

C
S

10 10

10 10

11 11

11 11

3

Letter from the President

Dear EATCS members,

Following my letter in the previous
Bulletin, things are now developing rapidly
towards shaping the European Union’s 7th
Framework, FP7, and again I would like to
encourage all EATCS members to take an
active part in the national as well as
international discussions. The current
proposal from the European Commission has
just been released, and can be found from
www.cordis.lu/fp7. In particular, the
developments towards a European Research
Council to support basic, frontier research
can be followed from the so-called European
Basic Research Website, to which you may
find a link on www.cordis.lu/fp7/ideas.htm.

At the time of writing, the election of 10
members for EATCS Council is still running.
On behalf of EATCS, I would like to thank
all the candidates for accepting their
nominations for the election, and to
welcome the new members of the Council.
Also, I would like to thank the previous
members now leaving the Council for their
work through the years. Their
contributions have been highly appreciated,
and I hope that the association may rely on
their assistance also in the future.

As many of you will know, we had a very
successful 32nd ICALP in Lisbon this year.
We are grateful to Luis Monteiro, Luis
Caires and their colleagues in Lisbon for
an excellent organization. ICALP was
co-located with 7th ACM-SIGPLAN
International Conference on Principles and
Practice of Declarative Programming PPDP’05
as well as a number of workshops and other
events, including the presentation of the

12 12

12 12

BEATCS no 87 EATCS MATTERS

4

EATCS Award 2005. You may find many more
details in this issue of the Bulletin.

Let me also draw your attention to the
calls for papers and workshops for ICALP
2006 in Venice, organized by Michele
Bugliesi. As you will see, we continue in
2006 with the successful format of three
track introduced in 2005. You may find
more details in this Bulletin, where you
will also find calls for nominations for
the Gödel prize 2006 and the EATCS Award
2006.

At the General Assembly in Lisbon, it was
unanimously decided to have ICALP 2007 in
Poland, more precisely in Wroclaw,
organized by Leszek Pacholski. Also, the
General Assembly approved a proposal to
modernize the EATCS statutes, a proposal
which will subsequently be sent for final
approval by all EATCS members. More on
this in the next issue of the Bulletin.

Mogens Nielsen, Aarhus
September 2005

13 13

13 13

5

Letter from the Bulletin Editor

Dear Reader,

Welcome to the October 2005 issue of the
Bulletin of the EATCS. Like all Autumn issues, this
one includes typical ‘post-ICALP’ items, such as
the Secretary’s report from the EATCS General
Assembly and Manfred Kudlek’s punctual reportage
from Lisbon of the 32nd ICALP conference. ICALP
2005 witnessed the presentation of the EATCS Award
for lifetime distinguished achievements to Robin
Milner, whose reflections after his Award Lecture
are collected here in the paper “Software Science:
From Virtual to Reality.” Remarkable too is
Cristian Calude’s interview to Solomon Marcus,
member of the Romanian Academy, reported in
Cristian’s column, “News from New Zealand.”

This instalment of the Bulletin contains the last
of Josep Díaz’s “Algorithmic Column”s. Josep has
edited the column for four years, summing up to 12
issues, and I wish to thank him very warmly indeed
for the fantastic job he has done. The new editor
of the “Algorithmic Column,” Gerhard Woeginger,
will take charge from issue 88 in February.

The set of regular columns and contributed papers
is as rich and interesting as ever, and I am glad
to submit it to your attention. As usual the
volume is closed by a set of reports from
international conferences and meetings, and by
abstract of PhD dissertations.

Enjoy

Vladimiro Sassone, Sussex
September 2005

14 14

14 14

6

ICALP 2005
R   EATCS G A 2005

The 2005 General Assembly of EATCS took place on Tuesday, July 12th, 2005,
at the Gulbenkian Foundation in Lisbon, the site of the ICALP. President Mogens
Nielsen opened the General Assembly (GA) at 18:07. He started out by announc-
ing that due to organisational constraints the GA had been allocated one hour
strictly, and hence apologised that the agenda was slightly shorter than usual. The
agenda consisted of the following items.

R   EATCS P. Mogens Nielsen reported briefly on
the EATCS activities between ICALP 2004 and ICALP 2005. He referred to the
more detailed report posted a couple of weeks before the GA on the EATCS web
page atwww.eatcs.org. Mogens Nielsen explicitly mentioned and emphasised
several items.

The number of members of EATCS had continued to increase, due to a range
of activities, including a new web based membership registration system. Mo-
gens Nielsen encouraged all members to update their membership information
regularly (fromwww.eatcs.org).

Also, the financial situation of EATCS had continued to improve, mainly due
to efforts of the editor of the Bulletin of the EATCS, Vladimiro Sassone, resulting
in a significant reduction of the production cost, as well as last years decision to
increase the annual EATCS membership fee toe 30. Mogens Nielsen concluded
that the improved financial situation would give room for some new EATCS initia-
tives currently under discussion in the EATCS Council, and encouraged all mem-
bers to contribute to this discussion by contacting Council members.

The president reported on the new composition of the award committees.
The Gödel Prize committee 2006 consists of P.-L. Curien (chair), P. Vitanyi,
and V. Diekert representing EATCS, and C. Papadimitriou, J. Reif, and J. Ull-
man representing ACM SIGACT. The EATCS Award 2006 committee consists of
M. Dezani-Ciancaglini (chair), D. Peleg, and W. Thomas.

Mogens Nielsen also reported on a Council decision to keep the successful
structure of ICALP 2005 with the three tracks A (Algorithms, Automata, Com-
plexity and Games), B (Logic, Semantics and Theory of Programming), and C
(Security and Cryptography Foundations), also for ICALP 2006.

In the reporting period a total of 21 events were under the auspices of EATCS,
and EATCS sponsored a number of prizes for the best papers or best student papers
at conferences (ICALP, ETAPS, ESA ICGT, and MFCS), sponsor conferences and
acknowledges activity of its chapters. More details in the report on the web.

15 15

15 15

The Bulletin of the EATCS

7

Mogens Nielsen also included brief reports from the EATCS associated pub-
lications, again referring to the annual report for details.

In the reporting period, three volumes of the Bulletin of the EATCS has been
published, and special thanks and appreciation were given to the editor, V. Sas-
sone, for his efforts in continuously improving the quality of the Bulletin, and at
the same time reducing the cost. A number of recent Bulletin issues are now avail-
able electronically for EATCS members. On behalf of the editor he also thanked
the Column editors, News editors, and everybody else contributing to the success
of the Bulletin.

In the EATCS Texts and Monographs series, a total of 7 Texts had been pub-
lished in the reporting period. Special thanks were given to the editors A. Salomaa,
W. Brauer, and G. Rozenberg and to Springer Verlag, and the new Springer editor
for the series, Ronan Nugent, was given a warm welcome and introduced to the
audience.

In the journal Theoretical Computer Science, TCS, volumes 322 to 340 had
been published. Special thanks were given to the editors in chief G. Ausiello,
D. Sannella, and M. Mislove (ENTCS editor). Also, the special celebration of the
30th anniversary of TCS during ICALP 2005 was mentioned, and the new Elsevier
TCS editor, Christopher Leonard, was given a warm welcome and introduced to
the audience.

R  C E. According to the EATCS Statutes,
10 members of the EATCS Council are elected in every odd year for a four year
period. A call for nominations had been posted in the Bulletin of the EATCS as
well as on the EATCS website. Following this a total of 23 candidates had been
nominated by EATCS members. The names of these were presented to the GA,
and the list was approved with no additions. (Subsequently one of the candidates
withdrew the candidacy, and hence 22 candidates ran in the electronic election
taking place in September 2005.)

P  R EATCS S. Following the announcement at
last years GA, a concrete proposal for revisions of the current EATCS Statutes
was presented to the GA. The purpose of the revision is mainly to modernise the
formation of the Council (by removing references to explicit publications and the
notion of a Board), to clarify some ambiguities (e.g., the formulation of the na-
tionality constraint in the formation of the Council), to remove some unfortunate
restrictions (e.g., the inflexibility of timing constraint on Council elections, which
fall in the holiday season), and to correct some small inconsistencies.

The proposal was approved by the GA. Furthermore, the president announced
that additional revisions of a legal nature could result from current consultations

16 16

16 16

BEATCS no 87 EATCS MATTERS

8

with legal advisers. The GA gave the Council the authority to formulate a com-
plete set of new Statutes following the proposal approved, to be presented to all
members for final approval following the formulations in the current Statutes.

R ICALP 2005. Luis Caires gave a report on the local arrangements
for ICALP 2005, on behalf of himself and the other chair of the organising com-
mittee, Luis Monteiro. ICALP 2005 was co-located with the 7th ACM-SIGPLAN
International Conference on Principles and Practice of Declarative Programming
PPDP’05, and 8 pre/post-conference workshops.

Luis Caires provided some basic statistics on the organisation. A total of 255
participants from 29 countries registered for ICALP, and including the workshops
there were 384 participants from 32 countries. Also, Luis Caires thanked explic-
itly all the sponsors of ICALP 2005.

It was for the first time ICALP was located in Portugal, and the GA expressed
its appreciation for a superb organisation.

ICALP 2005 introduced for the first time three tracks with separate program
committees. Besides the traditional tracks A (Algorithms, Automata, Complexity
and Games) and B (Logic, Semantics and Theory of Programming), an additional
track C on Security and Cryptography Foundations was introduced.

The three PC chairs Pino Italiano (track A), Catuscia Palamidessi (track B),
and Moti Yung (track C) gave separate reports. There were a record number of
407 submissions for ICALP (258 for track A, 75 for track B, 74 for track C),
out of which 113 were accepted for the conference. The three chairs provided
many more statistical details of their work, some of which will appear in the usual
ICALP report contributed to this volume by Manfred Kudlek. Again, the GA
expressed its appreciation for their excellent work.

The President kept the tradition presenting the ICALP organisers and the PC
chairs with small gifts, thanking all of them for their efforts.

R ICALP 2006. On behalf of Michele Bugliesi, the ICALP 2006 or-
ganising chair, Vladimiro Sassone reported on the organisation of ICALP 2006
to be held in Venice on July 9–16, 2006. ICALP 2006 will follow the successful
format from 2005 with the three tracks A (chaired by Ingo Wegener), B (chaired
by Vladimiro Sassone), and C (chaired by Bart Preneel). The conference venue
will be the island of San Servolo in Venice, and Vladimiro provided detailed in-
formation on the city of Venice, San Servolo, accommodation facilities etc.

V  ICALP 2007. Mogens Nielsen announced that several sites had
expressed an interest in hosting ICALP in 2007, but that in the end, he was only
aware of one contender, University of Wroclaw, Poland, with Leszek Pacholski as

17 17

17 17

The Bulletin of the EATCS

9

conference chair. When nobody from those present brought up another proposal,
Leszek Pacholski presented his proposal of organising ICALP 2007 in the period
July 9–13, including basic information about the University of Wroclaw, the city
of Wroclaw, accommodation facilities, etc., Furthermore it was announced that
ICALP 2007 would be co-located with other conferences, including the Annual
IEEE Symposium on Logic in Computer Science, LICS 2007, following the suc-
cessful co-location in Turku 2004.

The GA approved unanimously Wroclaw as the site for ICALP 2007.

S. At this point, at 19:11, the President thanked all present and con-
cluded the 2005 General Assembly of the EATCS by introducing Manfred Kudlek,
presenting the statistics of the authors who published repeatedly at ICALP, and
presenting the special EATCS badges to those having reached 5 or more full pa-
pers at ICALP. By tradition Manfred also presented the EATCS badges to the
editors of the ICALP 2005 proceedings.

Branislav Rovan and Mogens Nielsen

18 18

18 18

10

T D A A

EATCS AWARD2005

In a special afternoon ceremony on July 14th during ICALP 2005 at the Calouste
Gulbenkian Foundation in Lisbon, the EATCS DAA
2005 was awarded to

P R M 

emeritus professor at the University of Cambridge (UK), for his outstanding
contributions to theoretical computer science. After a brief introduction by the
EATCS president, Mogens Nielsen, the EATCS Award was presented to Robin
by the chairman of the Award Committee 2005, Jan van Leeuwen. The other
members of the Committee were: Mariangiola Dezani and Wolfgang Thomas.

Robin Milner has been a cornerstone of the mathematical theory of compu-
tation for many years. The first beginnings of his work date back to the 1960’s
when, in positions at the City University of London and the University College
in Swansea, he became deeply interested in rigorous methods for the analysis of
computer programs, using the tools of mathematical logic. During a very influ-
ential period at Stanford University from 1971 to 1973, Robin began his work
on computer-assisted reasoning, initially with the further development of LCF, a
deductive system for computable functions based on ideas of Dana Scott.

Following up on this in subsequent years, Robin embarked on his first ma-
jor project, the design and definition of the language ML (Meta-Language), a
now widely accepted programming language with polymorphic type inference and
type-safe exception handling, and with a fully formal semantics. ML, or rather its
later versionStandard ML, is taught to students even at the undergraduate level
now and it has found applications in industry.

Already in the 1970’s Robin saw the classical paradigms of computer science
shift towards concurrent and interactive processes. Aiming at a fully mathemat-
ical framework again, he developed CCS, theCalculus of Communicating Sys-
tems, one of the first algebraic calculi for analysing concurrent systems. He also
formulated and substantially advancedfull abstraction, which concerns the inti-
mate relationships between operational and denotational semantics. In the 1990’s

19 19

19 19

The Bulletin of the EATCS

11

Robin developed CCS into theπ-calculus, the highly influential process calculus
which became a widely accepted basis for modeling and reasoning about concur-
rent systems and which has found applications even in the modeling of business
processes. More recently Robin has invented new frameworks for the analysis
of distributed systems, notablyaction calculiandbigraphical structures, now in-
cluding both mobility and reactivity together.

The mathematical theory of computation is devoted to the formal understand-
ing of computation, of programs and programming and, as Zohar Manna wrote
many years ago, to making the verification of programs into ascience. The no-
tions of programs and programming have evolved greatly over the years. Our
summary of Robin’s work only sketches his very important role in the field and
its development into amathematical theory of interaction. Robin’s outstanding
influence is best illustrated by the fact that he is the fourth most cited author in
computer science in the world (cf. the CiteSeer.IST index of most cited authors,
May 2005).

A key feature of Robin’s work has always been the balance between theory and
practice. Whereas he has always strived for fully mathematical frameworks, he al-
ways ensured that his research contributions were both relevant and fundamental.
His books (on CCS, on ML and Standard ML, and on Communicating and Mobile
Systems) are landmarks in their field. Many people have enjoyed working with
Robin, and in most cases the work we mentioned was done in long term projects
with PhD students and with fellow researchers, in Edinburgh where he worked
from 1973 till 1995, in Cambridge after that, or at other places like Aarhus where
Robin held a guest professorship. Robin has also been a leading scientist in the
movement in the UK to establish long-term research goals for computer science,
including the definition of Grand Challenges for our field.

Robin Milner received several prizes for his work. In 1987 he received the
British Computer Society Technical Award (for ML) and 1991 the prestigious
Turing Award (for ML and CCS). In 2001 he received the ACM SIGPLAN Award
for Achievement in Programming Languages. Robin received at least 7 honorary
doctorates (including the one at Bologna during ICALP’97). He is a Fellow of
ACM, of the Royal Society and of the Royal Society of Edinburgh. In 2004 he
received the Royal Medal, the highest award of the Royal Society of Edinburgh.
Robin served on many committees in the UK and in other countries, and on sev-
eral editorial boards, including e.g. TCS, the Computer Journal and Mathematical
Structures in Computer Science. Last but not least, he also has been active for
EATCS: he was a member of the EATCS Council for many years from 1973 on-
ward, he was one of the organizers of ICALP’76 (Edinburgh), and a program
committee member of ICALP’80 (Noordwijkerhout).

Jan van Leeuwen

20 20

20 20

12

S :    
EATCS A L

Robin Milner

F . . .

I have spent a career working in what has been called “programming languages”
and “semantics.” It may seem ungrateful to question the way we use these terms,
and whether they properly describe a branch of computation theory. But there are
occasions which grant a licence to be provocative; I assume that this is such an
occasion.

Modern computing, both hardware and software, is firmly rooted in the Church-
Turing hypothesis, and in the physical possibility of a universal machine in each
of the computational models that the hypothesis asserts to be equivalent. The most
famous such model is what Turing called his ‘paper machines;’ another, developed
by Minsky and others, is based upon register machines. In the first phase of mod-
ern computing there was no real issue about language; the early assembly codes,
the autocodes and even F were rather thinly disguised register machines;
there was little doubt about the meaning of a program. This was the Garden of
Eden, where people did not expect or feel the need for advanced forms of abstrac-
tion to describe a computation in more succinct or modular fashion. Somewhere
John Backus expressed his satisfaction that the definition of F occupied a
mere 51 pages; most of them were presumably about grammar.

The departure from the Garden of Eden was gradual but relentless. The in-
creasing distance from the Garden can be measured by the increasing gap be-
tween, on the one hand languages (even, in the early days, A 60), and on the
other hand the mathematically powerful abstractions defining entities that pro-
grams should denote. True, there has been much mutual influence between lan-
guage design and abstractions; the dialectic has borne great fruit for both practice
and theory. But we have never re-entered the Garden. To regain entry we should
have achieved a mathematical model of computation, perhaps highly abstract in
contrast with the concrete nature of paper and register machines, but such that pro-
gramming languages are merely executable fragments of the theory and require no
independent invention. The gate back to the Garden seems inaccessible. In teach-

21 21

21 21

The Bulletin of the EATCS

13

ing programming languages to advanced undergraduates I always said that every
language design went one step (or more) beyond the theories available to explain
it. (I know this well, as a language designer.) Of course, this fuelled many healthy
strands of semantic research.

But is software science only about language and semantics, or is there some-
thing else?

. . . 

A new strand entered, gradually, some forty years ago. As well as seeking ab-
stractions to express the virtual structures of programs, we began to seek them
also to model the real structures of communication and interaction. The word
“real” is justified as soon as we accept that these phenomena exist independently
of computers and programs. Equally, the word “model” is justified, in preference
to “semantics.” The latter term tends to presuppose a language to be explained;
“model,” on the other hand, presupposes no such thing. We began to model in-
formatic phenomena that are independent of language. Petri, one of the first to
do so, was explicitly thinking of the processes underlying office systems, as well
as processes even less dependent on intelligent agents. About twenty years ago a
leading theorist remarked that, with the study of concurrent informatic processes,
computer science moved for the first time beyond what logicians might have ex-
pected; it created its own subject. Of course, many still prefer to talk of semantics
rather than modelling; I caused a grumbling stir at a semantics conference fifteen
years ago when I suggested we should emulate “natural” science by introducing
the term “infodynamics” for what we do. . .

A  ?

At any rate, “informatics” (which we can think of as the study of the activity of
communicating, or informing), is an accurate term to describe computer science in
this newer and broader sense. It is a science of real as well as virtual phenomena.
To what extent are these real phenomena artificial? – i.e. to what extent is this
new computing a “science of the artificial,” in Herbert Simon’s terms?

This question is not a matter for idle curiosity. As Simon points out, there
is almost a contradiction in the notion of a science of artefacts: the very under-
standing we gain from the study is likely to affect the next generation of artefacts,
and in turn the science itself. This surely happens in computing. We began our
theories of interactive systems partly in response to early experience in computer
networking. Understanding thus gained surely influenced the emergence of new

22 22

22 22

BEATCS no 87 EATCS MATTERS

14

phenomena such as the Worldwide Web. We begin now to consider populations of
autonomous entities, whether they be the “agents” of agent technologies or phys-
ical entities such as sensors; and theories of mobile processes become important
because these entities, each in their own way, move in a virtual or physical space.
The way we manage pervasive computing, and eventually manage the populations
of “nanobots” that will emerge from nanotechnology, will be influenced by these
theories.

C

Or will they? This progression of technology and the theoretical response to it
forces us to admit that informatics lacks the simple dignity of a “natural” sci-
ence; this dignity, in physics or in biology, comes from the fact that – at least
hitherto – the subject matter of the science remains fixed as an object of study.
Having admitted this lack, do we then consider informatics as defective? A pos-
sible response is much more positive: the fact that informatic science moulds its
own subject matter – for example the artefacts of pervasive computing – gives it
a unique status among sciences. But this status is only justified if the science and
its technologies find a way to develop in a tight feedback loop.

Of course, this is exactly what has not happened in conventional computing.
Current software engineering and computing theories are too far apart; the phe-
nomenon of inscrutable legacy software bears witness to their failure to main-
tain connection. Why, and how, can we succeed to maintain connection between
software technologies and theories for the far more complex world of pervasive
computing?

Part of the answer to this question must be that the penalties for failure are
dramatically higher; the more pervasive a system, the more intimately its failures
will affect the lives of people, and the more difficult it becomes to mend, adapt
or replace the system in situ. In explaining this prognosis to society, we shall
surely meet with the demand for a far higher level of scientific ratification of any
proposed design. The other part of the answer will be to develop the terms of our
science so that this ratification can be expressed in a form that is accepted by our
society. This acceptance already exists for many engineering technologies (e.g.
building); not that each member of society understands each technical argument,
but that the scientific terms in which those arguments are couched are well rooted
in our culture.

Science, and its well-rooting in our culture, is notably absent for the kind of
pervasive software architectures that lie within our reach. To achieve it seems to
require a fresh approach to the development of theories. We can already start from
an impressive platform of calculi, logics and associated analytical tools; these

23 23

23 23

The Bulletin of the EATCS

15

have mostly been built with Occam’s razor in mind, and their very economy makes
them tractable. But large pervasive applications will only be properly understood
in terms of theories that deal with a much richer variety of concepts, including
trust, reflectivity, mobility, knowledge, belief, purpose, . . . (all as attributes of en-
tity populations or the entities themselves). What is needed is a tower of theories
of these concepts; the higher theories in the tower are concerned with the more
complex concepts, which are explicitly “realised” or “implemented” in terms of
those in the lower theories.

To achieve this tower, in turn, requires theorists and designers to collaborate in
experimental projects that distil these concepts one-by-one. Such projects would
have a dual purpose; for example, a project to experiment with an architecture for
driver-less traffic management would aim not only to experiment with a specific
design but also to express the properties of that design in theoretical terms that
permit analysis. This kind of project is ambitious, but instances of it already
exist. For example, platforms for conducting business processes, and languages
for expressing the platforms, are already under study. And in the world of natural
science, biologists and computer scientists are collaborating in building models
drawing upon – and developing – existing informatic theories.

W  ?

If this trend is continued and amplified, success can be measured in terms of a new
conception of software. It will come to mean, not just programs in a language
defined by a design committee, but something much broader: the behavioural
description of a system in terms of a stable informatic science, using concepts
at an appropriate level of its theory-tower. This includes specification (at many
conceptual levels) as well as implementation; the term “program” will be applied
to levels of description low enough to be realised by machine. And the step from
specification to program, or from high-level to low-level program, becomes just
one instance of realisation of a higher-level theory by a lower-level one.

Is this a new meaning for “software”? Not entirely; after all, logic program-
ming was a step in this direction. And it can been seen as re-entry to the Garden
of Eden: “semantics” need longer be retrofitted to programming languages be-
cause they are already a part of an understood theory. But it is much more than
that. For although artefacts and theories will continue to evolve, as befits an artifi-
cial discipline, their evolution will be stabilised by tight feedback from one to the
other.

24 24

24 24

16

EATCS AWARD2006
C  N

EATCS annually honors a respected scientist from our community with the pres-
tigiousEATCS D A A. The award is given
to acknowledge extensive and widely recognised contributions to theoretical com-
puter science over a life long scientific career.

For the EATCS Award 2006, candidates may be nominated to the Awards Com-
mittee. Nominations must include supporting justification and will be kept strictly
confidential. The deadline for nominations is:December 1, 2005.

Nominations and supporting data should be sent to the chairman of the EATCS
Awards Committee:

Professor Mariangiola Dezani-Ciancaglini
Dipartimento di Informatica
Universita’ di Torino
c. Svizzera 185, 10149 Torino (Italy)

Email: dezani@di.unito.it

Previous recipients of the EATCS Award are

R.M. Karp (2000) C. Böhm (2001)
M. Nivat (2002) G. Rozenberg (2003)
A. Salomaa (2004) R. Milner (2005)

The next award is to be presented during ICALP’2006 in Venice.

25 25

25 25

17

G̈ P 2006

C  N

The Gödel Prize for outstanding papers in the area of theoretical computer sci-
ence is sponsored jointly by the European Association for Theoretical Computer
Science (EATCS) and the Association for Computing Machinery Special Interest
Group on Algorithms and Computation Theory (ACM-SIGACT). This award is
presented annually, with the presentation taking place alternately at the Interna-
tional Colloquium on Automata, Languages, and Programming (ICALP) and the
ACM Symposium on Theory of Computing (STOC). The fourteenth presentation
will take place during ICALP 2006, Venezia, July 10–14, 2006. The Prize is
named in honor of Kurt Gödel in recognition of his major contributions to math-
ematical logic and of his interest, discovered in a letter he wrote to John von
Neumann shortly before Neumann’s death, in what has become the famous “P
versus NP” question. The Prize includes an award of $5000 (US).

AWARD COMMITTEE: The winner of the Prize is selected by a committee
of six members. The EATCS President and the SIGACT Chair each appoint three
members to the committee, to serve staggered three-year terms. The committee
is chaired alternately by representatives of EATCS and SIGACT, with the 2006
Chair being an EATCS representative. The 2006 Award Committee consists of
Pierre-Louis Curien (chair, CNRS, Université Paris 7), Volker Diekert (Universität
Stuttgart), Christos Papadimitriou (UC Berkeley) John Reif (Duke University),
Jeff Ullman (Stanford University), and Paul Vitanyi (CWI, Amsterdam).

ELIGIBILITY: (The last change of rules goes back to the 2005 Prize.) Any
research paper or series of papers by a single author or by a team of authors is
deemed eligible if the paper was published in a recognized refereed journal be-
fore nomination but the main results were not published (in either preliminary
or final form) in a journal or conference proceedings before 1993. Hence, ifJP
(respectivelyCP) is the journal publication date (respectively the conference pro-
ceedings date) of a nominated paper, and ifn denotes the year of the next Award
(heren = 2006) then the following constraints should be respected:

JP≤ (January 31,n) and min(JP,CP) ≥ (January 1, (n− 13))

26 26

26 26

BEATCS no 87 EATCS MATTERS

18

Here, choosingn−13 is meant as a recognition of the fact that the value of funda-
mental work cannot always be immediately assessed, andCP is taken into account
because a conference publication often is the most effective means of bringing new
results to the attention of the community.

The research work nominated for the award should be in the area of theo-
retical computer science. The term “theoretical computer science” is meant to
encompass, but is not restricted to, those areas covered by ICALP and STOC.
Nominations are encouraged from the broadest spectrum of the theoretical com-
puter science community so as to ensure that potential award-winning papers are
not overlooked. The Award Committee shall have the ultimate authority to decide
whether a particular paper is eligible for the Prize.

NOMINATIONS: Nominations for the award should be submitted to the Award
Committee Chair at the following address:

Pierre-Louis Curien
PPS case 7014, Université Paris 7
2 Place Jussieu, 75251 Paris Cedex 05, France
email:curien@pps.jussieu.fr
tel: (+33) 144277095 fax: (+33) 144278654

To be considered, nominations for the 2006 prize must be received by January 31,
2006. Nominations may be made by any member of the scientific community. A
nomination should contain a brief summary of the technical content of the paper(s)
and a brief explanation of its significance. A copy of the research paper or papers
should accompany the nomination. The nomination must state the date and venue
of the first conference publication or state that no such publication has occurred.

The work may be in any language. However, if it is not in English, a more
extended summary written in English should be enclosed. Additional recommen-
dations in favor of the nominated work may also be enclosed. To be considered
for the award, the paper or series of papers must be recommended by at least
two individuals, either in the form of two distinct nominations or one nomination
including recommendations from two different people.

Those intending to submit a nomination are encouraged to contact the Award
Committee Chair by email well in advance. The “Subject” line of all related
messages should begin with “Goedel06.”

SELECTION PROCESS: Although the Award Committee is encouraged to
consult with the theoretical computer science community at large, the Award
Committee is solely responsible for the selection of the winner of the award. The
prize may be shared by more than one paper or series of papers, and the Award
Committee reserves the right to declare no winner at all. All matters relating to

27 27

27 27

The Bulletin of the EATCS

19

the selection process that are not specified here are left to the discretion of the
Award Committee.

PAST WINNERS:

1993: L́́ B  S M, “Arthur-Merlin games: a randomized
proof system and a hierarchy of complexity classes,”Journal of Computer
and System Sciences36 (1988), 254–276.

S G, S M  C R, “The knowledge
complexity of interactive proof systems,”SIAM Journal on Computing18
(1989), 186–208.

1994: J H, “Almost optimal lower bounds for small depth circuits,”
Advances in Computing Research5 (1989), 143–170.

1995: N I, “Nondeterministic space is closed under complementa-
tion,” SIAM Journal on Computing17 (1988), 935–938.

R́ S́, “The method of forced enumeration for nondetermin-
istic automata,”Acta Informatica26 (1988), 279–284.

1996: A S M J, “Approximate counting uniform gen-
eration and rapidly mixing Markov chains,”Information and Computation
82 (1989), 93–133.

M J AS, “Approximating the permanent,”SIAM
Journal on Computing18 (1989), 1149–1178.

1997: J H  Y M, “Knowledge and common knowledge
in a distributed environment,”Journal of the ACM37 (1990), 549–587.

1998: S T, “PP is as hard as the polynomial-time hierarchy,”SIAM
Journal on Computing20 (1991), 865–877.

1999: P W. S, “Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer,”SIAM Journal on Computing
26 (1997), 1484–1509.

2000: M Y. V  P W, “Reasoning about infinite computa-
tions,” Information and Computation115(1994), 1–37.

2001: U F, SG, L́́ L́, S S, M
S, “Interactive proofs and the hardness of approximating cliques,”
Journal of the ACM43 (1996), 268–292.

S A  S S, “Probabilistic checking of proofs: a new
characterization of NP,”Journal of the ACM45 (1998), 70–122.

S A, C L, RM, M S, M
S, “Proof verification and the hardness of approximation problems,”
Journal of the ACM45 (1998), 501–555.

28 28

28 28

BEATCS no 87 EATCS MATTERS

20

2002: G́ S́, “L(A) = L(B)? Decidability results from complete
formal systems,”Theoretical Computer Science251(2001), 1–166.

2003: Y F  R S, “A Decision Theoretic Generalization
of On-Line Learning and an Application to Boosting,”Journal of Computer
and System Sciences55 (1997), 119–139.

2004: M H  N S, “The Topological Structure of Asyn-
chronous Computation,”Journal of the ACM,46 (1999), 858–923.

M S  F Z, “Wait-Freek-Set Agreement Is Im-
possible: The Topology of Public Knowledge,”SIAM Journal of Comput-
ing, 29 (2000), 1449–1483.

2005: N A, Y M  M S, “The space complexity of
approximating the frequency moments,”Journal of Computer and System
Sciences,58 (1999), 137–147.

October 1, 2006
Comments tocurien@pps.jussieu.fr

29 29

29 29

21

R   J C

K. Makino(Univ. of Tokyo)

EATCS-JP/LA Workshop on TCS

Thefourth EATCS/LA Workshop on Theoretical Computer Sciencewill be held at
Research Institute of Mathematical Sciences, Kyoto Univ., January 30th∼ Febru-
ary 1st, 2005. The workshop will be jointly organized withLA, Japanese associa-
tion of theoretical computer scientists. Its purpose is to give a place for discussing
topics on all aspects of theoretical computer science.

A formal call for papers will be announced at our web page early November,
and a program will be announce early January, where we are also planning to
announce a program in the next issue of the Bulletin. Please check our web page
around from time to time. If you happen to stay in Japan around that period, it is
worth attending. No registration is necessary for just listeing to the talks; you can
freely come into the conference room. (Contact us by the end of November if you
are considering to present a paper.) Please visit Kyoto in its most beautiful time
of the year !

On TCS Related Activities in Japan:

TGCOMP Meetings, January∼ June, 2005

The IEICE, Institute for Electronics, Information and Communication Engineers
of Japan, has a technical committee calledTGCOMP, Technical Group on foun-
dation of COMPuting. During January∼ June of 2005,TGCOMPorganized 5
meetings and about 54 papers (including one tutorial) were presented there. Top-
ics presented are, very roughly, classified as follows.

Algorithm: On Graphs (12)
Algorithm: On Strings (2)
Algorithm: On-line Algorithms (4)
Algorithm: On Other Objects (10)
Combinatorics/ Probabilistic Analysis (4)
Computational Complexity (7)

Computational Learning (1)
Cryptography (2)
Distributed Computing (3)
Formal Languages and Automata (6)
Quantum Computing (2)
Semantics and Term Rewriting System (1)

See our web page for the list of presented papers (title, authors, key words, email).

30 30

30 30

BEATCS no 87 EATCS MATTERS

22

The Japanese Chapter

Chair: Kazuo Iwama

V.Chair: Osamu Watanabe

Secretary: Kazuhisa Makino

email: eatcs-jp@is.titech.ac.jp

URL: http://www.is.titech.ac.jp/~watanabe/eatcs-jp

31 31

31 31

I
S

32 32

32 32

BRICS, Basic Research in Computer Science,
Aarhus, Denmark

Elsevier Science
Amsterdam, The Netherlands

IPA, Institute for Programming Research and Algorithms,
Eindhoven, The Netherlands

Microsoft Research,
Cambridge, United Kingdom

PWS, Publishing Company,
Boston, USA

TUCS, Turku Center for Computer Science,
Turku, Finland

UNU/IIST, UN University, Int. Inst. for Software Technology,
Macau, China

33 33

33 33

25

http://www.win.tue.nl/ipa

I  P   A

Coming events

IPA HerfstdagenonSecurity
November 21-25, 2005, Hotel Zwartewater, Zwartsluis, The Netherlands.
The IPA Herfstdagen are an annual five day event, dedicated to one of IPA’s cur-
rent main application areas: Networked Embedded Systems, Security, Intelligent
Algorithms, and Compositional Programming Methods.

In 2001, IPA dedicated an event to Security, when during the Lentedagen all
researchers interested in Security came together for the first time. Since that time,
research in the area has grown substantially both within IPA and in the Nether-
lands in general. The goal of the Herfstdagen is to provide an overview of the
current stage of security research in and around IPA. Besides talks on current
work in computer science on security of data, software, networks, and commu-
nication, attention will be paid to organisational and societal aspects of security.
More information will become available through the Herfstdagen webpage.
See:www.win.tue.nl/ipa/archive/falldays2005/

IPA sponsorsFMCO 2005
November 1 - 4, 2005, CWI, Amsterdam, The Netherlands.
The objective of this fourth international symposium on Formal Methods for Com-
ponents and Objects is to bring together top researchers in the area of software
engineering to discuss the state-of-the-art and future applications of formal meth-
ods in the development of large component-based and object oriented software
systems. To encourage the participation of Ph.D. students, tutorials on central
topics in the area are included in the program. Key-note speakers are Michael Bar-
nett (Microsoft), Luis Caires (Lisbon), Patrick Cousot (ENS), Dennis Dams (Bell
Labs), Wan Fokkink (VU Amsterdam), Orna Grumberg (Technion), Joost-Pieter
Katoen (RWTH Aachen), Kung-Kiu Lau (Manchester), Peter O Hearn (Queen
Mary, London), Arnd Poetzsch-Heffer (Kaiserslautern), John Reynolds (Carnegie

34 34

34 34

BEATCS no 87 INSTITUTIONAL SPONSORS

26

Mellon), and Davide Sangiorgi (Bologna).
See:fmco.liacs.nl/fmco05.htm

Recent events

IPA LentedagenonSoftware Architecture
March 30 - April 1, 2005, hotel De Korenbeurs, Made, The Netherlands.
Software architecture is a topic that has figured in a low-key but consistent way
throughout IPA events in the past years. After having looked at component-based
architectures (Herfstdagen 1999), object-oriented architectures (Lentedagen on
UML, 2000), and peer-to-peer systems (Lentedagen on Middelware, 2002), this
year’s Lentedagen had software architecture as the main topic, with the aim of
presenting an overview of recent developments in the field that are of interest
to the IPA community. The overall theme was architecture and change: dealing
with change during design, the design of systems that change, and analysis of the
architecture of existing systems (with the aim of changing them). The program
contained sessions on variability, model driven and service oriented architectures,
and the reconstruction and assessment of architectures. Abstracts, hand-outs and
papers are available through the Lentedagen webpage.
See:www.win.tue.nl/ipa/activities/springdays2005/

IPA supports theSecurity PhD Association Netherlands
May 27, 2005, Delft University of Technology, The Netherlands.
After organising a number of meetings under the wings of the SAFE-NL platform
(Security: Applications, Formal aspects and Environments in the NetherLands),
a group of Ph.D. students from different Dutch universities started SPAN (the
Security Ph.D. Association Netherlands) an open platform for all Ph.D. students
in the Netherlands that are interested in Security. IPA supports this initiative, and
sponsored the first national SPAN meeting in May.
See:www.win.tue.nl/span/

Addresses

Visiting address
Technische Universiteit Eindhoven
Main Building HG 7.22
Den Dolech 2
5612 AZ Eindhoven
The Netherlands

Postal address
IPA, Fac. of Math. and Comp. Sci.
Technische Universiteit Eindhoven
P.O. Box 513
5600 MB Eindhoven
The Netherlands

tel (+31)-40-2474124 (IPA Secretariat)
fax (+31)-40-2475361
e-mail ipa@tue.nl, url http://www.win.tue.nl/ipa

35 35

35 35

EATCS N

36 36

36 36

37 37

37 37

29

News from Australia

by

C.J. Fidge

School of Engineering and Data Communications
Queensland University of Technology, Brisbane, Australia

http://www.fit.qut.edu.au/~fidgec

In February’s column I summarised some of the financial woes facing Computer
Science and Information Technology research in Australia. This included last
year’s dramatic shutdown ofMotorola Research Labs Australiain Sydney and the
gradual closure of the University of Queensland’sSoftware Verification Research
Centre. Also, Ericsson Research Labsin Melbourne laid off 300 engineers in
2003. Unfortunately, there is more bad news to report this time.

In that earlier column I mentioned the uncertain future facing theDistributed
Systems Technology Centre(DSTC), one of the country’s major Information and
Communications Technology research organisations. Indeed, it was confirmed
recently that the centre is ‘winding up’ its operations. Although the DSTC’s web
site puts the best possible spin on the situation (http://www.dstc.edu.au/
news1.html), there is no denying that this is another severe blow for computer
science research in Australia.

Sadly, despite figures showing that job vacancies in the ICT sector are grow-
ing, this has not yet changed academia’s fortunes. Throughout the country falling
enrolments mean that Computer Science and Information Technology depart-
ments in universities have been shedding academic staff. Newspaper reports cite
declines in enrolments of between 40 and 50 percent.

Two especially telling examples are major redundancies of computing aca-
demics at bothMonash Universityin Melbourne andThe University of New South
Walesin Sydney. Both of these universities have long been leaders in Australian

38 38

38 38

BEATCS no 87 EATCS NEWS

30

computer science teaching and research. Despite this, Monash University was
recently forced to let 22 academics go. Similarly dramatic staff reductions have
occurred at universities throughout Australia. (My own Queensland University of
Technology has not been immune!)

Most shocking of all was the announcement in July by the privately-owned
Bond Universitythat it was going to close its Faculty of Information Technology
entirely. The official story is that IT is to be merged with the Faculty of Business
to create a single ‘super faculty’ but this still means the loss of academic staff

from the IT side of the deal. What made this decision particularly startling was
that Information Technology was one of the cornerstones of the university when
it was first established not much more than a decade ago.

On top of this market downturn is the conservative federal government’s dog-
matic determination to make universities run like commercial businesses, with an
emphasis on churning out graduates quickly and only doing research that pro-
duces short-term financial benefits. Not surprisingly, this situation does not help
the cause of Theoretical Computer Science research in this country.

The bad news can’t continue indefinitely, however. As Information Technol-
ogy Deans around the country keep pointing out, IT is not going away and it needs
to be supported by quality teaching and research. However, it is difficult to escape
the impression that the landscape for computing research in Australia, especially
on the theoretical side, is changing irrevocably.

39 39

39 39

31

News from India

by

Madhavan Mukund
Chennai Mathematical Institute

Chennai, India
madhavan@cmi.ac.in

In this edition of News from India, we carry a report on theFormal Methods Up-
date 05workshop held at IIT Bombay in July 2005 and look ahead to forthcoming
events.

Formal Methods Update 05. Formal Methods Update 05was a three day work-
shop held at IIT Bombay on July 18–20, 2005. The workshop was organized by
the Centre for Formal Design and Verification of Software (CFDVS) with support
from the Indian Association for Research in Computing Science (IARCS) and the
Department of Science and Technology, Government of India (DST). This was
followed by a two day meeting of the working group onLogic in Computer Sci-
enceof the Centre for Discrete Mathematics and it Applications (CARDMATH),
recently established by DST.

This was the fourth in a series of “update meetings” that have been organized
over the past 3–4 years. These meetings are intended as a forum for Indian re-
searchers and students working in formal methods and theoretical topics in com-
puter science to update themselves on current trends and to explore new research
areas. In keeping with this goal, most presentations are technical surveys and ad-
vanced tutorials. The previous three meetings were held in IMSc, Chennai with
the themesModels for Programs, Timed SystemsandAutomata and Verification.

The theme of this fourth update meeting was broadlyAdvances in Concur-
rency, Logic and Verification. There was a special focus on “Advanced Formal
Methods” to explore the interplay of theoretical results from Automata, Concur-
rency and Logic with the advanced techniques for Specification and Verification
of Programs. The talks presented covered, among other topics, verification tech-
niques for hybrid systems, formalization computer security policies, verification
of message-passing systems and theories of software testing.

40 40

40 40

BEATCS no 87 EATCS NEWS

32

For copies of some of the presentations and other details about the meeting,
look uphttp://www.cfdvs.iitb.ac.in/~meeting05.

Forthcoming workshops. Two more workshops are being organized in Octo-
ber.

• A two day workshop onFormal Methods for Design and Analysis of Soft-
ware is being jointly organized by Microsoft Research India, Indian In-
stitute of Science and IARCS at Bangalore on October 7–8, 2005. De-
tails are available athttp://research.microsoft.com/~sriram/RSE/
workshop.html

• A four day workshop onApproximation Algorithmsis being organized at
IIT Delhi on October 8–11, 2005 by Naveen Garg and Amit Kumar. Details
are available at the URLhttp://www.cse.iitd.ernet.in/~naveen/
approxwshp.htm.

FSTTCS 2005. FSTTCS 2005 will take place from December 15–18, 2005
at the International Institute of Information Technology, Hyderabad. The Pro-
gramme Committee is chaired by R Ramanujam (IMSc, Chennai) and Sandeep
Sen (IIT, Kharagpur). The list of selected papers is available athttp://www.
fsttcs.org.

This will be the 25th edition of the conference. To mark the silver jubilee, the
conference has been scheduled to run over four days instead of the usual three,
with seven invited talks that will survey advances in different fields over the last
25 years. The invited speakers this year are Manindra Agrawal, Tom Henzinger,
Russell Impagliazzo, Raimund Seidel, Natarajan Shankar, Joel Spencer and Igor
Walukiewicz. In addition, there will be a special session to commemorate the
pioneers who helped establish this conference in its formative years.

In addition to invited talks and contributed papers, the FSTTCS 2005 pro-
gramme will have two pre-conference workshops during December 12–14.

• Software verification, December 12–13, organized by P Madhusudan and
Sriram Rajamani.

• Algorithms for Networks, December 14,organized by Amit Kumar and Ar-
avind Srinivasan.

Other winter conferences. December is conference season in India. Here is a
list of some of the other meetings being held around the country in December.

41 41

41 41

The Bulletin of the EATCS

33

• 11th Asiacrypt Conference, Chennai, December 4–8, 2005.
http://www.cs.iitm.ernet.in/~ac05

• 6th Indocrypt Conference, Bangalore, December 10–12, 2005.
http://www.isical.ac.in/~indocrypt

• 12th HiPC Conference, Goa, December 18–21, 2005.
http://www.hipc.org

• 2nd IICAI Conference, Pune, December 20–22, 2005.
http://www.iiconference.org

• 12th COMAD Conference, Hyderabad, December 20–22, 2005.
http://www.iiit.ac.in/comad2005

• 2nd ICDCIT Conference, Bhubaneswar, December 22–24, 2005.
http://www.cse.iitk.ac.in/users/pmitra/ICDCIT05

• 7th IWDC Workshop, Kharagpur, December 27–30, 2005.
http://www.iitkgp.ac.in/iwdc2005

Madhavan Mukund<madhavan@cmi.ac.in>
Chennai Mathematical Institute

42 42

42 42

34

News from Ireland

by

Anthony K. Seda

Department of Mathematics, National University of Ireland
Cork, Ireland
a.seda@ucc.ie

A number of developments have occurred in Ireland recently which have ex-
panded considerably the range of activity in TCS in this country. I want to report
on these in this column and also on forthcoming events scheduled to take place in
Ireland in the near and relatively near future.

A workshop on Complexity has been organized by the Hamilton Institute,
Maynooth for September 16, 2005, and more details can be found at the web-
sitehttp://www.hamilton.ie/complexity/. The coverage of topics will be
wide, and ranges from computational complexity in computer science, to the the-
ory of complex dynamical systems. In addition, applications of various differ-
ent approaches to complexity in biology, physics, engineering, communications
systems, computer science, economics, social sciences and mathematics will be
discussed. This is the first such meeting in the country and represents a coming
together of the complexity theorists in Ireland.

Another new initiative and coming together of individuals also centres on
a workshop to be held at the Hamilton Institute, NUI Maynooth, this time on
September 27th and 28th, 2005. In this case, the subject is Congestion Control
in Networks, and specific topics for discussion will include buffer sizing, AQM
and design of congestion avoidance techniques. More details can be found at the
websitehttp://www.hamilton.ie/dwmalone/cc_workshop.html/.

As usual, there will be the annual meeting of the Artificial Intelligence Asso-
ciation of Ireland. This year, the 16th Irish Conference on Artificial Intelligence
and Cognitive Science (AICS’05) will take place from 7th September to the 9th
September, 2005 in Ballycastle, Northern Ireland. Topics to be addressed include

43 43

43 43

The Bulletin of the EATCS

35

reasoning under uncertainty, image processing, genetic programming, neural net-
works, and machine learning.

Finally, I want to give advance notice of next year’s MFCSIT conference. The
Fourth Irish Conference on the Mathematical Foundations of Computer Science
and Information Technology (MFCSIT’06) will be collocated with the Fourth In-
ternational Conference on Information (Info’06). The combined conference will
take place in the National University of Ireland, Cork, from the 1st August un-
til the 5th August, 2006. The three previous MFCSIT conferences took place in
NUI Cork in 2000, in NUI Galway in 2002, and in TCD Dublin in 2004, see
http://www.cs.tcd.ie/MFCSIT2004/. The three previous Information con-
ferences took place in Fukuoka, Japan in 2000, in Beijing in 2002, and in Tokyo
in 2004, seehttp://www.information-iii.org/conf/info2004.html. It
is expected that the proceedings of this conference will again appear as a volume
in Elsevier’s series Electronic Notes in Theoretical Computer Science (ENTCS),
seehttp://math.tulane.edu/~entcs/ and in the Information Journal, see
http://www.information-iii.org.

44 44

44 44

36

News from New Zealand

by

C.S. Calude

Department of Computer Science, University of Auckland
Auckland, New Zealand

cristian@cs.auckland.ac.nz

1 Scientific and Community News

0. Waikato University’s Computer Science Machine Learning Group has won the
2005 SIGKDD Data Mining and Knowledge Discovery Service Award for their
landmark product Weka (Waikato Environment for Knowledge Analysis),http:
//www.cs.waikato.ac.nz/~ml/weka/index.html. The award, the highest
service prize in the field of data mining and knowledge discovery, is given to an
individual or group who has performed significant service to the data mining and
knowledge discovery field, including professional volunteer services in dissem-
inating technical information to the field, education, and research funding. The
group was recognised for their development of the freely-available Weka Data
Mining Software, and the accompanying book by Ian H. Witten, Eibe FrankData
Mining: Practical Machine Learning Tools and Techniques(now in second edi-
tion), which has become one of the most popular textbooks for data mining and
machine learning. The award was presented at the 11th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining held in Chicago on
August 21st.

45 45

45 45

The Bulletin of the EATCS

37

1. The latest CDMTCS research reports are (http://www.cs.auckland.ac.
nz/staff-cgi-bin/mjd/secondcgi.pl):

262. M.C. Wilson. Asymptotics for Generalized Riordan Arrays. 04/2005

263. R. Pemantle and M.C. Wilson. Twenty Combinatorial Examples of Asymp-
totics Derived From Multivariate Generating Functions. 04/2005

264. L. Staiger. Infinite Iterated Function Systems in Cantor Space and the
Hausdorff Measure of omega-power Languages. 04/2005

265. M. Stay. Very Simple Chaitin Machines for Concrete AIT. 05/2005

266. R. Eimann, U. Speidel, N. Brownlee and J. Yang. Network Event Detection
with T-Entropy. 05/2005

267. M.R. Titchener, U. Speidel and J. Yang. A Comparison of Practical Infor-
mation Measures. 05/2005

268 D.M. Greenberger and K. Svozil. Quantum Theory Looks at Time Travel.
06/2005

269. K. Svozil. Characterization of Quantum Computable Decision Problems by
State Discrimination. 06/2005

270. S. Comoroşan. Computing with Molecules: A New Type of Quantum
Molecular Computation. 07/2005

271. M.A. Stay. Truth and Light: Physical Algorithmic Randomness. 08/2005

2 Interview with Academician Solomon Marcus (I)

The biography of Academician Marcus presented at the Université Interdisci-
plinaire de Paris,http://www.uip.edu/gpss/Solomon_Marcus.html reads:
“Dr. Solomon Marcus is a member of the Mathematical Section of the Romanian
Academy and Emeritus Professor of the University of Bucharest. His publications
have been in the field of mathematical analysis, mathematical and computational
linguistics, computer science, poetics, linguistics, semiotics, philosophy and his-
tory of science, education, relations between science, humanities, philosophy and
religion. He has published 40 books, 400 research papers and several hundreds of
papers on various cultural topics of general interest.”

Cristian Calude: Professor Marcus, congratulations on your 80th anniver-
sary. This is an wonderful opportunity to talk about your activity. How did you
start your career as mathematician?

46 46

46 46

BEATCS no 87 EATCS NEWS

38

Solomon Marcus: You said ‘mathematician’. I am very cautious to use this
word as far as I am concerned. Norbert Wiener wrote “I am a mathematician", but
Paul Halmos, an excellent scholar, who, however, cannot compete with Wiener,
used a different title: “I want to be a mathematician".

CC: Then, let us refer to your relation with mathematics.

SM: My first attraction to mathematics appeared during the summer of the
year 1944, when I was 19. I read something about non-Euclidean geometry. Its
coexistence with the Euclidean one, each of them perfectly consistent, but con-
tradicting the other, impressed me first of all from a logical viewpoint. Then, in
October 1944, when I had to make a choice, my option for the study of mathemat-
ics was mainly of a negative nature. I did not like subjects like natural sciences
or history, requiring a huge memory effort (at least this was their image in the
high school textbooks of the time); mathematics seemed to me less demanding
in this respect. Visiting the Faculty of Science (Math Section), of the University
of Bucharest, I got new arguments for the same choice: titles of courses such as
‘Infinitesimal analysis’, ‘Transfinite cardinals and ordinals’, ‘Probability theory’,
although not very clear for me at that time, made me very curious; I had a vague
feeling that I will like them.

CC: If these are the only motivations which brought you to mathematics, they
don’t seem to be very serious.

SM: You are right. In November 1944 my strategy was to check for one
year my interest and capacity to assimilate Mathematics, and then to decide later
whether I continue this adventure or I move to a different place. It happened that
the first alternative proved to be valid. Moreover, the experience of the first year
gave me more substantial reasons to continue my mathematical activity.

As a matter of fact, before paying attention to mathematics, I was attracted, as
a teenager, by poetry. I read poetry much beyond what was required in school. I
used to transcribe in special notebooks pieces of poetry I liked the most, from Poe
and Baudelaire to Rilke and Esenin, but giving priority to Romanian poets such
as Eminescu, Arghezi, Blaga and Barbu. I was also attracted by theatre: I was
fascinated by Ibsen, Wilde, Shaw and Caragiale. So, you may wonder why I did
not choose the Faculty of Letters (Arts). There are two reasons. First of all, as a
survivor of the second world war, I got a sense of the gravity of life and of the need
to have a sure profession; mathematics, as a basic support for engineering, gave
me a feeling of stability, I was convinced that, in the unforeseeable world opened
by the second word war, any further evolution will need teachers of mathematics.
Second argument: literature seemed to me a topic I could know without university
studies, while a similar possibility for mathematics appeared less plausible. So, I

47 47

47 47

The Bulletin of the EATCS

39

chose mathematics.

CC: Wouldn’t have been better to choose engineering, more practical and in-
cluding mathematics too?

SM: I have never liked technical activities, although later I discovered that the
distinction science/engineering is not so sharp as I supposed. It seems to me that
it is very risky to choose a profession for which you don’t have a strong attraction.

Many of those who made the same choice left mathematics after the first year
of studies, either because they moved to engineering or because they were not able
to face the rigour of examinations. As I said, it was not my case.

CC: As a student in mathematics, what new arguments did you get for your
option?

SM: I enjoyed university mathematics, but my way to approach it was strongly
influenced by my (existing) passion for poetry and theatre. Against the common
opinion, according to which poetry and mathematics are rather opposite than sim-
ilar, for me university mathematics was from the very beginning something in
a natural, synergetic relation with poetry. With poetry I experienced for the first
time the feeling of infinity, of paradox, of frustrated expectation, while the epsilon-
delta approach to calculus lead me to similar situations, revealing me the world
of processes with infinitely many steps and, as a consequence of this infinity, the
results conflicting with our intuitive expectations. When you learn that the square
has the same number of points as the cube and that the Riemann alternate series
1 − (1/2) + (1/3) − (1/4) + . . . may have the sum equal to any arbitrarily given
real number, as soon as you modify conveniently the order of the terms, then you
decide that mathematics is both amazing and funny.

CC: Sometimes you wrote about the role of analogy in mathematics; is it also
a common pattern with poetry?

SM: Obviously. The power of analogy in both poetry and mathematics is
explained by the crucial role metaphors have in both subjects. All generalisa-
tion processes, so important in mathematics, are based on cognitive and creative
metaphors. It is not by chance that the International Congress of Mathematicians
in 1990 selected “The Mathematical Metaphor" as a topic of an invited address.
I also enjoyed projective geometry, with its duality theorems, but I learned only
some years later that this chapter of geometry was the mathematical product of
some great artists of Renaissance, from Leonardo to Dürer, in connection with the
phenomenon called ‘perspective’.

CC: Did you intend from the beginning to become a researcher in mathemat-
ics?

48 48

48 48

BEATCS no 87 EATCS NEWS

40

SM: School mathematics did not give me the impression that something is
left to be discovered in this field. On the other hand, I was ignorant about the
existence of a profession called ‘mathematics researcher’, with the same status
as engineering, medical doctor, teacher, accountant, etc. In the horizon of the
late forties of the past century, my only aim was to become a school teacher and I
was happy that I found a possible profession giving me an intellectual satisfaction.

CC: Your Erdös number is one, with a paper dating from 1957. Please tell us
about it. Where did you meet Erdös?

SM: I met him for the first time at the Fourth Congress of Romanian Mathe-
maticians, in Bucharest (1956).

CC: Were you already familiar with his mathematical work?

SM: I knew some of his papers very near to my interests at that time, specifi-
cally combinatorial set theory, the Borelian hierarchy and measure theory. At that
moment I was involved in a problem proposed by Émile Borel in 1946: ‘Is there
a decomposition of the real line in a finite number> 1 or in a countable infinity of
homogeneous sets?’

CC: What does it mean ‘homogeneous set’?

SM: According to Borel, a setE in the n-dimensional Euclidean space is
said to be homogeneous if, for two arbitrary pointsX and Y in E, the transla-
tion XY transformsE into itself. It was introduced in his paper “Les ensembles
homogènes" (C.R. Acad. Sci. Paris, 222, 1946, 617–618).

CC: I guess you told this problem to Erdös . . .

SM: One day of the Congress was dedicated to a trip to the Carpathian Roma-
nian mountains. I observed that Erdös did not pay much attention to the beauty
of nature. I approached him, being curious to experience a dialogue with this
mathematician already known for his excentricities. I introduced myself and his
reaction was: Do you have an interesting problem? I told him about my approach
to Borel’s problem. He showed much interest, we have continued to dialogue
about it during the respective trip, then by mail. The result has been a joint pa-
per “Sur la decomposition de l’espace euclidien en ensembles homogènes" (Acta
Math. Acad. Sci. Hungaricae 8, 1957, 3/4, 443–452).

CC: So, what is the answer to Borel’s problem?

SM: In our paper, we solved Borel’s problem completely, but we solved also
the corresponding problem in any polydimensional Euclidean space. The answer

49 49

49 49

The Bulletin of the EATCS

41

we got was negative in the case of a finite> 1 decomposition and positive in the
case of a decomposition inm homogeneous sets, wherem is a transfinite cardinal
smaller than the continuum.

CC: Why did you publish it in French? Did Erdös know French?

SM: I am afraid that Erdös did not speak French and perhaps he did not un-
derstand it. At that time, my English was more broken than it is now, so I wrote it
in French. As far as I know, Erdös always left to his partners the care to write the
final variant, valid for publication, of his joint papers.

CC: Did you continue to work on similar problems?

SM: In 1960, in a paper with another Hungarian mathematician, A. Csaszar
(Colloq. Math.7, 1960, 2) we proved, in connection with a result by J. Mycielski,
that there exists no decomposition of the interval (0, 1) inn > 1 disjoint sets,
pairwise superposable by translation; the same holds true for the interval [0, 1].

CC: Do you know how many researchers have got the Erdös number 2 as a
result of having a joint paper with you?

SM: I have joint papers or books with mathematicians, computer scientists,
linguists, literary researchers, semioticians, political scientists, chemists and a
medical doctor. At a first glance, the only one of them having an Erdös number
equal to 2, not only due to his collaboration with me, but also to his collabora-
tion with another author, seems to be the chemist A. T. Balaban, who, besides his
four joint papers with me, is also author of some joint papers with Frank Harary,
whose Erdös number is surely one. But who knows? There are about two hundred
authors having Erdós number equal to one, this makes extremely large the number
of authors having Erdös number equal to 2 (among them is Einstein too!) and we
are still ignorant whether Gauss has or not a finite Erdös number!

CC: Trying to connect your work in mathematical analysis, set theory and
topology, on the one hand, and your work in formal language theory, on the other
hand, I observe a key word belonging to their common denominator:symmetry.
This word appears in the title of many papers you have published from the fifties
to the nineties of the past century and they culminate with a paper published in
the 2000, in ‘Real Analysis Exchange’, whose title refers to a synthesis of your
whole work referring to symmetry. Please give us some details.

SM: After working in fields that were by excellence of continuous mathemat-
ics (mathematical analysis and general topology), I moved to fields predominantly
of a discrete nature. The continuous-discrete distinction is not so old in mathe-
matics, it became important only in the second half of the past century, under

50 50

50 50

BEATCS no 87 EATCS NEWS

42

the stimulus of the emergence of the information paradigm. Working in discrete
fields, I tried to take advantage of my experience in continuous fields. I was also
curious to find out to what extent notions and results from the later have their cor-
respondent in the former ones. Discreteness and continuity are different faces of
the same coin, so there are aesthetic reasons (symmetry reasons too) to expect a
strong analogy between these two branches of science that need each other.

CC: One of your first works concerning symmetry refers to a problem of Haus-
dorff. What was it?

SM: Hausdorff’s problem (Fundamenta Math. 25, 1935, 578) is the following:
Let f be a real function of a real variable, symmetrically continuous for any realx
(i.e., the differencef (x+ h) − f (x− h) tends to zero whenh is approaching zero).
a) Is it possible forf to have an uncountable set of points of discontinuity? b)
Given the real setD of Borelian typeFσ (i.e., a countable union of closed sets),
does there always exist a symmetrically continuous function havingD as its set of
points of discontinuity? We will leave aside here the question a). H. Fried proved
in 1937 that forD of second Baire category the answer to b) is negative, so b) was
replaced by b’), obtained from b) by replacing ‘Fσ’ with ‘ Fσ and of first Baire
category’.

CC: This is perhaps the moment when you entered the scene?

SM: Right. It is to b’) that we gave a negative answer by proving that the Can-
tor ternary set cannot play the role ofD (Bull. Polish Acad. 4, 1956, 4, 201–205).
Further improvements were obtained by other authors, but a characterisation of
the setD is not yet available.

CC: But there is an earlier paper you published on symmetry.

SM: It happened in 1955 when I proved that anyFσ real set is the set of
points where a convenient real function of a real variable is not symmetrically
continuous; but the problem to characterise the set of points where an arbitrary
real function of a real variable is not symmetrically continuous is still open. (It
is known that the condition to be ofFσ type is both necessary and sufficient for a
real set to be the set of points of discontinuity of a real function of a real variable.)

CC: Did you find a correspondent of these results in discrete mathematics,
more specifically, in formal language theory?

SM: I did not try it, but notions of continuity of a function don’t seem to be
compatible with discreteness. The situation changes however when we are deal-
ing with symmetry of sets. In this respect, I will refer to another problem, raised
by H. Steinhaus (Fund. Math. 1, 1920, 93): What can be said of a real setA such

51 51

51 51

The Bulletin of the EATCS

43

that, if x andy are inA, then (x+y)/2 < A? In this way, we are lead to the notion of
antisymmetry of a real setA in a pointa: if x ∈ A, then 2a−x < A. This notion can
be localised, by requiring the respective condition only for a suitable interval with
its center ina. S. Ruziewicz (Fund. Math. 7, 1925, 141) proved that ifA is locally
antisymmetric in each point ofA, then its interior Lebesgue measure is equal to
zero. In this respect, we have shown that, generally speaking, local symmetry and
local antisymmetry of a real set impose the same measure-theoretic and the same
topological (Baire category) restrictions: any locally symmetric real set with void
interior is of measure zero as soon as it is Lebesgue measurable; the same is true
for any locally antisymmetric real set (its interior is obligatory empty). Any lo-
cally symmetric real set with empty interior having the Baire property is of first
Baire category; the same is true for any locally antisymmetric real set (its interior
is obligatory empty).

CC: Constructive analogues of Lebesgue measure and Baire category have
been intensively studied in computability and complexity theory. What about for-
mal language theory, did you find analogies?

SM: There are, but the analogy with real sets is more subtle, I would say, it is
surprising or at least unexpected. The discrete analogue of ‘measure zero’ and of
‘first Baire category’ is the property of a language to be regular, while the discrete
analogue of measurability and of Baire property is the property to be in Chom-
sky’s hierarchy (or, at least, to be context sensitive).

CC: Please give us some references for your results.

SM: A general account on symmetry of sets and functions was given in my
‘Symmetry in the simplest case: the real line’ (Computers and Math. Applications
17, 1989, 1/3,103–115), while the discrete analogue was considered in ‘Symme-
try in languages’ (joint work with Gh. P̆aun, Intern. J. Computer Math. 52, 1994,
1/2, 1–15); ‘Symmetry in strings, sequences and languages’ (joint work with A.
Mateescu, Gh. P̆aun, and A. Salomaa, Intern. J. Computer Math. 54, 1994, 1/2,
1–13).

CC: Thank you very much for this part of the interview.

52 52

52 52

53 53

53 53

T EATCS
C

54 54

54 54

55 55

55 55

47

T A C


J D́

Department of Languages and Computer Systems
Polytechnical University of Catalunya

c/ Jodi Girona 1-3, 080304 Barcelona, Spain
diaz@lsi.upc.es

The present column deals with the “hot” topic of exact algorithms. Fomin,
Grandoni and Kratsch give a very beautiful introduction to the existing tech-
niques to design and analyze better exact (exponential) algorithms for solving
hard problems. I strongly recommend its reading to anybody working in the
field of theoretical computer science.
After four years as editor of the Algorithmics Column, it is time to have an
editor with a different perspective. From next issue, Gerhard Woeginger will
take over as editor of the Algorithmics Column. The 12 columns that so far
have appeared were made possible by the effort of all the authors that have
contributed to them. Thanks to all them!

S       
 () 

Fedor V. Fomin∗ Fabrizio Grandoni† Dieter Kratsch‡

∗Department of Informatics, University of Bergen, N-5020 Bergen, Norway,
fomin@ii.uib.no. Supported by Norges forskningsråd project 160778/V30. This work
was done while the first author was at the Humboldt-Unoversität Berlin, supported by Alexander
von Humboldt Foundation.

†Dipartimento di Informatica, Università di Roma “La Sapienza”, Via Salaria 113, 00198
Roma, Italy,grandoni@di.uniroma1.it. Supported by Web-Minds project of the Italian Min-
istry of University and Research, under the FIRB program.

‡LITA, Université de Metz, 57045 Metz Cedex 01, France,kratsch@univ-metz.fr

56 56

56 56

BEATCS no 87 THE EATCS COLUMNS

48

Abstract

This survey concerns techniques in design and analysis of algorithms
that can be used to solve NP hard problems faster than exhaustive search
algorithms (but still in exponential time). We discuss several of such tech-
niques: Measure & Conquer, Exponential Lower Bounds, Bounded Tree-
width, and Memorization. We also consider some extensions of the men-
tioned techniques to parameterized algorithms.

1 Introduction

In this survey we use the termexact algorithmsfor algorithms that find exact
solutions of NP-hard problem (and thus run in exponential time).

The design of exact algorithms has a long history dating back to Held and
Karp’s paper [42] on the travelling salesman problem in the early sixties. The last
years have seen an emerging interest in constructing exponential time algorithms
for combinatorial problems like C [9, 14], M-C [64], 3-SAT [12, 22]
(see also the survey of Iwama [43] devoted to exponential algorithms for 3-SAT),
M D S [32], T- [34]. There are two nice surveys of
Woeginger [65, 66] describing the main techniques that have been established in
the field. We also recommend the paper of Schöning [61] for an introduction to
exponential time algorithms.

In this paper we review four techniques for the design and analysis of exact
algorithms which were not covered in the mentioned surveys. We also show how
some of the techniques can be extended to parameterized algorithms.

The techniques are

• Measure& Conquer. For more than 30 years Davis-Putnam-style expo-
nential time search tree algorithms have been the most common tools used
for finding exact solutions of NP-hard problems. Despite of that, the way
to analyze such recursive algorithms is still far from producing tight worst
case running time bounds. The “Measure & Conquer” approach is one of
the recent attempts to step beyond such limitations. It is based on the choice
of the measure of the subproblems recursively generated by the algorithm
considered; this measure is used to lower bound the progress made by the
algorithm at each branching step. A good choice of the measure can lead to
a significantly better worst case time analysis. We exemplify the approach
by showing how to use it for solving the M D S problem.

• Lower bounds. Since it is so difficult to obtain tight worst case running
time bounds on exponential time search tree algorithms, the natural ques-

57 57

57 57

The Bulletin of the EATCS

49

tion, we believe, that should be addressed is to find lower bounds for the
worst case running time of such algorithms.1

• Bounded tree-width and dynamic programming.Dynamic programming
is another common tool for exact algorithms. Here we discuss how struc-
tural properties of graphs and combinatorial bounds can be used to obtain
fast exact algorithms on planar and sparse graphs. We also show how this
technique can be used for parameterized algorithms.

• Memorization. This technique was introduced by Robson and is used to
reduce the running time of exponential-time algorithms at the cost of space.
We overview this technique and explain how to use it for parameterized
algorithms.

2 Measure& Conquer

In this section we study the analysis of search tree algorithms. Search tree algo-
rithms are also called branch-and-reduce algorithms, splitting algorithms, back-
tracking algorithms etc. Such an algorithm is recursively applied to a problem
instance and uses two types of rules.Reduction rulesare used to simplify the
instance. Branching rulesare used to solve the problem by recursively calling
smaller instances of the problem. An execution of such an algorithm can best be
analyzed by a search tree: assign the root node to the input of the problem; recur-
sively assign a child to a node for each smaller instance reached by a branching
rule at the instance of the node. Our goal is to analyze the running time of search
tree algorithms, i.e. to upper bound the number of nodes of the search tree in the
worst case.

In [65] among the major techniques to construct exponential-time algorithms
Woeginger lists “pruning the search tree” and describes the classical method to an-
alyze search tree algorithms for the problems I S, 3-SAT and B-
. The analysis of such recursive algorithms is based on the bounded search
tree technique: a measure of the size of an instance of the problem is defined;
this measure is used to lower bound the progress made by the algorithm at each
branching step. One obtains a linear recurrence or a collection of linear recur-
rences for each reduction and branching rule. Those linear recurrences can be
solved using standard techniques. Finally the worst case is taken over all linear
recurrences and a running time of the typeO(αp) is obtained, wherep is some
(natural) parameter for the size of the problem.

1Let us remark that we are interested in exponential lower bounds for a specific class ofalgo-
rithms, so these type of results do not imply that P, NP.

58 58

58 58

BEATCS no 87 THE EATCS COLUMNS

50

For the last 30 years the research on exact algorithms has been mainly focused
on the design of more and more sophisticated algorithms. However, measures
used in the analysis of search tree algorithms had been usually very simple, e.g.
number of vertices for graphs and number of variables for satisfiability problems.
Retrospective it is somewhat surprising that almost all analysis of search tree al-
gorithms used standard measures for such a long period. Although a few papers
used non-standard measures the general potential of a careful choice of the mea-
sure had not been discovered until very recently.

The idea behind Measure & Conquer is to focus on the choice of the (non-
standard) measure, instead of creating algorithms with more and more rules. If
the measure fulfils the following three conditions then the approach outlined above
works.

• The measure of an instance of a subproblem obtained by a reduction or
a branching rule must be smaller than the measure of the instance of the
original problem.

• The measure of each instance is nonnegative.

• The measure of the input is upper bounded by some function of “natural
parameters” of the input.

The last property is needed to retranslate the asymptotic upper bound in terms
of the non-standard measure into an upper bound in terms of some natural param-
eters for the size of the input (such as the number of vertices in a graph or the
number of variables in a formula). This way one is able to derive from different
(and often complicated) measures, results that are easy to state and compare.

2.1 Eppstein’s work

It seems that Eppstein was the first who observed the power of using non-standard
measures for analyzing search tree algorithms. He used this type of analysis in
several papers, among them [9, 30].

Eppstein’s TSP algorithm [30]. There is a well-known dynamic programming
O(2n · n2)2 algorithm for the   (TSP) by Held and
Karp [42] and there is no improvement since 1962. Eppstein studied TSP for
graphs of maximum degree three (for which the problem remains NP-hard) and
obtained anO(2n/3nO(1)) algorithm [30]. More precisely, he studies the

2Whether not specified differently,n andm denote the number of vertices and edges of the
input graph, respectively.

59 59

59 59

The Bulletin of the EATCS

51

    . The input is a (multi)graphG, a cost func-
tion c : E(G) → R and a set of forced edgesF ⊆ E(G); the output is a minimum
cost hamiltonian cycle ofG containing all edges ofF.

The search tree algorithm is simple. It consists of various reduction rules (step
1 in [30]), a unique branching rule (step 3) and it terminates in a leaf (step 2) if
G − F forms a collection of disjoint 4-cycles since in this case a minimum cost
solution can be computed in polynomial time. In step 3 an edgexy is chosen and
then the algorithm branches in the instancesG, F ∪ {xy} (force xy) andG − xy, F
(discardxy). The analysis of the algorithm uses the following interesting non-
standard measure:s(G, F) = |V(G)| − |F| − |C|, whereC is the set of 4-cycles
of G that form connected components ofG − F. Note that despite the negative
coefficients in the definition of the measure 0≤ s(G, F) ≤ n for all instancesG, F.
Using this measure the analysis gets fairly easy.

Beigel and Eppstein’s 3-coloring algorithm [9].TheO(20.411n) time 3-coloring
algorithm presented in [9] is the fastest one known. To a large extent the pa-
per studies special   (CSP). An instance of CSP
consists of a collection ofn variables, each with a list of possible colors, and a col-
lection ofmconstraints consisting of a tuple of variables and a color for each vari-
able. A solution assigns a possible color to each variable such that no constraint
is satisfied, i.e. not every variable of the constraint is colored in the way specified
by the constraint. For an instance of the problem (a,b)-CSP, each variable has at
mosta possible colors and each constraint involves at mostb variables. Note that
3-SAT is equivalent to (2,3)-CSP. Furthermore 3-, 3-- and
3-- can be translated to (3,2)-CSP.

An O(20.449n) time algorithm for (3,2)-CSP is the fundamental result of [9].
The algorithm also solves (4,2)-CSP and then its running time isO(20.854n). The
basic idea is that any (4,2)-CSP instance can be transformed into a (3,2)-CSP
instance by expanding each of its four-color variables to two three-color variables.
Therefore the natural measure of a (4,2)-CSP instance would ben = n3 + 2n4,
whereni denotes the number of variables withi possible colors. Crucial for the
analysis of the algorithm is the use of the non-standard measuren = n3+ (2− ε)n4

where the best choice ofε turns out to beε ≈ 0.095543.

Eppstein’s quasiconvex analysis [31].Multivariate recurrences frequently arise
in the analysis of the worst-case running time of search tree algorithms. Two ex-
amples are provided in the paper. One is a subroutine, used in a graph coloring
algorithm [29], listing all maximal independent sets of size at mostk. In fact
when analyzing a search tree algorithm an instance is often characterized by more
than one size parameter (variable), and thus it is convenient to establish multi-
variate recurrences (instead of linear recurrences based on a unique variable) for
the reduction and branching rules. Those variables are part of the input or come

60 60

60 60

BEATCS no 87 THE EATCS COLUMNS

52

up during an execution of the algorithm in a natural way or might be chosen to
improve the upper bound of the worst-case running time to be obtained. For ex-
ample, the linear recurrences in terms ofs(G, F) obtained in the analysis of the
TSP algorithm in [30] can easily be translated into multivariate recurrences in the
variables|V(G)|, |F| and |C|. Furthermore the linear recurrences in terms of the
non-standard measuren = n4+ (2− ε)n3 obtained for the reduction and branching
rules of the (4,2)-CSP algorithm in [9] can be translated easily into multivariate
recurrences in the variablesn3 andn4.

Given the multivariate recurrences we would like to obtain an upper bound on
the running time of the algorithm. Eppstein showed that this multivariate system
can be turned into anequivalentsystem of recurrences in a unique variable, where
the new variable is a linear combination of the size parameters. It is sufficient to
choose the coefficients (weights) which minimize the resulting running time. The
optimal weight vector can be computed using quasiconvex programming.

Byskov and Eppstein’s maximal bipartite subgraph listing algorithm [16].
TheO(20.826n) time algorithm to list all maximal bipartite subgraphs of a graph
is the fastest one known. The algorithm can also be found in Byskov’s Ph.D.
thesis [15] which contains a variety of exponential-time algorithms.

The key operations of the algorithm are: coloring a vertex black (resp. white),
remove an edge and remove a vertex. The key idea is that all neighbors of a black
(resp. white) vertex can either be white (resp. black) or have to be removed. To
indicate this state they will be half-colored: half-white (resp. half-black). Thus an
instance of the problem is a half-colored graphG = (V, F, B,W,E) whereF is the
set of full vertices (i.e. uncolored yet),B is the set of half-black vertices andW is
the set of half-white vertices.

The algorithm is based on a lengthy case analysis (p. 35–49 in [15]) gener-
ating reduction and branching rules. The analysis of the running time is based
on Eppstein’s technique: multivariate recurrences and quasiconvex programming.
The recurrences depend on two variables: number of full variables and number
of half-colored variables. Once provided the long list of two-variable recurrences
they will be solved using Eppstein’s quasiconvex programming based approach
and one obtains the running timeO(20.826n) of the algorithm.3

2.2 A set cover algorithm

A more careful choice of the measure can lead to a significantly better analysis
of the worst case running time of simple search tree algorithms. To illustrate this
let us consider the following simple exponential-time search tree algorithm for

3However to verify the stated running time without having a special program on hands is non-
trivial.

61 61

61 61

The Bulletin of the EATCS

53

the minimum set cover problem that has been presented in [32] by the authors
of this survey. The analysis is based on a sophisticated choice of the measure.
This algorithm is used to obtain the fastest known algorithm for the minimum
dominating set problem having running time:O(20.610n) using polynomial space
andO(20.598n) using exponential space.

In the NP-hard problem M S C (MSC) we are given a universe
U of elements and a collectionS of (non-empty) subsets ofU. The aim is to
determine the minimum cardinality of a subsetS′ ⊆ S which coversU, that is
such that∪S∈S′S = U. Thefrequencyof u ∈ U is the number of subsetsS ∈ S in
which u is contained. For the sake of simplicity, we always assume thatS covers
U. With this assumption, an instance of MSC is univocally specified byS.

The NP-hard problem M D S (MDS) asks to determine the
smallest cardinality of a dominating set for the input graphG. Recall that a setD ⊆
V(G) is called a dominating set of the graphG if every vertex ofG is either inD, or
adjacent to some vertex inD. MDS for an input graphG can be naturally reduced
to MSC by imposingU = V(G) andS = {N[v]| v ∈ V}, whereN[v] denotes the
closed neighborhood of vertexv in G. ThusD is a minimum dominating set of
G if and only if S′ = {N[v]| v ∈ D} is a minimum set cover of (U,S). Thus an
O(2α(|S|+|U|)) algorithm for MSC implies anO(22αn) algorithm for MDS.

Consider the following simple recursive search tree algorithmmsc for solving
MSC:

1 int msc(S) {
2 if (|S| = 0) return 0;
3 if (∃S,R ∈ S : S ⊆ R) return msc(S\{S});
4 if (∃u ∈ U(S)∃ a uniqueS ∈ S : u ∈ S)

return 1+msc(del(S, S));
5 takeS ∈ S of maximum cardinality;
6 if (|S| = 2) return poly-msc(S)
7 return min{msc(S\{S}), 1+msc(del(S, S))};
8 }

Heredel(S,S) = {Z|Z = R\S , ∅,R ∈ S} is the instance ofMSC which is ob-
tained fromS by removing the elements ofS from the subsets inS, and by even-
tually removing the empty sets obtained. Algorithmpoly-msc is the polynomial-
time minimum set cover algorithm solving MSC for instances where all subsets
have cardinality two, which can be reduced to a minimum edge cover problem,
based on a well-known reduction to maximum matching.

Essentially algorithmmsc has two reduction rules (in line 3 and 4) and one
branching rule (in line 7). If the maximum cardinality of a subset is at least 3 then

62 62

62 62

BEATCS no 87 THE EATCS COLUMNS

54

the algorithm chooses a subsetS of maximum cardinality and branches into the
two subproblemsSIN = del(S,S) (the case whereS belongs to the minimum set
cover) andSOUT = S\S (corresponding to the caseS is not in the minimum set
cover). It is easy to see that the simple algorithm is correct.

2.2.1 Analyzing the algorithmmsc

How should we analyze the running time ofmsc? Classical analysis with the
natural measures(U′,S′) = |S′|+ |U′| for the size of an instance (U′,S′) of MSC
provides an upper bound ofO(20.465(|S|+|U|)) [40]. (The recurrence corresponding
to the unique branching rule isP(s) ≤ P(s− 1)+ P(s− 4) whereP(s) denotes the
number of leaves in the search tree generated by the algorithm to solve a problem
of sizes= s(U,S).)

We show how to refine the running time analysis toO(20.305(|S|+|U|)) via a more
careful choice of the measure of an instance of MSC (without modifying the al-
gorithm!).

Intuition. The choice is based on the following observations showing two
“side effects” not taken into account by the above classical analysis: Removing a
large set has a different impact on the “progress” of the algorithm than removing a
small one. In fact, when we remove a large set, we decrease the frequency of many
elements. Decreasing elements frequency pays of on long term, since the elements
of frequency one can be filtered out (without branching). A dual argument holds
for the elements. Removing an element of high frequency is somehow preferable
to removing an element of small frequency. In fact, when we remove an element
occurring in many sets, we decrease the cardinality of all such sets by one. This is
good on long term, since sets of cardinality one can be filtered out. This suggests
the idea to give a different weight to sets of different cardinality and to elements
of different frequency in the measure of an instance.
The measure. Let ni denote the number of subsetsS ∈ S of cardinality i. Let
moreovermj denote the number of elementsu ∈ U of frequency j. The mea-
sures = s(U,S) of the size of an instance of MSC is defined to be:s(U,S) =∑

i≥1 wi ni +
∑

j≥1 vj mj , where the weightswi , vj ∈ (0,1] will be fixed in the fol-
lowing. Note thats ≤ |S| + |U|. Thus when obtaining a running timeO(2αs) we
may conclude thatmsc has running timeO(2α(|S|+|U|)).
Notation.

∆wi =

wi − wi−1 if i ≥ 3,

w2 if i = 2,
and ∆ vi =

vi − vi−1 if i ≥ 3,

v2 if i = 2.

Intuitively, ∆wi (∆ vi) is the reduction of the size of the problem corresponding to
the reduction of the cardinality of a set (of the frequency of an element) fromi to
i − 1. Let us note that this holds also in the casei = 2.

63 63

63 63

The Bulletin of the EATCS

55

Constraints. In order to simplify the running time analysis, we will add the fol-
lowing constraints:

• w1 = v1 = 1 andwi = vi = 1 for i ≥ 6;

• 0 ≤ ∆wi ≤ ∆wi−1 for i ≥ 2.

Let us observe that this implies that only the weightsv2, v3, v4, v5 andw2,w3,w4,w5

have still to be fixed. Furthermore for everyi ≥ 3, wi ≥ wi−1, andvi ≥ vi−1.

Recurrences. Let Ph(s) be the number of subproblems of sizeh, 0 ≤ h ≤ s,
solved bymsc to solve an instance of the MSC of sizes. As in a classical analysis
for all reduction rules and all branching rules we obtain recurrences. Typically
the analysis is more difficult and more tedious than in the case of simple measures
because now one branching rule can generate a lot of recurrences.

For the detailed analysis we refer to [32]. We only mention all recurrences
corresponding to the unique branching rule (which are practically all important
recurrences). Suppose the algorithm has chosen a setS with |S| ≥ 3 in line 5, thus
msc branches into two subproblemsSIN = del(S,S) andSOUT = S\S. Let r i be
the number of elements ofS of frequencyi. Note that there cannot be elements of
frequency 1, and that

∑
i≥2 r i = |S|.

For all the possible values of|S| ≥ 3 and of ther i such that
∑6

i=2 r i + r≥7 = |S|,
we have the following set of recurrences:

Ph(s) ≤ Ph(s− ∆ sOUT) + Ph(s− ∆ sIN),

where

∆ sOUT , w|S| +
6∑

i=2

r i ∆ vi + r2 w2 + δ(r2) v2,

∆ sIN , w|S| +
6∑

i=2

r i vi + r≥7 + ∆w|S|

 6∑
i=2

(i − 1) r i + 6 · r≥7

 ,
andδ(r2) = 0 for r2 = 0, andδ(r2) = 1 otherwise.

Solving recurrences. Fortunately we can restrict our attention to the case 3≤
|S| ≤ 7. In fact, since∆w|S| = 0 for |S| ≥ 7, each recurrence with|S| ≥ 8 is
“dominated” by some recurrence with|S| = 7.

Thus we consider a large but finite number of recurrences. For every fixed 8-
tuple (w2,w3,w4,w5, v2, v3, v4, v5) the numberPh(s) is within a polynomial factor
of αs−h, whereα is the largest number from the set of real roots of the set of
equations

αs = αs−∆ sOUT + αs−∆ sIN

64 64

64 64

BEATCS no 87 THE EATCS COLUMNS

56

corresponding to different combinations of values|S| andr i. Thus the estimation
of Ph(s) boils up to choosing the weights minimizingα.

Choosing weights. This optimization problem is interesting in its own and we
refer to Eppstein’s work [31] on quasiconvex programming for general treatment
of such problems. It turns out thatα = α(v,w) is a quasiconvex function of the
weights (see [31]). We numerically (using a randomized local search algorithm)
obtained the following values of the weights:

wi =


0.3774 if i = 2,

0.7548 if i = 3,

0.9095 if i = 4,

0.9764 if i = 5,

and vi =


0.3996 if i = 2,

0.7677 if i = 3,

0.9300 if i = 4,

0.9856 if i = 5,

which yieldsα ≤ 1.2352. . . < 1.2353.4

Running time. Let K denote the set of the possible sizes of the subproblems
solved. Note that|K| is polynomially bounded. The total numberP(s) of subprob-
lems solved satisfies:

P(s) ≤
∑
h∈K

Ph(s) ≤
∑
h∈K

αs−h ≤ |K|αs.

The cost of solving a problem of sizeh ≤ s, excluding the cost of solving the
corresponding subproblems (if any), is a polynomialpoly(s) of s. Thus the time
complexity of the algorithm is

O(poly(s)|K|αs) = O(1.2353|U|+|S|) = O(20.305(|U|+|S|)).

Theorem 1. Algorithmmsc solvesMSC in timeO(20.305(|U|+|S|)).

By simply combining the reduction from MDS to MSC with algorithmmsc
one obtains algorithmmds.

Corollary 2. Algorithmmds solvesMDS in timeO(20.305(2n)) = O(20.610n).

Applying the memorization technique described in Section 5 tomds the run-
ning time can be further reduced toO(20.598n).

Though search tree algorithms form a very prominent class of parameterized
algorithms, it is yet not fully understood in which way Measure & Conquer can
be applied to such algorithms. We leave this as an interesting open problem.

4 Although computing the weights minimizingα is computationally a non-trivial task, given
the weights, checking whether a givenα is feasible or not is easy.

65 65

65 65

The Bulletin of the EATCS

57

3 Exponential lower bounds

Impressive improvements on the upper bound of the worst case running time of
a particular exponential-time search tree algorithm can be achieved by a refined
analysis and use of a suitable measure as we have seen in the previous section.
This suggests the possibility that the time complexity of exponential-time ex-
act algorithms might be largely overestimated. Indeed, most running times of
exponential-time search tree algorithms could be too pessimistic and the worst
case running time of such an algorithm might be significantly faster. None of the
tools and methods for analyzing such algorithms is guaranteed to provide tight
upper bounds of the running time.

Consequently, while for most of the known polynomial time algorithms, the
known running times seem to be tight, this is most likely not the case for exponen-
tial time search tree algorithms. Therefore it is natural to ask for lower bounds of
the worst case running time of such algorithms. A lower bound may give an idea
how far the running time analysis is from being tight. Furthermore lower bounds
might also help to compare exponential-time search tree algorithms.

There are several results on lower bounds for different so-called DPLL algo-
rithms for SAT andk-SAT (see e.g. [5, 54]). However not much more is known on
lower bounds for existing exponential-time search tree algorithms for other prob-
lems, and in particular for graph problems. One of the reasons to this could be
that for most of the graph problems the construction of good lower bounds seems
to be a difficult and challenging task even for very simple algorithms.

3.1 A lower bound for algorithm mds

The following lower bound for theO(20.610n) polynomial-space algorithmmds of
the previous section has been provided in [32]. Recall that algorithmmds solves
the M D S problem based on a reduction to the M S
C problem and uses the algorithmmsc.

Theorem 3. The worst case running time ofmds isΩ(20.333n).

Proof. Consider the following input graphGn (n ≥ 1): the vertex set ofGn is
{ai ,bi , ci : 1 ≤ i ≤ n}. The edge set ofGn consists of two types of edges: for
eachi = 1,2 . . . ,n, the verticesai, bi andci induce a triangleTi; and for each
i = 1,2, ...,n− 1: {ai ,ai+1}, {bi ,bi+1} and{ci , ci+1} are edges.

Each node of the search tree corresponds to a subproblem of the minimum set
cover problem with input (U; S = {Sv : v ∈ V}) whereSv = N[v].

We give a selection rule for the choice of the verticesv (respectively setsSv)
to be chosen for the branching. The goal is to choose a selection rule

66 66

66 66

BEATCS no 87 THE EATCS COLUMNS

58

• which iscompatiblewith the algorithm, and

• such that the number of nodes in the search tree obtained by the execution
of algorithmmsc on the instance of MSC generated by the graphGn is as
large as possible.

In each roundi, i ∈ {2,3, . . . ,n−1}, we start with a pairC = {xi , yi} of vertices
(belonging to triangleTi), where{x, y} ⊂ {a,b, c}. Initially C = {a2,b2}. Our
choice makes sure that for each branching vertexx the cardinality of its setSx is
five in the current subproblemS, and that none of the rules of line 2,3 and 4 of the
algorithm will ever be applied. Consequently only the branching rule is applied,
and by line 7 ofmsc either the setSv is taken into the set cover (S := del(S,Sv)),
or Sv is removed (S := S \ Sv).

For each pairC = {xi , yi} of nodes we branch in the following 3 ways
1) takeSxi ,
2) removeSxi , and then takeSyi ,
3) removeSxi , and then removeSyi .

The following new pairs of vertices correspond to each of the three branches:
1) C1 = {ai+2,bi+2, ci+2} \ xi+2,
2) C2 = {ai+2,bi+2, ci+2} \ yi+2,
3) C3 = {xi+1, yi+1}.

On each pairC j we recursively repeat the process. Thus of the three branches
of Ti two are proceeded onTi+2 and one is proceeded onTi+1.

To show a lower bound on the worst case running time of algorithmmsc re-
spectivelymds on inputGn we analyze the number of leaves of the search tree.
Let P(i) be the number of leaves in the search tree when all triangles up toTi

have been used for branching. ThusP(i) = 2 · P(i − 2) + P(i − 1), and hence
P(i) ≥ 2i−2. Consequently the worst case number of leaves in the search tree of
msc for a graph onn vertices is at least 2n/3−2. Thus the worst case running time
of mds isΩ(20.333n). �

Notice that there is a large gap between theO(20.610n) upper bound and the
Ω(20.333n) lower bound for the worst case running time of algorithmmds. This
suggests the possibility that the analysis of algorithmmds can be further refined.

4 Tree-width based techniques

The notion of tree-width was introduced by Robertson and Seymour [55]. Atree
decompositionof a graphG is a pair ({Xi : i ∈ I }, T), where{Xi : i ∈ I } is a col-
lection of subsets ofV(G) andT is a tree such that the following three conditions
are satisfied:

67 67

67 67

The Bulletin of the EATCS

59

1.
⋃

i∈I Xi = V(G).

2. For all{v,w} ∈ E(G), there is ani ∈ V(T) such thatv,w ∈ Xi.

3. For alli, j, k ∈ V(T), if j is on a path fromi to k in T thenXi ∩ Xk ⊆ Xj.

Thewidth of a tree decomposition ({Xi : i ∈ V(T)}, T) is maxi∈V(T) |Xi | − 1. The
tree-widthof a graphG, denoted bytw(G), is the minimum width over all its tree
decompositions. A tree decomposition ofG of width tw(G) is called anoptimal
tree decomposition ofG.

A tree decomposition ({Xi : i ∈ V(T)}, T) of G with T being a path is called a
path decompositionof G. Thepath-widthof a graphG, denoted bypw(G), is the
minimum width over all its path decompositions.

A branch decompositionof a graphG is a pair (T, µ), whereT is a tree with
vertices of degree one or three andµ is a bijection from the set of leavesL of T to
E(G). Let e be an edge ofT. The removal ofe results in two subtrees ofT, say
T1 andT2. Let Gi be the graph formed by the edge set{µ(f) : f ∈ L ∩ V(Ti)} for
i ∈ {1,2}. Themiddle setmid(e) of e is the intersection of the vertex sets ofG1

andG2, i.e., mid(e) := V(G1) ∩ V(G2).
The width of (T, µ) is the maximum size of the middle sets over all edges

of T, and thebranch-widthof G, bw(G), is the minimum width over all branch
decompositions ofG. (In case where|E(G)| ≤ 1, we define the branch-width to
be 0; if |E(G)| = 0, thenG has no branch decomposition; if|E(G)| = 1, thenG
has a branch decomposition consisting of a tree with one vertex—the width of this
branch decomposition is considered to be 0).

Tree-width and branch-width are related parameters and can be considered as
measures of the “global connectivity” of a graph. The following result is due to
Robertson and Seymour [(5.1) in [56]].

Theorem 4 ([56]). For any connected graph G with|E(G)| ≥ 3, bw(G) ≤ tw(G)+
1 ≤ 3

2bw(G).

Tree-width is one of the most basic parameters in graph algorithms. There
is a well established theory on the design of polynomial (or even linear) time
algorithms for many intractable problems when the input is restricted to graphs
of bounded tree-width. See [11] for a comprehensive survey. But what is more
important for us, many problems on graphs withn vertices and tree-width (branch-
width) at most̀ can be solved in timec` ·nO(1), wherec is some problem dependent
constant.

For example, Alber et al. [1] proved that MDS on graphs of tree-width at most
` can be solved in timeO(22`n). Fomin and Thilikos showed in [36] that for graphs

68 68

68 68

BEATCS no 87 THE EATCS COLUMNS

60

G given with a branch-decomposition of width at most`, a minimum dominating
set ofG can be computed in timeO(3

3`
2 m) = O(25.197n). (See also [27] for general

discussions on transformations of tree-width based dynamic programming algo-
rithms into algorithms on graphs of bounded branch-width and vice versa.) It can
be shown that for graphs of path-width at most` the running time of the algorithm
of Alber et al. isO(3`n).

All results mentioned above are based on the following observation.

Observation 5. LetP be a problem on graphs andG be a class of graphs such
that

• for every graph G∈ G of branch-width at most̀, the problemP can be
solved in time2cP` · nO(1), where cP is a constant, and

• for every graph G∈ G a branch decomposition (not necessary optimal) of
G of width at most g(n) can be constructed in polynomial time.

Then for every graph G∈ G, the problemP can be solved in time2cP·g(n) · nO(1).

Similar observations are valid for tree and path decompositions.

In the following subsections we shall see how Observation 5 combined with
good combinatorial upper bounds, provide us with fast algorithms for several in-
teresting graph classes.

4.1 Planar graphs

Using a well-known approach of Lipton and Tarjan [49] based on the celebrated
planar separator theorem [48], one can obtain algorithms with time complexity
cO(
√

n) for many problems on planar graphs. However, the constants “hidden”
in O(

√
n) can be crucial for practical implementations. During the last few years

some work has been done to compute and to improve the “hidden” constants [3, 4].
Dynamic programming can be seen as a simpler and, sometimes, faster al-

ternative to the approach of Lipton and Tarjan. To use Observation 5 efficiently,
we need to establish upper bounds on the tree-width and branch-width of planar
graphs.

Upper bounds. Let αt and αb be constants such that for every planar graph
tw(G) ≤ αt

√
n+ O(1) andbw(G) ≤ αb

√
n+ O(1).

In [6] Alon, Seymour, and Thomas proved that anyKr-minor free graph onn
vertices has tree-width at mostr1.5√n. (HereKr is complete graph onr vertices.)
Since no planar graph containsK5 as a minor, we have thatαb(G) ≤ αt(G) ≤
61.5 ≤ 14.697. By using deep results of Robertson, Seymour, and Thomas, one
can easily prove much better bounds as follows.

69 69

69 69

The Bulletin of the EATCS

61

Before we proceed, let us remind the notion of a minor. Given an edgee =
{x, y} of a graphG, the graphG/e is obtained fromG by contracting the edge
e; that is, to getG/e we identify the verticesx andy and remove all loops and
duplicate edges. A graphH obtained by a sequence of edge-contractions is said to
be acontractionof G. H is aminor of G if H is the subgraph of some contraction
of G.

The following is a combination of statements (4.3) in [56] and (6.3) in [58].

Theorem 6 ([58]). Let k≥ 1 be an integer. Every planar graph with no(k×k)-grid
as a minor has branch-width at most4k− 3.

Since a graph onn vertices does not contain a ((d
√

ne+1)× (d
√

ne+1))-grid as
a minor, we have thatαb(G) ≤ 4. Fomin and Thilikos [38] obtained the following
bounds

Theorem 7 ([38]). αb ≤
√

4.5 < 2.1214andαt < 3.1820.

The proof in [38] makes strong use of deep graph theoretic results from [7]
and [57, 62]. In particular, Alon, Seymour and Thomas introduced the concept of
“majority” in order to study the existence of small separators in planar graphs. On
the other side, the results in [62, 57] are strongly based on the notion of “slope”.
The main idea of the proof in [38] was to show that slopes can be transformed to
majorities.

Now to apply Observation 5, we need to construct a tree or a branch decom-
position of small width. It is a long standing open problem whether an optimal
tree decomposition of a planar graph can be constructed in polynomial time. For
branch decompositions the situation is different. An optimal branch decomposi-
tion of a planar graph can be constructed in polynomial time by using the algo-
rithm due to Seymour and Thomas (Sections 7 and 9 in [62]). The algorithm can
be implemented such that its running time isO(n4). Recently, the running time of
the algorithm was reduced by Gu and Tamaki toO(n3) [41].

Putting things together. Thus for planar graphs the functiong(n) of Observa-
tion 5 can be takeng(n) =

√
4.5n. As we already discussed, for M D-

 S, cP ≤ 5.1962, and we arrive at the fastest known algorithms on planar
graphs for MDS with running time

O(3
3
2

√
4.5·nn+ n3) = O(25.044

√
n).

Similar approach yields an algorithm for M I S on planar
graphs with running timeO(23.182

√
n).

This machinery not only improves the time bounds but also provides an uni-
fied approach for many exponential time algorithms emerging from the planar
separator theorem of Lipton and Tarjan [48, 49]. (See [37] for further details.)

70 70

70 70

BEATCS no 87 THE EATCS COLUMNS

62

Non-local problems. Observation 5 cannot be used to obtain 2O(
√

n) time algo-
rithms on planar graphs for “non-local” problems like H C (HC),
where we are asked if the input graph has a Hamiltonian cycle, i.e. a (simple)
cycle containing all vertices of the graph. The reason is that all known algorithms,
solving HC on graphs of branch-width at most` have running time 2O(` log`)nO(1),
thus on planar graphs Observation 5 yields only algorithms with running time
2O(
√

n logn).
The intuition, why only 2O(` log`)nO(1) time algorithms for HC on graphs of

branch-width at most̀ are known is the following. While performing dynamic
programming, we keep for every edgee of the branch decomposition the set of
“patterns” which encode all possible information how possible hamiltonian cycles
can hit mid(e). The only known way of doing this is basically to keep as the
states of dynamic programming all possible permutations of the set mid(e), which
ends up in running time 2O(` log`)nO(1). This seems to be a natural obstacle and
no significantly faster algorithm solving H  on graphs of bounded
branch-width (or tree-width) is known.

Note that for obtaining 2O(
√

n) time algorithms for MDS on planar graphs, pla-
narity comes into play twice: First in the upper bound on the branch-width of a
graph and second in the polynomial time algorithm constructing an optimal branch
decomposition. It is possible to get rid of the logarithmic factor in the exponent
for a number of nonlocal problems as well. The main idea to speed-up algorithms
obtained by the branch decomposition approach is to exploit planarity for the third
time: use planarity in dynamic programming on graphs of bounded branch-width.
To explain how planarity can be used in dynamic programming, we need to go
deeper into the properties of planar branch decompositions.

It is more convenient to work with graphs embedded on a sphere instead of a
plane. LetΣ be a sphere (x, y, z: x2+ y2+ z2 = 1). By aΣ-planegraphG we mean
a planar graphG with the vertex setV(G) and the edge setE(G) drawn (without
crossing) inΣ. An O-arc is a subset ofΣ homeomorphic to a circle. AnO-arc inΣ
is callednooseof aΣ-plane graphG if it meetsG only in vertices. Thelengthof
a nooseO is |O∩ V(G)|, the number of vertices it meets. Every nooseO bounds
two open discs∆1, ∆2 in Σ, i.e.∆1 ∩ ∆2 = ∅ and∆1 ∪ ∆2 ∪O = Σ.

For aΣ-plane graphG, we define asphere cut branch decomposition〈T, µ〉
as a branch decomposition such that for every edgeeof T there exists a nooseOe

bounding the two open discs∆1 and∆2 such thatGi ⊆ ∆i ∪ Oe, 1 ≤ i ≤ 2. Thus
the length of the nooseOe is |mid(e)|.

It follows almost directly from results of Seymour and Thomas [62] that the
optimal branch decomposition constructed by their algorithm is in fact a sphere
cut branch decomposition (see [26] for details).

Let C be a Hamiltonian cycle and letOe be a noose of aΣ-plane graphG
corresponding to an edgee of a sphere cut branch decomposition. Here is the

71 71

71 71

The Bulletin of the EATCS

63

moment when planarity is used for the third time. Because the graph isΣ-plane,
the number of possible ways Hamiltonian cycles can hit the nooseOe (which is
mid(e)) can be bounded by the|mid(e)|-th Catalan number, which yields almost
immediately an algorithm of running time 2O(bw(G))nO(1) = 2O(

√
n).

With a more careful work involving tricks on compressing the number of states
in dynamic programming, Dorn et al. [26] established aO(26.903

√
n) time algo-

rithm solving HC on planar graphs. A similar approach can be used to obtain an
O(210.8224

√
n) time algorithm for P G TSP, where one asks for a shortest

tour visiting all vertices of a weighted planar graph. Similarly, P L
C is solvable in timeO(27.214

√
n).

Finally, let us note that the separator based approach can be used to obtain a
2O(
√

n) time algorithm for HC on planar graphs [23]. However, it seems that by
making use of branch decompositions one can prove significantly better bounds
on the worst case running time of algorithms on planar graphs.

4.2 Parameterized algorithms on planar graphs

A similar approach (with some modifications) can be used for the design of pa-
rameterized algorithms on planar graphs. The last ten years have seen a rapid
development of a new branch of computational complexity: Parameterized Com-
plexity. (See the book of Downey and Fellows [28].) Roughly speaking, a pa-
rameterized problem with parameterk is fixed parameter tractableif it admits
a solving algorithm with running timef (k)|I |β. (Here f is a function depending
only on k, |I | is the length of the non parameterized part of the input andβ is a
constant.) In many cases,f (k) = ck is an exponential function for some constant
c. Some attention was paid to the construction of parameterized algorithms with
running time of the kindf (k) = c

√
k for different problems on planar graphs. The

first paper on the subject was the paper by Alber et al. [1] describing an algorithm
with running timeO(46

√
34kn) = O(269.972

√
kn) for the M D S

problem on planar graphs.

LetL be a parameterized problem, i.e.L consists of pairs (I , k) whereI is the
input andk is theparameterof the problem.Reduction to linear problem kernelis
the replacement of problem inputs (I , k) by a reduced problem with inputs (I ′, k′)
(linear kernel) with constantsc1, c2 such that

k′ ≤ c1k, |I
′| ≤ c2k

′ and (I , k) ∈ L ⇔ (I ′, k′) ∈ L.

(We refer to Downey and Fellows [28] for discussions on fixed parameter tractabil-
ity and the ways of constructing kernels.)

Observation 8. Let L be a parameterized problem(G, k), where G is a graph
such that

72 72

72 72

BEATCS no 87 THE EATCS COLUMNS

64

• there is a linear problem kernel(G′, k′) computable in time Tkernel(|V(G)|, k)
with constants c1, c2 such that an optimal branch decomposition of G′ is
computable in time Tbw(|V(G′)|),

• for graphs of branch-width at most̀, problemL can be solved in time
O(2c3`n), where c3 is a constant, and

• bw(G′) ≤ c4

√
k, where c4 is a constant.

ThenL can be solved in timeO(2c3c4
√

kk+ Tbw(|V(G′)|) + Tkernel(|V(G)|, k)).

Proof. The algorithm works as follows. First it computes a linear kernel in time
Tkernel(|V(G)|, k). Then it constructs a branch decomposition of the kernelG′ in
time Tbw(|V(G′)|). (If there is no such kernel, the problems has no solution.) The
size of the kernel is at mostc1c2k = O(k). The branch-width of the kernel is at
mostc4

√
k and it takes timeO(2c3c4

√
kk+ Tbw(|V(G′)|) + Tkernel(|V(G)|, k)) to solve

the problem. �

Let us on exemplify on parameterize D S problem how Observa-
tion 8 can be used.

Thek-DS problem asks to compute, given a graphG and a positive
integerk, a dominating set of sizek or to report that no such set exists. Alber,
Fellows and Niedermeier [2] show that thek-D S problem on planar
graphs admits a linear problem kernel. (The size of the kernel is 335k. Recently
this result was improved to 67k by Chen et al. [17].) This reduction can be
performed inO(n3) time. As we already mentioned, the MDS on graphs of branch-
width at most̀ can be solved in timeO(23log43·`m) [36]. Thusc3 ≤ 3log43.

What about the constantc4 for MDS? It is proved in [36] that for every pla-
nar graphG with a dominating set of sizek, the branch-width ofG is at most
3
√

4.5
√

k, i.e. c4 ≤ 3
√

4.5. Therefore by Observation 8,k- D  can
be solved in timeO(29·log43·

√
4.5
√

kk+ n3 + k3) = O(215.130
√

k + n3) on planar graphs.
This is the fastest known algorithm fork-P D S.

By similar arguments, one can show thatk-V C on planar graphs
can be solved in timeO(k4 + 24.5

√
kk+ kn). (See [37] for details.)

Parameterized versions of non-local problems.For non-local problems Obser-
vation 8 cannot be applied directly, however similar arguments are valid. Let us
consider the following parameterized version of H C problem: In
the k-C problem we are given a graphG and a positive integerk, the task
is to find a cycle of length at leastk, or to conclude that there is no such a cy-
cle. By adopting the technique from [26], a longest cycle in a planar graph of
branch-width at most̀ can be found in timeO(23.4`` n). If the branch-width of

73 73

73 73

The Bulletin of the EATCS

65

G is at least 4
√

k+ 1 − 3 then by Theorem 6,G contains a (
√

k+ 1 ×
√

k+ 1)-
grid as a minor and thus contains a cycle of length at leastk. If the branch-width
of G is less than 4

√
k+ 1 − 3 then we can find the longest cycle inG in time

O(23.4·4
√

k+1
√

k n) = O(213.6
√

k
√

k n+n3). By standard techniques (see for example
[28]) the recognition algorithm fork-C on planar graphs can easily be turned
into one constructing a cycle of length at leastk, if such a cycle exists.

The described technique can be applied to a large collection of parameterized
problems (so-called bidimensional problems) and it can also be extended to more
general graph classes. See [24, 25, 36] for further details.

4.3 Sparse graphs

Another class of graphs for which tree-width based techniques can be used to
design exact algorithms are graphs of small maximum degree and graphs with
small number of edges.

One of the usual approaches to obtain exact algorithms on sparse graphs are
search tree algorithms. There are quite many exact algorithms in the literature
for different NP hard problems on sparse graphs and in particular on graphs of
maximum degree three, see e.g. [8, 20, 35, 39, 47]

The following result is due to Fomin and Høie [33].

Theorem 9 ([33]). For anyε > 0, there exists an integer nε such that for every
graph G with maximum degree at most three and|V(G)| > nε, pw(G) ≤ (1/6 +
ε)|V(G)|.

The proof of Theorem 9 provides an algorithm to construct a path decompo-
sition of width at most (1/6 + ε)|V(G)|. Theorem 9 and Observation 5 imply the
following

Corollary 10. For graphs of maximum degree at most threeMDS is solvable in
time3n/6 · nO(1) = O(20.265n).

By similar approach one can also obtain the fastest known so far 2n/6 · nO(1) =

O(20.167n)-time algorithms for M I S and M-C on graphs
of maximum vertex degree three.5

The proof of Theorem 9 is based on a result of Monien and Preis [50] about
the bisection width of 3-regular graphs.

Let us also mention an interesting upper bound on the tree-width of graphs in
terms of the number of edges obtained by Kneis et al. [44]

5Recently, Kojevnikov and Kulikov [46] announced a new search tree algorithm for M

I S on graphs of maximum degree three with running time 2n/6 · nO(1).

74 74

74 74

BEATCS no 87 THE EATCS COLUMNS

66

Theorem 11 ([44]). For any graph G on m edges,tw(G) ≤ m/5.217.

This implies, for example, that M-C can be solved in timeO(2m/5.217).

4.3.1 Lower bounds

The worst case running time of the algorithms described in this subsection de-
pends on combinatorial bounds on path-width of graphs with maximum degree
three. Thus it is natural to ask, how small can be the path-width or tree-width of
graphs of maximum degree three, or even 3-regular graphs.

Lower bounds on these graph parameters can be obtained by making use of
Algebraic Graph Theory. In particular, Bezrukov et al. [10] (by making use of the
second smallest eigenvalues of Ramanujan graph’s Laplacian) showed that there
are 3-regular graphs with the bisection width at least 0.082n. (See [10] for more
details.) It can be easily shown that the result of Bezrukov et al. also yields the
lower bound 0.082n for path-width of graphs with maximum degree three.

The gap between 0.082n and 0.167n for the upper bound on the path-width of
3-regular graphs provides some hopes for faster algorithms.

5 Memorization

The time complexity of many exponential time search tree algorithms can be re-
duced at the cost of an exponential space complexity via thememorizationtech-
nique by Robson [59]. Memorization works as follows: the solutions of all the
subproblems solved are stored in an (exponential-size) database. If the same sub-
problem turns up more than once, the algorithm is not to run a second time, but the
already computed result is looked up. The database is implemented in such a way
that thequery timeis logarithmic in the number of solutions stored and polynomial
in the size of the problem: this way the cost of each look up is polynomial.

In order to illustrate the technique better, we will consider a specific NP-hard
problem, the M V C problem (MVC), and a specific algorithm
to solve it. The techniques described in this section can easily be adapted to
many other algorithms and problems. Moreover, for the sake of simplicity, we
will analyze the algorithm with the standard measure (using Measure & Conquer,
better bounds are achievable).

MVC consists in determining the minimum cardinality of a subsetV′ of ver-
tices (vertex cover) such that every edge is incident to at least one vertex inV′.
Let us consider the following simple search tree algorithm to solve MVC: (1) if
there is a vertexv of degree zero, remove it; (2) if there is a vertexv of degree one,
addw to the vertex cover and remove bothv andw (with all the edges incident

75 75

75 75

The Bulletin of the EATCS

67

to them); (3) selectv of maximum degree; (3.a) ifdeg(v) = 2, solve the prob-
lem with the trivial polynomial-time algorithm; (3.b) otherwise, branch by either
including v or its neighborhoodN(v) in the vertex cover, and by removingv or
its closed neighborhoodN[v], respectively. Solve the two subproblems generated
recursively. Observe that each subproblem involves an induced subgraph of the
original graph. This property is crucial in order to apply memorization, as it will
be clearer soon.6

Let P(n) be the number of leaves in the search tree recursively generated by
the algorithm to solve the problem on a graph withn vertices. The worst case
recurrence, corresponding to the case we branch at a vertex of degree 3, is

P(n) ≤ P(n− 1)+ P(n− 4),

from which we obtainP(n) < 20.465n. Since each recursive call takes polynomial
time, and the total number of subproblems solved is within a polynomial factor
from P(n), the running time of the algorithm (according to the standard analysis)
is O(20.465n). Let Ph(n), h ≤ n, be the number of subproblems being graphs with
h vertices solved when the algorithm solves MVC on a graph withn vertices.
Observe that, by basically the same analysis,Ph(n) < 20.465(n−h).

5.1 The basic technique

The running time can be reduced, at the cost of an exponential space complexity,
in the following way. Whenever we solve a subproblemG′, we store the pair
(G′,mvc(G′)) in a database. Before solving any subproblem, we check whether
its solution is already available in the database. Observe that, sinceG hasO(2n)
induced subgraphs, the database can be easily implemented such that each query
takes polynomial time inn.

There are
(
n
h

)
induced subgraphs ofG with h vertices, which impliesPh(n) ≤(

n
h

)
since no subproblem is solved twice. Moreover the upper boundPh(n) ≤

20.465(n−h) still holds. Altogether

Ph(n) ≤ min{20.465(n−h),

(
n
h

)
}.

By Stirling’s approximation, and balancing the two terms, one obtains that, for
eachh, Ph(n) ≤ 20.465(n−αn) < 20.425n, whereα > 0.0865 satisfies

20.465(1−α) =
1

αα(1− α)1−α
.

As a consequence, the running time isO(20.425n).
6Chen, Kanj and Jia [18] erroneously applied memorization to a MVC algorithm which does

not satisfy this property; this mistake was later corrected in the journal version of their paper [19].

76 76

76 76

BEATCS no 87 THE EATCS COLUMNS

68

5.2 A refined approach

If the graph considered is disconnected, one can solve the vertex cover prob-
lem corresponding to each connected component separately. More precisely, if
G1,G2, . . . ,Gp are the connected components ofG, then

mvc(G) =
p∑

i=1

mvc(Gi).

This, in combination with memorization, can help to further reduce the running
time bound, provided that the degree of the graph is bounded by a small constant.
In fact, the number of connected induced subgraphs onh vertices of a graph of
maximum degreed is much smaller than

(
n
h

)
, provided thath is sufficiently small.

Theorem 12 ([59]).Let d≥ 3 be a constant and G a graph of maximum degree d.
Let G(h) be the set of all connected induced subgraphs of G on h vertices. Then

|G(h)| = O

((d − 1)d−1

(d − 2)d−2

)h

nO(1)

 .
Proof. The claim is trivially true whenh = n. So let us assumeh < n. Consider a
graphG′ ∈ G(h). Since G is connected, there must be one edge incident to exactly
one vertex ofG′, say{u, r} ∈ E(G) with r ∈ V(G′) andu ∈ V − V(G′).

Let T′(r) be an arbitrary spanning tree ofG′ rooted atr (there must be one
such tree sinceG′ is connected). Consider an arbitrary ordering of the edges. This
numbering allows to univocally associate toT′(r) a (d − 1)-ary treeT′′ (where
the position of the children of each vertex is taken into account): the neighbors of
each vertexw, excluding the parent vertex (u if w = r) are ordered following the
ordering on the edges; an edgee which is not inT′(r) gives an empty subtree in
T′′ in the corresponding position.

Thus, givenG and the ordering of the edges, there is a one-to-many mapping
betweenG(h) and the set of triples (v,e,T′′), wherev is a vertex,e is an edge
incident tov, andT′′ is a (d − 1)-ary tree. The claim follows by recalling that the
number of (d−1)-ary trees is upper bounded byc(d−1)d−1/(d−2)d−2, for a small
constantc [45]. �

For example, if the maximum degree of a graph is at most 4, one obtains

Ph(n) = O(min{20.465(n−h), (27/4)h}),

and thus a running time ofO(20.465(1−α)n) = O(20.398n), where

20.465(1−α) = (27/4)α ⇔ α =
log(20.465)

log(20.465) + log(27/4)
> 0.1444.

77 77

77 77

The Bulletin of the EATCS

69

This result can easily be extended to the case of arbitrary graphs, by branching on
the vertices of degree 5 or larger in a preliminary phase:

P(n) ≤

P(n− 1)+ P(n− 6)

20.398n
≤ max{20.362n, 20.398n}.

Observe that vertices of degree smaller than two are removed by reduction
rules. Thus, without loss of generality, we can consider in the analysis only the
connected induced subgraphs of minimum degree 2: even better upper bounds are
available on the number of such graphs.

Theorem 13 ([60]).Let d≥ 3 be a constant and G a graph of maximum degree at
most d. Let G(h,2) be the set of connected induced subgraphs of G with h vertices
and minimum degree at least2. Then|G(h,2)| = O(c(d)h nO(1)) where

c(d) = max
x∈X

 2−x0

d−1∏
i=0

((
d − 1

i

)
/xi

)xi
 ,

and

X =

x = (x0, x1, . . . , xd−1) ∈ R
d
+ |

d−1∑
i=0

xi = 1 and
d−1∑
i=0

i xi = 1

 .
Proof. Consider an arbitraryG′ ∈ G(h,2). We consider the same many-to-one
mapping from the (d − 1)-ary trees to the spanning trees ofG′ as in the proof of
Theorem 12, but this time we restrict our attention to the spanning trees with the
minimum possible number of leaves`. Note that no two leaves of such spanning
trees can be adjacent (otherwise we could create a new spanning tree with one
less leaf, which contradicts the minimality assumption). Consider one such tree
T′ and one of its leavesv. Let u = u(v) be a vertex adjacent tov in G′ but not
in T′, selected arbitrarily. Note thatu must exist since the minimum degree is
2, and it must be an internal vertex ofT′ by the minimality assumption. Letw
be the lowest level ancestor ofv in T′ of degree 3 or larger (w = r is no such
vertex exists). We can obtain a different treeT′′ with the same number of leaves
by adding toT′ the edgee(v) = {u, v} and by cutting the new cycle introduced
at the edgee′(v) = {w,w′} right beloww in T′. Note that there is a one-to-one
mapping betweenv and bothe(v) ande′(v). As a consequence, this replacement
of edges can be performed simultaneously on an arbitrary subset of the leaves of
the original spanning tree without interference, leading each time to a different
spanning tree. This implies that there are at least 2` distinct spanning trees with̀
leaves.

78 78

78 78

BEATCS no 87 THE EATCS COLUMNS

70

Let us give a weight 2−h0 to each spanning tree ofG′ with h0 ≥ ` leaves. The
weighted sum of such trees is at least one (since there are at least 2` trees of weight
2−`). As a consequence, the weighted sum of all the spanning trees of the graphs
in G(h,2) is an upper bound on|G(h,2)|. The number of (d − 1)-ary trees withhi

vertices of out-degreei, i ∈ {0,1, . . . ,d − 1}, is upper bounded by(
h

h0,h1, . . . ,hd−1

)  d−1∏
i=0

(
d − 1

i

)hi
 ,

where the first factor considers the possible ways to assign out-degrees to vertices,
and the second takes into account the positions of the children of each vertex in
the tree. Note that the (h0,h1, . . . ,hd−1) must belong to the following set

H = {(h0,h1, . . . ,hd−1) ∈ N
d |

d−1∑
i=0

hi = h and
d−1∑
i=0

i hi = h− 1}.

With the notationxi = hi/h (and lettingh tend to infinity),

∑
H

2−h0

(
h

h0,h1, . . . ,hd−1

) d−1∏
i=0

(
d − 1

i

)hi


= O

∑
H

2−x0

d−1∏
i=0

((
d − 1

i

)
/xi

)xi
h

= O

|H|
max

x∈X

 2−x0

d−1∏
i=0

((
d − 1

i

)
/xi

)xi

h .

The claim follows by observing that, for any constantd, |H| is polynomially
bounded. �

For example if the maximum degree is 4, one obtains|G(h,2)| = O(5.5981h),
corresponding to the case (x0, x1, x2, x3) ' (0.2440,0.5359,0.1962,0.0239). As a
consequence, the running time isO(20.465(1−α)n) = O(20.392n), where

α =
log(20.465)

log(20.465) + log(5.5981)
> 0.1576.

By the same arguments as above, this running time bound extends to graphs of
arbitrary degree. Based on this approach, Robson obtained the currently fastest
O(20.250n) exponential space MVC algorithm [60].

Note that the maximization in Theorem 13 must be performed in a very careful
way. In fact, underestimating the value ofc(d) would lead to wrong running time
bounds. The value ofc(d) for some values ofd are given in Table 1.

79 79

79 79

The Bulletin of the EATCS

71

Table 1Upper bounds onc(d) for d ∈ {3,4, . . . ,10}.

d c(d)
3 3.4143
4 5.5981
5 7.7654
6 9.9275
7 12.0871
8 14.2455
9 16.4031
10 18.5602

5.3 Memorization in parameterized algorithms

The parameterizedk-V C problem asks to compute, given a graphG
and a positive integerk, a vertex cover of sizek or to report that no such set exists.

The algorithm described in the previous subsection can be easily adapted to
this task: it is sufficient to updatek (besidesG) at each recursive call in order
to keep track of the number of vertices added to the vertex cover along each
search path. Using the same notation as in the previous section, but measuring
the progress of the algorithm in terms ofk (instead ofn), we obtain the following
tight recurrence

P(k) ≤ P(k− 1)+ P(k− 3) < 20.552k,

which corresponds again to the case in which the algorithm branches at a vertex
of degree 3. The corresponding running time isO(20.552k).

A linear problem kernel of size 2k for thek-V C problem (not nec-
essary planar) was obtained by Chen et al. [19]. This result is based on graph-
theoretical results of Nemhauser and Trotter [51] and Buss and Goldsmith [13].
The running time of the algorithm constructing such a kernel isO(kn+ k3). Thus
Tkernel(|I |, k) = O(kn+ k3).

By applying such a kernalization to each subproblem generated, and using the
basic memorization technique described in Section 5.1, one obtains

Ph(k) ≤ min{20.552(k−h),

(
2k
2h

)
}.

As a consequence, the running time isO(20.552(1−α)k + kn) = O(20.528k + kn) where
α > 0.044 satisfies

20.552(1−α) =

(
1

αα(1− α)1−α

)2

.

80 80

80 80

BEATCS no 87 THE EATCS COLUMNS

72

By applying a similar (slightly weaker) approach, Niedermeier and Rossmanith
[53] derived aO(20.360k + kn) exponential space vertex cover algorithm from their
ownO(20.370k + kn) polynomial space algorithm [52].

However, it is not clear a priori how to apply the refined approach of Section
5.2 (based on the number of connected induced subgraphs) to the problem. In fact,
consider a vertex cover instance (G, k), where the connected components ofG are
G1,G2, . . . ,Gp, with p ≥ 2. A simple-minded idea is to branch on the subproblems
(G1, k), (G2, k),. . . , (Gp, k). Though this approach is correct in principle, it leads
to a bad running time bound (since the value of the argument does not decrease in
the subproblems).

Chandran and Grandoni [63] described a simple way to circumvent this prob-
lem. Suppose the maximum degree is bounded by a constantd. If a connected
component contains a small (constant) number of vertices, the corresponding ver-
tex cover problem can be solved in constant time by brute force. Thus, without
loss of generality, we can assume that each connected component contains at least
dh+ 1 vertices (and hence at leastdhedges), for some constanth to be fixed later.
Since each vertex of the vertex cover can cover at mostd edges, the size of the
minimum vertex cover of each component is at leasth. As a consequence, we
can branch on the subproblems (Gi , k − (p − 1)h) instead of (Gi , k). In fact, if
mvc(Gi) > k − (p − 1)h for somei, thenmvc(G) > k. This leads to a new set of
recurrences of the kind

P(k) ≤
p∑

i=1

P(k− (p− 1)h) ≤ 2k/h.

By choosing a sufficiently large (but still constant)h, we can ensure that these
recurrences are not tight (and thus the worst-case running time is not affected by
the branching on the connected components). For example, imposingh = 3, one
obtainsP(k) < 20.334k.

By combining this idea with the refined memorization technique described in
Section 5.2, we obtain for graphs of degree at most 4 a running timeO(20.552(1−α)k+

kn) = O(20.497k + kn) where

20.552(1−α) = 5.59812α ⇔ α =
log(20.552)

log(20.552) + 2 log(5.5981)
> 0.0999.

Also in this case the same running time bound extends to graphs of arbitrary de-
gree, provided that vertices of degree 5 or larger are removed in a preliminary
phase:

P(k) ≤

P(k− 1)+ P(k− 5)

20.552k
≤ max{20.406k,20.552k}.

81 81

81 81

The Bulletin of the EATCS

73

Using this approach, Chandran and Grandoni [63] derived aO(20.350k + kn) ex-
ponential space algorithm from theO(20.370k + kn) polynomial space algorithm in
[52]. This is the currently fastest algorithm for the parameterizedk-V C
problem.7

Acknowledgement. Many thanks to Dimitrios M. Thilikos for his helpful re-
marks and suggestions.

References

[1] J. A, H. L. B, H. F, T. K,  R. N, Fixed pa-
rameter algorithms for dominating set and related problems on planar graphs, Al-
gorithmica, 33 (2002), pp. 461–493.

[2] J. A, M. R. F,  R. N, Polynomial-time data reduction for
dominating set, Journal of the ACM, 51 (2004), pp. 363–384.

[3] J. A, H. F,  R. N, Graph separators: a parameterized view,
J. Comput. System Sci., 67 (2003), pp. 808–832.

[4] , Parameterized complexity: exponential speed-up for planar graph problems,
J. Algorithms, 52 (2004), pp. 26–56.

[5] M. A , E. H,  D. I, Exponential lower bounds for the run-
ning time of DPLL algorithms on satisfiable formulas, in Proceedings of the 31st In-
ternational Colloquium on Automata, Languages and Programming (ICALP 2005),
vol. 3142 of LNCS, Springer, Berlin, 2004, pp. 84–96.

[6] N. A, P. S,  R. T, A separator theorem for nonplanar graphs, J.
Amer. Math. Soc., 3 (1990), pp. 801–808.

[7] , Planar separators, SIAM J. Discrete Math., 7 (1994), pp. 184–193.

[8] R. B, Finding maximum independent sets in sparse and general graphs,
in Proceedings of the 10th ACM-SIAM Symposium on Discrete Algorithms
(SODA 1999), ACM and SIAM, 1999, pp. 856–857.

[9] R. B  D. E, 3-coloring in time O(1.3289n), Journal of Algorithms, 54
(2005), pp. 168–204.

[10] S. B, R. E̈, B. M, R. P,  J.-P. T, New spectral lower
bounds on the bisection width of graphs, Theoretical Computer Science, 320 (2004),
pp. 155–174.

[11] H. L. B, A partial k-arboretum of graphs with bounded treewidth, Theo-
retical Computer Science, 209 (1998), pp. 1–45.

7Recently Chen et al. [21] announcedO(1.2740k+kn) = O(20.350k+kn)-time polynomial space
algorithm.

82 82

82 82

BEATCS no 87 THE EATCS COLUMNS

74

[12] T. B W. K, An improved deterministic local search algorithm for
3-SAT, Theoretical Computer Science, 329 (2004), pp. 303–313.

[13] J. F. B  J. G, Nondeterminism withinP, SIAM J. Comput., 22 (1993),
pp. 560–572.

[14] J. M. B, Enumerating maximal independent sets with applications to graph
colouring, Operations Research Letters, 32 (2004), pp. 547–556.

[15] J. M. B, Exact algorithms for graph colouring and exact satisfiability, PhD
thesis, University of Aarhus, Denmark, (August, 2004).

[16] J. M. B, B  D. E, An algorithm for enumerating maximal bi-
partite subgraphs, manuscript, (2004).

[17] J. C, H. F, I. A. K,  G. X, Parametric duality and kernelization:
Lower bounds and upper bounds on kernel size, in Proceedings of the 22nd Inter-
national Symposium on Theoretical Aspects of Computer Science (STACS 2005),
vol. 3403 of LNCS, Springer, Berlin, 2005, pp. 269–280.

[18] J. C, I. A. K,  W. J, Vertex cover: further observations and further
improvements, in Proceedings of the 26th Workshop on Graph Theoretic Concepts in
Computer Science (WG 1999), vol. 1665 of LNCS, Springer, Berlin, 1999, pp. 313–
324.

[19] , Vertex cover: further observations and further improvements, Journal of Al-
gorithms, 41 (2001), pp. 280–301.

[20] J. C, I. A. K,  G. X, Labeled search trees and amortized analysis: im-
proved upper bounds for NP-hard problems, in Proceedings of the 14th Annual In-
ternational Symposium on Algorithms and Computation (ISAAC 2003), vol. 2906
of LNCS, Springer, Berlin, 2003, pp. 148–157.

[21] , Simplicity is beaty: Improved upper bounds for vertex cover, manuscript,
2005.

[22] E. D, A. G, E. A. H, R. K, J. K, C. P,
P. R,  U. S̈, A deterministic(2− 2/(k+ 1))n algorithm for k-SAT
based on local search, Theoretical Computer Science, 289 (2002), pp. 69–83.

[23] V. G. D̆, B. K, G. J. W, Exact algorithms for the Hamiltonian
cycle problem in planar graphs, Operations Research Letters, (2005), p. to appear.

[24] E. D. D, F. V. F, M. H,  D. M. T, Subexponential
parameterized algorithms on graphs of bounded genus and H-minor-free graphs,
Journal of the ACM, (2004, to appear).

[25] , Fixed-parameter algorithms for (k, r)-center in planar graphs and map
graphs, ACM Trans. Algorithms, 1 (2005), pp. 33–47.

[26] F. D, E. P, H. B,  F. V. F, Efficient exact algorithms on
planar graphs: Exploiting sphere cut branch decompositions, in Proceedings of the
13th Annual European Symposium on Algorithms (ESA 2005), vol. 3669 of LNCS,
Springer, Berlin, 2005, pp. 95–106.

83 83

83 83

The Bulletin of the EATCS

75

[27] F. D  J. A. T, Two birds with one stone: the best of
branchwidth and treewidth with one algorithm, 2005. manuscript,
http://www.ii.uib.no/ telle/bib/DT.pdf.

[28] R. G. D M. R. F, Parameterized complexity, Springer-Verlag, New
York, 1999.

[29] D. E, Small maximal independent sets and faster exact graph coloring, Jour-
nal of Graph Algorithms and Applications, 7 (2003), pp. 131–140.

[30] , The travelling salesman problem for cubic graphs, in Proceedings of the 8th
Workshop on Algorithms and Data Structures (WADS 2003), vol. 2748 of LNCS,
Springer, Berlin, 2003, pp. 307–318.

[31] D. E, Quasiconvex analysis of backtracking algorithms, in Proceedings of
the 15th ACM-SIAM Symposium on Discrete Algorithms (SODA 2004), ACM and
SIAM, 2004, pp. 781–790.

[32] F. V. F, F. G,  D. K, Measure and conquer: Domination –
a case study, in Proceedings of the 32nd International Colloquium on Automata,
Languages and Programming (ICALP 2005), vol. 3580 of LNCS, Springer, Berlin,
2005, pp. 191–203.

[33] F. V. F  K. H, Pathwidth of cubic graphs and exact algorithms, Technical
Report 298, Department of Informatics, University of Bergen, Norway, 2005.

[34] F. V. F, D. K,  I. T, Exact algorithms for treewidth and min-
imum fill-in, in Proceedings of the 31st International Colloquium on Automata,
Languages and Programming (ICALP 2004), vol. 3142 of LNCS, Springer, Berlin,
2004, pp. 568–580.

[35] F. V. F, D. K,  G. J. W, Exact (exponential) algorithms for
the dominating set problem, in Proceedings of the 30th Workshop on Graph The-
oretic Concepts in Computer Science (WG 2004), vol. 3353 of LNCS, Springer,
Berlin, 2004, pp. 245–256.

[36] F. V. F  D. M. T, Dominating sets in planar graphs: Branch-width
and exponential speed-up, in 14th Annual ACM-SIAM Symposium on Discrete Al-
gorithms (SODA 2003), New York, 2003, ACM and SIAM, pp. 168–177.

[37] , A simple and fast approach for solving problems on planar graphs, in Pro-
ceedings of the 21st International Symposium on Theoretical Aspects of Computer
Science (STACS 2004), vol. 2996 of LNCS, Springer, Berlin, 2004, pp. 56–67.

[38] , New upper bounds on the decomposability of planar graphs, Journal of Graph
Theory, (2005, to appear).

[39] J. G, E. A. H, R. N,  P. R, Worst-case upper
bounds for MAX-2-SAT with an application to MAX-CUT, Discrete Applied Mathe-
matics, 130 (2003), pp. 139–155.

[40] F. G, A note on the complexity of minimum dominating set, Journal of Dis-
crete Algorithms, (to appear).

84 84

84 84

BEATCS no 87 THE EATCS COLUMNS

76

[41] Q.-P. G  H. T, Optimal branch-decomposition of planar graphs in O(n3)
time, in Proceedings of the 32nd International Colloquium on Automata, Languages
and Programming (ICALP 2005), vol. 3580 of LNCS, Springer, Berlin, 2005,
pp. 373–384.

[42] M. H  R. M. K, A dynamic programming approach to sequencing prob-
lems, Journal of SIAM, 10 (1962), pp. 196–210.

[43] K. I, Worst-case upper bounds for k-SAT, Bulletin of the EATCS, 82 (2004),
pp. 61–71.

[44] J. K, D. M̈, S. R,  P. R, Algorithms based in treewidth
of sparse graphs, in Proceedings of the 31st International Workshop on Graph-
Theoretic Concepts in Computer Science (WG 2005), LNCS, Springer, Berlin,
2005, to appear.

[45] D. E. K, The art of computer programming, Addison-Wesley, second ed., 1975.
Vol. 1: Fundamental algorithms.

[46] A. K  A. S. K, A new approach for proving upper bounds for
MAX-2-SAT, 2005. manuscript, http://logic.pdmi.ras.ru/ arist/papers.html.

[47] A. S. K  S. S. F, Solution of the maximum cut problem in time
2|E|/4, Rossĭıskaya Akademiya Nauk. Sankt-Peterburgskoe Otdelenie. Matematich-
eskĭı Institut im. V. A. Steklova. Zapiski Nauchnykh Seminarov (POMI), 293 (2002),
pp. 129–138, 183.

[48] R. J. L  R. E. T, A separator theorem for planar graphs, SIAM J.
Appl. Math., 36 (1979), pp. 177–189.

[49] , Applications of a planar separator theorem, SIAM J. Comput., 9 (1980),
pp. 615–627.

[50] B. M  R. P, Upper bounds on the bisection width of 3- and 4-regular
graphs, in Proceedings of the 26th International Symposium on Mathematical Foun-
dations of Computer Science (MFCS 2001), vol. 2136 of LNCS, Springer, Berlin,
2001, pp. 524–536.

[51] G. L. N  L. E. T, J., Properties of vertex packing and indepen-
dence system polyhedra, Math. Programming, 6 (1974), pp. 48–61.

[52] R. N  P. R, Upper bounds for vertex cover further improved,
in Proceedings of the 16th International Symposium on Theoretical Aspects of Com-
puter Science (STACS 1999), vol. 1563 of LNCS, Springer, Berlin, 1999, pp. 561–
570.

[53] , On efficient fixed-parameter algorithms for weighted vertex cover, Journal of
Algorithms, 47 (2003), pp. 63–77.

[54] P. P  R. I, A lower bound for DLL algorithms for k-SAT,
in Proceedings of the 11th ACM-SIAM Symposium on Discrete Algorithms
(SODA 2000), ACM and SIAM, 2000, pp. 128–136.

85 85

85 85

The Bulletin of the EATCS

77

[55] N. R  P. D. S, Graph minors. II. Algorithmic aspects of tree-
width, Journal of Algorithms, 7 (1986), pp. 309–322.

[56] , Graph minors. X. Obstructions to tree-decomposition, J. Combin. Theory Ser.
B, 52 (1991), pp. 153–190.

[57] , Graph minors. XI. Circuits on a surface, J. Combin. Theory Ser. B, 60 (1994),
pp. 72–106.

[58] N. R, P. D. S,  R. T, Quickly excluding a planar graph, J.
Combin. Theory Ser. B, 62 (1994), pp. 323–348.

[59] J. M. R, Algorithms for maximum independent sets, Journal of Algorithms, 7
(1986), pp. 425–440.

[60] , Finding a maximum independent set in time O(2n/4), 2001. manuscript,
http://dept-info.labri.fr/ robson/mis/techrep.html.

[61] U. S̈, Algorithmics in exponential time, in Proceedings of the 22nd Inter-
national Symposium on Theoretical Aspects of Computer Science (STACS 2005),
vol. 3404 of LNCS, Springer, Berlin, 2005, pp. 36–43.

[62] P. D. S  R. T, Call routing and the ratcatcher, Combinatorica, 14
(1994), pp. 217–241.

[63] L. S C  F. G, Refined memorization for vertex cover, Infor-
mation Processing Letters, 93 (2005), pp. 125–131.

[64] R. W, A new algorithm for optimal constraint satisfaction and its impli-
cations, in Proceedings of the 31st International Colloquium on Automata, Lan-
guages and Programming (ICALP 2004), vol. 3142 of LNCS, Springer, Berlin,
2004, pp. 1227–1237.

[65] G. W, Exact algorithms for NP-hard problems: A survey, in Combinatorial
Optimization - Eureka, you shrink!, vol. 2570 of LNCS, Springer-Verlag, Berlin,
2003, pp. 185–207.

[66] , Space and time complexity of exact algorithms: Some open problems, in Pro-
ceedings of the 1st International Workshop on Parameterized and Exact Computa-
tion (IWPEC 2004), vol. 3162 of LNCS, Springer-Verlag, Berlin, 2004, pp. 281–
290.

86 86

86 86

78

T C C C


J T́

Dept. Theoretische Informatik, Universität Ulm
Oberer Eselsberg, 89069 Ulm, Germany

jacobo.toran@uni-ulm.de

http://theorie.informatik.uni-ulm.de/Personen/jt.html

Quantum complexity is a young research area of increasing importance. In
spite of the scepticism of part of the research community regarding the possi-
bility of constructing quantum machines, there is nowadays at least one ses-
sion devoted to this topic in every complexity conference. Two experts in the
area, Peter Høyer and Robert Špalek write in this column a beautiful survey on
quantum query complexity, focusing on the methods for proving lower bounds.

L B  Q Q
C

Peter Høyer∗ Robert Špalek†

Abstract

Shor’s and Grover’s famous quantum algorithms for factoring and
searching show that quantum computers can solve certain computational

∗Department of Computer Science, University of Calgary. Supported by Canada’s Natural
Sciences and Engineering Research Council (NSERC), the Canadian Institute for Advanced Re-
search (CIAR), and The Mathematics of Information Technology and Complex Systems (MI-
TACS). Email: hoyer@cpsc.ucalgary.ca

†CWI and University of Amsterdam. Supported in part by the EU fifth framework project
RESQ, IST-2001-37559. Work conducted in part while visiting the University of Calgary.
Email:sr@cwi.nl

87 87

87 87

The Bulletin of the EATCS

79

problems significantly faster than any classical computer. We discuss here
what quantum computerscannotdo, and specifically how to prove limits on
their computational power. We cover the main known techniques for proving
lower bounds, and exemplify and compare the methods.

1 Introduction

The very first issue of the Journal of the ACM was published in January 1954. It
was the first journal devoted to computer science. For its 50th anniversary volume,
published in January 2003, editors-in-chief Joseph Y. Halpern asked winners of
the Turing Award and the Nevanlinna Prize to discuss up to three problems that
they thought would be major problems for computer science in the next 50 years.
Nevanlinna Prize winner Leslie G. Valiant [54] describes three problems, the first
of which is on physically realizable models for computation and formalizes the
setting by defining: “We therefore call our class PhP, the class of physically con-
structible polynomial resource computers.” He then formulates the problem by:
“[t]o phrase a single question, the full characterization of PhP,” and argues that
“this single question appears at this time to be scientifically the most fundamental
in computer science.”

On January 26, this year, Nobel Laureate David Gross gave a CERN Collo-
quium presentation on “The future of physics” [28]. He discusses “25 questions
that might guide physics, in the broadest sense, over the next 25 years,” and in-
cludes as questions 15 and 16 “Complexity” and “Quantum Computing.” In July,
this year, the Science magazine celebrated its 125th anniversary by “explor[ing]
125 big questions that face scientific enquiry over the next quarter-century” [46].
Among the top 25, is the question of “What are the limits of conventional comput-
ing?” Charles Seife writes: “[T]here is a realm beyond the classical computer: the
quantum,” and he discusses the issue of determining “what quantum-mechanical
properties make quantum computers so powerful.”

In this issue of the Bulletin of the EATCS, we would like to offer an intro-
duction to the topic of studying limitations on the power of quantum comput-
ers. Can quantum computers really be more powerful than traditional computers?
What can quantum computers not do? What proof techniques are used for proving
bounds on the computational power of quantum computers? It is a highly active
area of research and flourishing with profound and beautiful theorems. Though
deep, it is fortunately also an accessible area, based on basic principles and simple
concepts, and one that does not require specialized prior knowledge. One aim of
this paper is to show this by providing a fairly complete introduction to the two
most successful methods for proving lower bounds on quantum computations, the
adversary method and the polynomial method. Our survey is biased towards the

88 88

88 88

BEATCS no 87 THE EATCS COLUMNS

80

adversary method since it is likely the least familiar method and it yields very
strong lower bounds. This paper is meant to be supplemented by the excellent
survey of Buhrman and de Wolf [19] on decision tree complexities, published in
2002 in the journal Theoretical Computer Science.

We demonstrate the methods on a running example, and for this, we use one
of the most basic algorithmic questions one may think of: that of searching an or-
dered set. Can one implement ordered searching significantly faster on a quantum
computer than applying a standardΘ(logN) binary search algorithm?

The rest of the paper is organized as follows. We motivate and define our
models of computation in the next section. We then discuss very basic principles
used in proving quantum lower bounds in Section 3 and use them to establish our
first lower bound method, the adversary method, in Section 4. We discuss how
to apply the method in Section 5, and its limitations in Section 6. We then give
an introduction to the second method, the polynomial method, in Section 7. We
compare the two methods in Section 8 and give a few final remarks in Section 9.

We have aimed at limiting prior knowledge on quantum computing to a
bare minimum. Sentences and paragraphs with kets and bras (|this is a ket〉 and
〈this is a bra|) can either safely be skipped, or substituted with column-vectors and
row-vectors, respectively.

2 Quantum query complexity

Many quantum algorithms are developed for the so-called oracle model in which
the input is given as an oracle so that the only knowledge we can gain about the
input is in asking queries to the oracle. The input is a finite bitstringx ∈ {0,1}N

of some lengthN, wherex = x1x2 . . . xN. The goal is to compute some function
F : {0,1}N → {0,1}m of the input x. Some of the functions we consider are
boolean, some not. We use the shorthand notation [N] = {1,2, . . . ,N}.

As our measure of complexity, we use the query complexity. The query com-
plexity of an algorithmA computing a functionF is the number of queries used
by A. The query complexity ofF is the minimum query complexity of any al-
gorithm computingF. We are interested in proving lower bounds on the query
complexity of specific functions and consider methods for computing such lower
bounds.

An alternative measure of complexity would be to use the time complexity
which counts the number of basic operations used by an algorithm. The time
complexity is always at least as large as the query complexity since each query
takes one unit step, and thus a lower bound on the query complexity is also a
lower bound on the time complexity. For most existing quantum algorithms, in-
cluding Grover’s algorithm [27], the time complexity is within poly-logarithmic

89 89

89 89

The Bulletin of the EATCS

81

factors of the query complexity. A notorious exception is the so-called Hidden
Subgroup Problem which has polynomial query complexity [23], yet polynomial
time algorithms are known only for some instances of the problem.

The oracle model is called decision trees in the classical setting. A classical
query consists of an indexi ∈ [N], and the answer of the bitxi. There is a natural
way of modeling a query so that it is reversible. The input is a pair (i,b), where
i ∈ [N] is an index andb ∈ {0,1} a bit. The output is the pair (i,b ⊕ xi), where
the bitb is flipped if xi = 1. There are (at least) two natural ways of generalizing
a query to the quantum setting, in which we require all operations to be unitary.
The first way is to consider a quantum query as a unitary operator that takes two
inputs |i〉|b〉, wherei ∈ [N] and b ∈ {0,1}, and outputs|i〉|b ⊕ xi〉. The oracle is
then simply just a linear extension of the reversible query given above. We extend
the definition of the oracle so that we can simulate a non-query, and we allow it to
take some arbitrary ancilla state|z〉 with z≥ 0 as part of the input and that is acted
upon trivially,

O′x|i,b; z〉 =

|i,b; z〉 if i = 0 or xi = 0

|i,b⊕ 1;z〉 if i ∈ [N] andxi = 1.
(1)

The ancilla|z〉 contains any additional information currently part of the quantum
state that is not involved in the query.

The second way is to consider a quantum query as a unitary operatorOx that
takes only the one input|i〉 and outputs (−1)xi |i〉, wherei ∈ [N]. We say that the
oracle is “computed in the phases” byOx. Both operatorsO′x andOx square to the
identity, i.e., they are their own inverses, and thus unitary. The two operators are
equivalent up to a factor of two in that one query to either oracle can be simulated
by two queries to the other oracle. Though the first way is possibly the more
intuitive, we shall adapt the second way as it is very convenient when proving
lower bounds. Again, we extend the definition of the oracleOx so that it also
embodies a non-query, and we allow it to take some arbitrary ancilla state|z〉 that
is not acted upon,

Ox|i; z〉 =

|i; z〉 if i = 0

(−1)xi |i; z〉 if 1 ≤ i ≤ N.
(2)

We may think of one query as a one-round exchange of information between
two parties, the algorithm and the oracle. In the classical setting, the algorithm
sends an indexi ∈ [N] to the oracle, and the oracle responds with one bit of
information, namelyxi. In the quantum setting, the algorithm sends the log2(N)
qubits |i〉 to the oracleOx, and the oracle responds with (−1)xi |i〉. The algorithm
and oracle thus exchange a total number of 2 log2(N) qubits, and thus, a quantum

90 90

90 90

BEATCS no 87 THE EATCS COLUMNS

82

query toOx can convey up to 2 log2(N) classical bits of information about the
oracle by Holevo’s theorem [31, 20] and superdense coding [18].

Information theoretically, a functionF : {0,1}N → {0,1}log2(N) that out-
puts at mostO(log2(N)) bits, can potentially be solved by a constant number of
queries to the oracle. An example of such a problem is the Deutsch-Jozsa prob-
lem [22], which is to distinguish balanced boolean functions from constant func-
tions. (A functionF is constant ifF(x) = F(y) for all inputsx, y, and it is balanced
if it is not constant and|F−1(F(x))| = |F−1(F(y))| for all inputsx, y.)

A quantum algorithm in the oracle model starts in a state that is independent
of the oracle. For convenience, we choose the state|0〉 in which all qubits are
initialized to 0. It then evolves by applying arbitrary unitary operatorsU to the
system, alternated with queriesOx to the oraclex, followed by a conclusive mea-
surement of the final state, the outcome of which is the result of the computation.
In symbols, a quantum algorithmA that usesT queries, computes the final state

|ψT
x 〉 = UTOxUT−1 · · ·U1OxU0|0〉 (3)

which is then measured. If the algorithm computes some functionF : {0,1}N →
{0,1}m, we measure them leftmost bit of the final state|ψT

x 〉, producing some
outcomew. The success probabilitypx of A on inputx ∈ {0,1}N is the probability
that w = F(x). For complete functionsF : {0,1}N → {0,1}m, we define the
success probability ofA as the minimum ofpx over all x ∈ {0,1}N. For partial
functionsF : S → {0,1}m, whereS ⊆ {0,1}N, we take the minimum overS only.
A quantum algorithmA has error at mostε if the success probability ofA is at
least 1− ε. Let Qε(F) denote the minimum query complexity of any quantum
algorithm that computesF with two-sided error at mostε, and as common, let
Q2(F) = Q1/3(F) denote the two-sided bounded error complexity withε = 1/3.

As our running example, we use the well-known ordered searching prob-
lem. In the oracle model, the input to ordered searching is anN-bit string
x = (x1, . . . , xN). We are promised thatxi ≤ xi+1 for all 1 ≤ i < N and that
xN = 1, and the goal is to find the leftmost 1, i.e., the indexi ∈ [N] for which
xi = 1 and no indexj < i exists withxj = 1.

Given: An N-bit stringx = (x1, x2, . . . , xN) given as an oracle.

Promise: xi ≤ xi+1 for 1 ≤ i < N andxN = 1.

Output: Index i such thatxi = 1 and eitherxi−1 = 0 or i = 1.

The classical query complexity of ordered searching isdlog2(N)e and is achieved
by standard binary searching. The quantum query complexity is at most
0.45 log2 N, due to the work of high school student M. B. Jacokes in collaboration
with Landahl and Brookes [33] (See also [24, 30]). Using the adversary method,
we show that their algorithm is within a factor of about two of being optimal.

91 91

91 91

The Bulletin of the EATCS

83

3 Distinguishing hard inputs

The first quantum lower bound using adversary arguments was given by Bennett,
Bernstein, Brassard, and Vazirani in [8]. They show that any quantum query al-
gorithm can be sensitive to at most quadratically many oracle bits, which implies
a lower bound ofΩ(

√
N) for Grover’s problem [27] and thus proves that Grover’s

O(
√

N) algorithm is optimal. Grover’s problem is a search problem in which we
are given anN-bit string x ∈ {0,1}N as an oracle, and the goal is to find an in-
dex i for which xi = 1, provided one exists. Interestingly, the lower bound of
Bennett et al. was proved in 1994, well before Grover defined his search prob-
lem. In 2000, Ambainis [3] found an important generalization of the method and
coined it “adversary arguments.”

A constructive interpretation of basic adversary arguments is in terms ofdistin-
guishability. We will thus not be concerned about computing the functionF, but
merely interested in distinguishing oracles. Consider some algorithmA that com-
putes some functionF in the oracle model, and consider two inputsx, y ∈ {0,1}N

for which F(x) , F(y). SinceA computesF, it must in particular be capable
of distinguishing between oraclex and oracley. For a given problem we try to
identify pairs of oraclesthat are hard todistinguish. If we can identify hard input
pairs, we may derive a good lower bound. However, a caveat is that using only
the very hardest input pairs does not yield good lower bounds for some problems,
and we are thus naturally led to also consider less hard input pairs. A remedy is to
useweightsthat capture the hardness of distinguishing each pair of oracles, and
to do so, we define a matrixΓ of dimension 2N × 2N that takes non-negative real
values,

Γ : {0,1}N × {0,1}N →<+0 . (4)

We require thatΓ is symmetric and thatΓ[x, y] = 0 wheneverF(x) = F(y). We
say thatΓ is aspectral adversary matrix for Fif it satisfies these two conditions.
The symmetry condition onΓ states that we are concerned about distinguishing
betweenany two inputsx, y. We are not concerned about distinguishingx from y,
nor distinguishingy from x. We discuss this subtlety further in Section 5 below
when considering alternative definitions of weighted adversary arguments. The
spectral adversary matrixΓ allows us to capture both total and partial functions,
as well as non-boolean functions. Since we are only concerned about distinguisha-
bility, once we have specified the entries ofΓ, we may safely ignore the underlying
functionF.

Weighted adversary arguments were first used by Høyer, Neerbek, and Shi
in [30] to prove a lower bound ofΩ(logN) for ordered searching andΩ(N logN)
for sorting. Barnum and Saks [16] used weighted adversary arguments to prove
a lower bound ofΩ(

√
N) for read-once formulae, and introduced the notionΓ

92 92

92 92

BEATCS no 87 THE EATCS COLUMNS

84

that we adapt here. Barnum, Saks, and Szegedy extended their work in [17] and
derived a general lower bound on the query complexity ofF in terms of spectral
properties of matrixΓ. Their lower bound has a very elegant and short formula-
tion, a basic proof, and captures important properties of adversary methods, and
we shall thus adapt much of their terminology.

As discussed above, the key to prove a good lower bound is to pick a good
adversary matrixΓ. For our running example of ordered searching, which is a
partial non-boolean function, we use the following weights.

Example: Ordered Seaching 1.The weight on the pair(x, y) is the inverse of the
Hamming distance of x and y,

Γsearch[x, y] =

 1
|F(x)−F(y)| if x andy are valid and distinct inputs toF

0 otherwise.
(5)

The larger Hamming distance between x and y, the easier it is to distinguish them,
and the smaller weight is assigned to the pair.

We have to choose how to measure distinguishability. The possibly simplest
measure is to use inner products. Two quantum states are distinguishable with
certainty if and only if they are orthogonal, and they can be distinguished with
high probability if and only if their inner product has small absolute value.

Fact 1. Suppose we are given one of two known states|Ψx〉, |Ψy〉. There exists a
measurement that correctly determines which of the two states we are given with
error probability at mostε if and only if |〈Ψx|Ψy〉| ≤ ε

′, whereε′ = 2
√
ε(1− ε).

Since a unitary operator is just a change of basis, it does not change the inner
product between any two quantum states, and thus the inner product can only
change as a consequence of queries to the oracle.

4 Adversary lower bounds

Adversary lower bounds are information theoretical of nature. A basic idea in
adversary lower bounds is to upper bound the amount of information that can be
learned in a single query. If little information can be learned in any one query,
then many queries are required. We use spectral properties ofΓ to put an upper
bound on the amount of information the algorithm learns about the oracle.

Let A be some quantum algorithm that computes some functionF with
bounded two-sided error. For every integert ≥ 0 and every oraclex, let

|ψt
x〉 = UtOx · · ·U1OxU0|0〉 (6)

93 93

93 93

The Bulletin of the EATCS

85

denote the quantum state aftert queries to the oracle. To measure the progress of
the algorithm, we define similarly to [3, 30, 16, 17] a weight function

Wt =
∑
x,y

Γ[x, y]δxδy · 〈ψ
t
x|ψ

t
y〉, (7)

whereδ is a fixed principal eigenvector ofΓ, i.e., a normalized eigenvector corre-
sponding to the largest eigenvalue ofΓ, and whereδx denotes thexth entry ofδ.

The algorithm starts in a quantum state|ψ0
x〉 = U0|0〉 which is independent of

the oraclex, and thus the total initial weight is

W0 =
∑
x,y

Γ[x, y]δxδy = λ(Γ), (8)

whereλ(Γ) denotes the spectral norm ofΓ. The final state of the algorithm afterT
queries is|ψT

x 〉 if the oracle isx, and it is|ψT
y 〉 if the oracle isy. If F(x) , F(y), we

must have that|〈ψT
x |ψ

T
y 〉| ≤ ε

′ by Fact 1, and henceWT ≤ ε′W0. If the total weight

can decrease by at most∆ by each query, the algorithm requiresΩ(W0

∆
) queries to

the oracle.
Following Barnum, Saks, and Szegedy [17], we upper bound∆ by the largest

spectral norm of the matricesΓi, defined by

Γi[x, y] =

Γi[x, y] if xi , yi

0 if xi = yi,
(9)

for each 1≤ i ≤ n. The theorem of [17] is here stated (and proved) in a slightly
more general form than in [17] so that it also applies on non-boolean functions.
Our proof aims at emphasizing distinguishability and differs from the original.

Theorem 2 (Spectral method [17]).For any adversary matrixΓ for any function
F : {0,1}N → {0,1}m,

Q2(F) = Ω
(λ(Γ)
maxi λ(Γi)

)
. (10)

Proof. We prove that the drop in total weightWt −Wt+1 by the t + 1th query is
upper-bounded by the largest eigenvalue of the matricesΓi.

For each 0≤ i ≤ N, let Pi =
∑

z≥0 |i; z〉〈i; z| denote the projection onto the
subspace querying thei th oracle bit. Letβx,i = |Pi |ψ

t
x〉| denote the absolute value

of the amplitude of querying thei th bit in the t + 1th query, provided the oracle
is x. Note that

∑N
i=0 β

2
x,i = 1 for any oraclex, since the algorithm queries one of

theN bits x1, . . . , xN, or simulates a non-query by querying the oracle withi = 0.
The t + 1th query changes the inner product by at most the overlap between the

94 94

94 94

BEATCS no 87 THE EATCS COLUMNS

86

projections of the two states onto the subspace that corresponds to indicesi on
which xi andyi differ,∣∣∣∣〈ψt

x|ψ
t
y〉 − 〈ψ

t+1
x |ψ

t+1
y 〉

∣∣∣∣ = ∣∣∣∣〈ψt
x|(I − OxOy)|ψt

y〉

∣∣∣∣ =
=

∣∣∣∣2 ∑
i:xi,yi

〈ψt
x|Pi |ψ

t
y〉

∣∣∣∣ ≤ 2
∑

i:xi,yi

βx,iβy,i . (11)

The bigger amplitudes of querying the bitsi on whichxi andyi differ, the larger
the drop in the inner product can be.

Define an auxiliary vectorai[x] = δxβx,i and note that
N∑

i=0

a2
i =

N∑
i=0

∑
x

δ2
xβ

2
x,i =

∑
x

δ2
x

N∑
i=0

β2
x,i =

∑
x

δ2
x = 1.

The drop in the total weight is upper bounded by∣∣∣Wt −Wt+1
∣∣∣ = ∣∣∣∣∑

x,y

Γ[x, y]δxδy
(
〈ψx|ψy〉 − 〈ψ

′
x|ψ
′
y〉
)∣∣∣∣

=
∣∣∣∣2∑

x,y

∑
i:xi,yi

Γ[x, y]δxδy〈ψx|Pi |ψy〉

∣∣∣∣
≤ 2

∑
x,y

∑
i

Γi[x, y]δxδy · βx,iβy,i

= 2
∑

i

a∗i Γiai

≤ 2
∑

i

λ(Γi)a
2
i

≤ 2 max
i
λ(Γi) ·

∑
i

a2
i

= 2 max
i
λ(Γi).

Herea∗i denotes the transpose ofai. The first inequality bounds the drop in inner
product for a specific pair and follows from Equation 11. The second inequality
follows from the spectral norm ofΓ. The second and third inequalities state that
the best possible query distributes the amplitude of the query according to the
largest principal eigenvector of the query matricesΓi. ut

Example: Ordered Seaching 2.Returning to our example of ordered search-
ing, for N = 4, the adversary matrix with respect to the ordered basis
(0001,0011,0111,1111)is given by

Γsearch(4)
=


0 1 1

2
1
3

1 0 1 1
2

1
2 1 0 1
1
3

1
2 1 0

 .

95 95

95 95

The Bulletin of the EATCS

87

The spectral norm is easily seen to be lower bounded by the sum of the entries
in the first row,λ(Γsearch(4)) ≥ 1 + 1

2 +
1
3. In general,λ(Γsearch) is lower bounded

by the harmonic number HN−1, which is at leastln(N). The spectral norm of the
query matricesλ(Γsearch

i) is maximized when i= bN/2c, in which case it is upper
bounded by the spectral norm of the infinite Hilbert matrix[1/(r + s− 1)]r,s≥1,
which isπ. We thus reprove the lower bound of(1− ε′) ln(N)

π
for ordered searching

in given [30].

5 Applying the spectral method

The spectral method is very appealing in that it has a simple formulation, a basic
proof, and gives good lower bounds for many problems. Špalek and Szegedy [51]
show that for any problem, the best lower bound achievable by the spectral method
is always at least as good as the best lower bound achievable by any of the previ-
ously published adversary methods. Their proof is constructive and illuminating:
given any lower bound in any of the previously published adversary methods, they
construct an adversary matrixΓ and prove it achieves the same lower bound.

The first general quantum lower bound using adversary arguments was intro-
duced by Ambainis in [3]. As shown in [51], it can be derived from the spectral
method by applying simple bounds on the spectral norm ofΓ and eachΓi. By
definition, the numeratorλ(Γ) is lower-bounded by1

|d|2 d∗Γd for any non-negative
vectord, and by Mathias’ lemma [39], the denominatorλ(Γi) is upper-bounded by
the product of a row-norm and a column-norm.

Lemma 3 ([39, 51]).Let G be any non-negative symmetric matrix and M,N non-
negative matrices such that G= M ◦ N is the entrywise product of M and N.
Then

λ(G) ≤ max
x,y

G[x,y]>0

rx(M) cy(N),

where rx(M) is the`2-norm of the xth row in M, and cy(N) is the`2-norm of the yth

column in N.

Applying these two bounds, we obtain Ambainis’ lower bound in [3]. We
refer to the method as an unweighted adversary method since it considers only
two types of inputs: easy inputs and hard inputs. We construct a zero-one valued
adversary matrixΓ that corresponds to a uniform distribution over the hard input
pairs.

Theorem 4 (Unweighted method [3]).Let F be a partial boolean function, and
let A ⊆ F−1(0) and B⊆ F−1(1) be subsets of (hard) inputs. Let R⊆ A × B be a
relation, and set Ri = {(x, y) ∈ R : xi , yi} for each1 ≤ i ≤ n. Let m,m′ denote the

96 96

96 96

BEATCS no 87 THE EATCS COLUMNS

88

minimal number of ones in any row and any column in relation R, respectively,
and let`, `′ denote the maximal number of ones in any row and any column in any
of the relations Ri, respectively. Then Q2(f) = Ω(

√
mm′/``′).

Proof. Let S = {(x, y) : (x, y) ∈ R∨ (y, x) ∈ R} be a symmetrized version ofR.
Define a column vectord from the relationS by settingdx =

√
|{y : (x, y) ∈ S}|,

and an adversary matrixΓ by settingΓ[x, y] = 1
dxdy

if and only if (x, y) ∈ S.

Thenλ(Γ) ≥ 1
|d|2 d∗Γd = 1. For each of the matricesΓi, we apply Lemma 3 with

M[x, y] = N[y, x] = 1
dx

if and only if (x, y) ∈ S. For everyx ∈ A, rx(M) ≤√
`/d2

x ≤
√
`/m andcy(N) ≤

√
`′/d2

y ≤
√
`′/m′. For everyx ∈ B, the inequalities

are swapped. By Lemma 3,λ(Γi) ≤ maxx,y:Γi [x,y]>0 rx(M)cy(N) ≤
√
``′/mm′. ut

The unweighted adversary method is very simple to apply as it requires only to
specify a setRof hard input pairs. It gives tight lower bounds for many computa-
tional problems, including inverting a permutation [3], computing any symmetric
function and counting [42, 10, 14], constant-level and-or trees [3, 29], and vari-
ous graph problems [21]. For some computational problems, the hardness does
however not necessarily rely only on a few selected hard instances, but rather on
more global properties of the inputs. Applying the unweighted method on or-
dered searching would for instance only yield a lower bound of a constant. In
these cases, we may apply the following weighted variant of the method, due to
Ambainis [4] and Zhang [57].

Theorem 5 (Weighted method [4, 57]).Let F : S→ {0,1}m be a partial function.
Let w,w′ denote a weight scheme as follows:

• Every pair(x, y) ∈ S2 is assigned a non-negative weight w(x, y) = w(y, x)
that satisfies w(x, y) = 0 whenever F(x) = F(y).

• Every triple(x, y, i) ∈ S2 × [N] is assigned a non-negative weight w′(x, y, i)
that satisfies w′(x, y, i) = 0 whenever xi = yi or F(x) = F(y), and
w′(x, y, i)w′(y, x, i) ≥ w2(x, y) for all x, y, i such that xi , yi.

Then

Q2(F) = Ω

(
min

x,y,i
w(x,y)>0

xi,yi

√
wt(x)wt(y)
v(x, i)v(y, i)

)
,

where wt(x) =
∑

y w(x, y) and v(x, i) =
∑

y w′(x, y, i) for all x ∈ S and i∈ [N].

At first glance, the weighted method may look rather complicated, both in its
formulation and use, though it is not. We first assign weights to pairs (x, y) of
inputs for whichF(x) , F(y), as in the spectral method. We require the weights

97 97

97 97

The Bulletin of the EATCS

89

to be symmetric so that they represent the difficulty in distinguishingbetween x
and y.

We then afterwards assign weightsw′(x, y, i) that represent the difficulty in
distinguishingx from y by querying index i.The harder it is to distinguishx from
y by indexi, compared to distinguishingy from x by indexi, the more weight we
put on (x, y, i) and the less on (y, x, i), and visa-versa.

To quantify this, definet(x, y, i) = w′(x, y, i)/w′(y, x, i). Thent(x, y, i) repre-
sents the relative amount of information we learn about input pairs (x, z) com-
pared to the amount of information we learn about input pairs (u, y), by querying
index i. If we, by querying indexi, learn little aboutx compared toy, we let
t(x, y, i) be large, and otherwise small. Consider we query an indexi for which
xi , yi. Then we learn whether the oracle isx or y. However, at the same time,
we also learn whether the oracle isx or z for any other pair (x, z) for which xi , zi

andF(x) , F(z); and similarly, we learn whether the oracle isu or y for any other
pair (u, y) for which ui , yi and F(u) , F(y). The less information querying
index i provides about pairs (x, z) compared to pairs (u, y), the larger we choose
t(x, y, i). Having thus chosent(x, y, i), we setw′(x, y, i) = w(x, y)

√
t(x, y, i) and

w′(y, x, i) = w(x, y)/
√

t(x, y, i).
We show next that the weighted method yields a lower bound ofΩ(logN)

for the ordered searching problem. This proves that the weighted method is
strictly stronger than the unweighted method. The weighted method yields strong
lower bounds for read-once formula [16] and iterated functions [4]. Aaron-
son [2], Santha and Szegedy [50], and Zhang [58] use adversary arguments to
prove lower bounds for local search, a distributed version of Grover’s problem.
Špalek and Szegedy prove in [51] that the weighted method is equivalent to
the spectral method—any lower bound that can be achieved by one of the two
methods can also be shown by the other. Their proof is constructive and gives
simple expressions for converting one into the other. The main weightsw(x, y)
are the coefficients of the weight functionWt for the input pair (x, y), that is,
w(x, y) = Γ[x, y]δxδy, and the secondary weightsw′(x, y, i) follow from Mathias’
lemma [39] (Lemma 3).

Example: Ordered Seaching 3.To apply the weighted method on ordered
searching, we pick the same weights w(x, y) = Γsearch[x, y] δxδy as in the spec-
tral method as there are no strong reasons for choosing otherwise. Now, consider
t(x, y, i) with F(x) ≤ i < F(y) so that xi , yi. By querying index i, we also learn to
distinguish between x and z for each of the F(y) − i inputs z with i< F(z) ≤ F(y),
and we learn to distinguish between u and y for each of the i− F(x) + 1 inputs u
with F(x) ≤ F(u) ≤ i. We thus choose to set

t(x, y, i) =
|F(y) − i| + 1
|F(x) − i| + 1

.

98 98

98 98

BEATCS no 87 THE EATCS COLUMNS

90

Plugging these values into the weighted method yields a lower bound ofΩ(logN)
for ordered searching.

6 Limitations of the spectral method

The spectral method and the weighted adversary method bound the amount of
information that can be learned in any one query. They do not take into account
that the amount of information that can be learned in thej th query might differ
from the amount of information that can be learned in thekth query.

In 1999, Zalka [56] successfully managed to capture the amount of informa-
tion that can be learned in each individual query for a restricted version of Grover’s
problem [27]. In this restricted version, we are promised that the input oraclex
is either the zero-string (so|x| = 0) or exactly one entry inx is one (so|x| = 1),
and the goal is to determine which is the case. By symmetry considerations, Zalka
demonstrates that Grover’s algorithm saturates some improved inequalities (which
are similar to Eq. 11) and hence is optimal, even to within an additive constant.

Since current adversary methods do not capture the amount of information
the algorithm currently knows, we may simply assume that the algorithm already
knows every bit of the oracle and that it tries to prove so. This motivates a study
of the relationship between the best bound achievable by the spectral method and
the certificate complexity. Acertificatefor an inputx ∈ {0,1}N, is a subsetC ⊆
[N] of input bits such that for any other inputy in the domain ofF that may be
obtained fromxby flipping some of the indices not inC, we have thatF(x) = F(y).
The certificate complexity Cx(F) of input x is the size of a smallest certificate
for x. Thecertificate complexityC(F) of a functionF is the maximum certificate
complexity of any of its inputs. We also define thez-certificate complexity Cz(F)
when taking the maximum only over inputs that map toz. The spectral theorem
can then never yield a lower bound better than a quantity that can be expressed in
terms of certificate complexity.

Lemma 6 ([38, 57, 51]).Let F : S→ {0,1} be any partial boolean function. The
spectral adversary lower boundAdv(F) is at mostmin

{√
C0(F)N,

√
C1(F)N

}
. If

F is total, the method is limited by
√

C0(F)C1(F).

The certificate complexity of a functionF : {0,1}N → {0,1}m is itself poly-
nomially related to the block sensitivity of the function. An inputx ∈ {0,1}N is
sensitiveto a blockB ⊆ [N] if F(x) , F(xB), wherexB denotes the input obtained
by flipping the bits inx with indices fromB. The block sensitivity bsx(F) of input
x is the maximum number of disjoint blocksB1, B2, . . . , Bk ⊆ [N] on which x is
sensitive. Theblock sensitivitybs(F) of F is the maximum block sensitivity of

99 99

99 99

The Bulletin of the EATCS

91

any of its inputs. We also define thez-block sensitivity bsz(F) when taking the
maximum only over inputs that map toz.

For any boolean functionF : {0,1}N → {0,1}, the certificate complexity is
upper bounded by C(F) ≤ bs0(F)bs1(F), and thus so is the spectral adversary
method. Conversely, Adv(F) ≥

√
bs(F) by a zero-one valued adversary matrix

Γ: Let x′ ∈ {0,1}N be an input that achieves the block sensitivity ofF, and let
B1, B2, . . . , Bk ⊆ [N] be disjoint blocks on whichx′ is sensitive, wherek = bs(F).
SetΓ(F)[x, xB] = 1 if and only if x = x′ andB is one of thek blocksBi and close
Γ under transposition. Thenλ(Γ) =

√
k and maxi λ(Γi) = 1, and thus√

bs(F) ≤ Adv(F) ≤ bs0(F)bs1(F). (12)

The spectral adversary method is not suitable for proving lower bounds for
problems related to property testing. If functionF : S→ {0,1} is a partial function
with S ⊆ {0,1}N such that every zero-input is of Hamming distance at leastεn
from every one-input, then the spectral theorem does not yield a lower bound
better than 1/ε.

Laplante and Magniez introduce in [38] a lower-bound method based on Kol-
mogorov complexity. They show by direct constructions that their method is at
least as strong as each of the two methods, the spectral and weighted adversary
method. Špalek and Szegedy then show in [51] that the spectral method is at
least as strong as the Kolmogorov complexity method, allowing us to conclude
that the three methods are equivalent. Having such a variety of representations of
the same method shows that the adversary method is very versatile and captures
fundamental properties of functions. Indeed, Laplante, Lee, and Szegedy [37]
show that the square of the adversary bound is a lower bound on the formula size.
The following lower-bound method is a combinatorial version of the Kolmogorov
complexity method.

Theorem 7 (Minimax method [38, 51]). Let F : S → {0,1}m be a partial func-
tion andA a bounded-error quantum algorithm for F. Let p: S× [N] →<+0 be a
set of|S| probability distributions such that px(i) denotes the average probability
of querying the ith input bit on input x, where the average is taken over the whole
computation ofA. Then the query complexity QA of algorithmA satisfies

QA ≥ Mp = max
x,y:F(x),F(y)

1∑
i:xi,yi

√
px(i) py(i)

.

The previous methods satisfy the property that if we plug in some matrix or
relation, we get a valid lower bound. The minimax method is principally differ-
ent. A lower bound computed by the minimax theorem holds for one particular
algorithmA, and it may not hold for some other and better algorithm. However,

100 100

100 100

BEATCS no 87 THE EATCS COLUMNS

92

we may obtain a universal lower bound that holds foreverybounded error algo-
rithm by simply taking the minimum of the boundMp over all possible sets of
probability distributionsp. The spectral bound and the minimax bound are in a
primal-dual relation: the best lower bound that can be obtained by any adversary
matrixΓ equals the smallest bound that can be obtained by a set of probability dis-
tributions p [51]. Primal methods are used for obtaining concrete lower bounds
and dual methods are used for proving limitations of the method, as in Lemma 6.

A useful property of the adversary method is that it composes. Consider a
function of the formH = F ◦ (G1, . . . ,Gk), whereF : {0,1}k → {0,1} and
Gi : {0,1}Ni → {0,1} for i = 1, . . . , k are partial boolean functions. A compo-
sition theorem states the complexity of functionH in terms of the complexities of
F andG1, . . . ,Gk. Barnum and Saks [16] use composition properties to prove a
query lower bound ofΩ(

√
N) for any read-once formula, Ambainis [4] proves a

composition lower bound for iterated boolean functions, and Laplante, Lee, and
Szegedy [37] prove a limitation on composition lower bounds for functionsGi for
which the adversary bound is upper bounded by a common boundb. To formu-
late a composition theorem for arbitrary cases when the functionsGi may have
different adversary bounds, we require a weighted version of the spectral method.

Let F : {0,1}N → {0,1} be a partial boolean function andα = (α1, . . . , αN) a
string of positive reals. Let

Advα(F) = max
Γ

min
i

{
αi
λ(Γ)
λ(Γi)

}
,

whereΓ ranges over all adversary matrices forF. If the weights are all 1, then
our new quantity Advα(F) coincides with the spectral adversary bound and is thus
a lower bound on the quantum query complexity ofF. If the weightsα are non-
uniform, then Advα(F) is a new abstract complexity measure that assigns cost
αi to querying thei th input bit. We can then prove [32] that the quantity Advα

composes in the following sense.

Theorem 8 (Composition Theorem [16, 4, 37, 32]).For any composite function
H = F ◦ (G1, . . . ,Gk), where F : {0,1}k → {0,1} and Gi : {0,1}Ni → {0,1} are
partial boolean functions,

Advα(H) = Advβ(F),

whereβi = Advαi (Gi), andα = (α1, . . . , αk) is a k-tuple of stringsαi ∈ <+
Ni .

A natural generalization of Grover’s problem is the so-calledk-fold search
problem in which we are promised that exactlyk entries of the input oraclex are
one (so|x| = k), and the goal is to find all of thesek indices. We say an algorithm
A succeeds if it outputs a subsetS ⊆ [N] of size k and S contains all indices

101 101

101 101

The Bulletin of the EATCS

93

i ∈ [N] for which xi = 1. Thus, by definition, it fails even if it outputs all but
one of thek indices. Thek-fold search problem can be solved inO(

√
kn) queries,

essentially by sequentially running Grover’s search algorithmk times. Klauck,
Špalek, and de Wolf [35] show that if the number of queries is less thanε

√
kn

for some constantε, then the success probability ofA is exponentially small ink.
They thus prove a strong direct product theorem for thek-fold search problem.
One of the main elements of the proof is the polynomial method which we discuss
in the next section.

In very recent work, Ambainis [5] proposes an extension of the adversary
method and uses it to reprove the strong direct product theorem of [35]. Though
the following very brief description of the proof does not give full justice to the
method, we hope it conveys some of the intuition on which [5] is based. The
algorithm runs on a uniform superposition of all inputs. During the computation,
the input register gets entangled with the workspace of the algorithm due to the
queries to the oracle. We trace out the workspace and examine the eigenspaces of
the density matrix of the input register. Due to symmetries, there are exactlyk+ 1
eigenspaces, indexed by the number of ones the algorithm “knows” at that stage of
the algorithm. In the beginning, all amplitude is in the 0th eigenspace. One query
can only move little amplitude from thei th eigenspace to thei + 1th eigenspace.
If the algorithm has a good success probability, the quantum amplitude of high
eigenspaces must be significant, since the algorithm must “know” most of thek
indices, which implies a lower bound on the query complexity.

7 Polynomial lower bounds

There are essentially two different methods known for proving lower bounds on
quantum computations. The historically first method is the adversary method we
discuss above. It was introduced in 1994 by Bennett, Bernstein, Brassard, and
Vazirani, and published in 1997 in the SIAM Journal on Computing, in a special
section that contains some of the most outstanding papers on quantum computing.
The second method was introduced shortly after, in 1998, by Beals, Buhrman,
Cleve, Mosca, and de Wolf [9], and implicitly used by Fortnow and Rogers in [25].
Their approach is algebraic and follows earlier very successful work on classical
lower bounds via polynomials (see for instance Beigel’s 1993 survey [11] and
Regan’s 1997 survey [44]). We first establish that any partial boolean function
F : S→ {0,1}, whereS ⊆ {0,1}N, can be represented by a real-valued polynomial
p : <N →<.

Definition 9. Let F : S→ {0,1} be a partial boolean function, where S⊆ {0,1}N.
An N-variable polynomial prepresentsF if p(x) = F(x) for all x ∈ S , and it

102 102

102 102

BEATCS no 87 THE EATCS COLUMNS

94

approximatesF if |p(x)−F(x)| ≤ 1
3 for all x ∈ S . Thedegreeof F, denoteddeg(F),

is the minimal degree of a polynomial representing F. Theapproximate degreeof
F, denoted̃deg(F), is the minimal degree of a polynomial approximating F.

The crux in [9] is in showing that any quantum algorithmA computing some
functionF gives rise to some polynomialpA that represents or approximatesF.

Theorem 10 ([9]). LetA be a quantum algorithm that computes a partial boolean
function F : S → {0,1}, where S ⊆ {0,1}N, using at most T queries to the
oracle O′x. Then there exists an N-variate real-valued multilinear polynomial
pA : <N → < of degree at most2T, which equals the acceptance probability
of A.

Proof. In this theorem, we use the oracleO′x which is equivalent to the oracleOx,
since it allows for simple formulations. We first rewrite the action ofO′x as

O′x|i,b; z〉 = (1− xi)|i,b; z〉 + xi |i,b⊕ 1;z〉 (13)

where we definexi = 0 for i = 0 so that we can simulate a non-query by querying
xi with i = 0. Suppose we applyO′x on some superposition

∑
i,b,zαi,b,z|i,b; z〉 where

each amplitudeαi,b,z is anN-variate complex-valued polynomial inx of degree at
most j. Then, by Eq. 13, the resulting state

∑
i,b,zβi,b,z|i,b; z〉 is a superposition

where each amplitudeβi,b,z is anN-variate complex-valued polynomial inx of de-
gree at mostj + 1. By proof by induction, afterT queries, each amplitude can be
expressed as a complex-valued polynomial inx of degree at mostT. The proba-
bility that the final measurement yields the outcome 1, corresponding to accepting
the input, is obtained by summing some of the absolute values of the amplitudes
squared. The square of any of the absolute amplitudes can be expressed as a real-
valued polynomialpA in x of degree at most 2T. Theorem 10 follows. ut

The above theorem states that to any quantum algorithmA computing a
boolean functionF : S → {0,1}, whereS ⊆ {0,1}N, we can associate anN-
variate polynomialpA : <N → < that expresses the acceptance probability of
the algorithm on any given input. If algorithmA is exact, i.e., ifA always stops
and outputs the correct answer, thenpA(x) = F(x) for all x ∈ S, and thuspA

representsF. If A has bounded error, then 0≤ pA(x) ≤ 1/3 if F(x) = 0 and
2/3 ≤ pA(x) ≤ 1 if F(x) = 1, and thuspA approximatesF. The degree ofpA is at
most twice the number of queries used by algorithmA. Consequently, the degree
of a function is a lower bound on the quantum query complexity, up to a factor of
two.

Corollary 11 (Polynomial method [9]). For any partial boolean function F:
S → {0,1}, where S ⊆ {0,1}N, we have QE(F) ≥ deg(F)/2 and Q2(F) ≥
d̃eg(F)/2.

103 103

103 103

The Bulletin of the EATCS

95

8 Applying the polynomial method

The challenge in applying the polynomial method lies in the dimensionality of the
input. Typically, the method is applied by first identifying a univariate or bivariate
polynomial that captures essential properties of the problem, and then proving
a lower bound on the degree of that polynomial. The second part is typically
reasonably straightforward since polynomials have been studied for centuries and
much is known about their degrees. The possibly simplest nontrivial example is
whenF is the threshold functionThrt defined byThrt(x) = 1 if and only if |x| ≥ t.
It is easy to see that deg(Thrt) = Θ(N) for all nontrivial threshold functions, and
thusQE(Thrt) = Ω(N). Paturi [43] shows that̃deg(Thrt) = Θ

(√
(t + 1)(N − t + 1)

)
,

and we thus readily get thatQ2(Thrt) = Ω
(√

(t + 1)(N − t + 1)
)
, which is tight

by quantum counting [14, 9]. This degree argument extends to any symmetric
function F by writing F as a sum of threshold functions. The same tight lower
bounds for symmetric functions can also be obtained by the unweighted adversary
method (see the paragraph after Theorem 4).

For general non-symmetric functions, the polynomial method is, however, sig-
nificantly harder to apply. For problems that are “close” to being symmetric, we
can sometimes succeed in constructing a univariate or bivariate polynomial that
yields a non-trivial lower bound. The first and, in our view, most important such
a result was obtained by Aaronson in [1] in which he proves a lower bound of
Ω(N1/5) on any bounded-error quantum algorithm for the collision problem.

The collision problem is a non-boolean promise problem. The oracle is an
N-tuple of positive integers between 1 andM, which we think of as a function
X : [N] → [M]. We model the oracleO′′X so that a query to thei th entry of the
oracle returns the integerX(i). Specifically,O′′X takes as input|i, r; z〉 and outputs
|i, r ⊕X(i); z〉 where 0≤ r < 2m for m= dlog2(M+1)e, andr ⊕X(i) denotes bitwise
addition modulo 2. We are promised that eitherX is a one-to-one function, orX
is two-to-one, and the goal is to determine which is the case.

The result of Aaronson was shortly after improved by Shi [47] toΩ(N1/4) for
general functionsX : [N] → [M], and toΩ(N1/3) in the case the range is larger
than the domain by a constant factor,M ≥ 3

2N. The lower bounds of Aaronson
and Shi appears as a joint article [7]. Finally, Kutin [36] and Ambainis [6] inde-
pendently found remedies for the technical limitations in Shi’s proof, yielding an
Ω(N1/3) lower bound for all functions, which is tight by an algorithm that uses
Grover search on subsets by Brassard, Høyer, and Tapp [13].

The best lower bound for the collision problem that can be obtained using the
adversary method is only a constant, since any one-to-one function is of large
Hamming distance to any two-to-one function. Koiran, Nesme, and Portier [34]
use the polynomial method to prove a lower bound ofΩ(logN) for Simon’s prob-
lem [48], which is tight [48, 12]. Simon’s problem is a partial boolean function

104 104

104 104

BEATCS no 87 THE EATCS COLUMNS

96

having properties related to finite abelian groups. Also for this problem, the best
lower bound that can be obtained using the adversary method is a constant.

In contrast, for anytotal boolean functionF : {0,1}N → {0,1}, the adversary
and polynomial method are both polynomially related to block sensitivity,√

bs(F)/6 ≤ d̃eg(F) ≤ deg(F) ≤ bs3(F) (14)√
bs(F) ≤ Adv(F) ≤ bs2(F). (15)

It follows from [19] that deg(F) ≤ bs3(F), and from Nisan and Szegedy [41] that
6d̃eg(F)2 ≥ bs(F). Buhrman and de Wolf [19] provides an excellent survey of
these and other complexity measures of boolean functions.

The polynomial lower bound is known to be inferior to the weighted adversary
method for some total boolean functions. In [4], Ambainis gives a boolean func-
tion F : {0,1}4 → {0,1} on four bits, which can be described as “the four input
bits are sorted” [37], for which deg(F) = 2 and for which there exists an adversary
matrixΓF satisfying thatλ(ΓF)/maxi λ(ΓF

i) = 2.5. We compose the function with
itself and obtain a boolean functionF2 = F◦(F, F, F, F) : {0,1}16→ {0,1} defined
on 16 bits for which deg(F2) = 4, and for whichλ(ΓF2)/maxi λ(ΓF2

i) = 2.52, by
the composition theorem. Iteratingn times, yields a functionF on N = 4n bits of
degree deg(F) = 2n, with spectral lower bound 2.5n = deg(F)1.32..., by the com-
position theorem. The thus constructed functionF is an example of an iterated
function of low degree and high quantum query complexity. It is the currently
biggest known gap between the polynomial method and the adversary method for
a total function. Another iterated total function for which the adversary methods
yield a lower bound better than the degree, is the function described by “all three
input bits are equal” [4].

The polynomial method is very suitable when considering quantum algorithms
computing functions with errorε that is sub-constant, whereas the adversary
method is not formulated so as to capture such a fine-grained analysis. Buhrman,
Cleve, de Wolf, and Zalka [10] show that any quantum algorithm for Grover’s
problem that succeeds in finding an indexi for which xi = 1 with probability
at least 1− ε, provided one exists, requiresΩ(

√
N log(1/ε)) queries to the oracle.

A possibly more familiar example is that any polynomial approximating the parity
function with any positive biasε > 0 (as opposed to bias16 where1

6 =
2
3 −

1
2) has

degreeN, since any such polynomial gives rise to a univariate polynomial of no
larger degree withN roots. Hence, any quantum algorithm computing the parity
function with arbitrary small biasε > 0 requiresN/2 queries to the oracle, which
is tight.

A useful property of representing polynomials is that they compose. Ifp is
a polynomial representing a functionF, and polynomialsq1,q2, . . . ,qk represent
functionsG1, . . . ,Gk, thenp◦ (q1, . . . ,qk) representsF ◦ (G1, . . . ,Gk), when well-

105 105

105 105

The Bulletin of the EATCS

97

defined. This composition property does not hold for approximating polynomials:
if each sub-polynomialqi takes the value 0.8, say, then we cannot say much about
the valuep(0.8, . . . ,0.8) since the value ofpon non-integral inputs is not restricted
by the definition of being an approximating polynomial. To achieve composition
properties, we require that the polynomials are insensitive to small variations of
the input bits. Buhrman, Newman, Röhrig, and de Wolf give in [15] a definition
of such polynomials, and refer to them as being robust.

Definition 12 (Robust polynomials [15]).An approximate N-variate polynomial
p is robuston S ⊆ {0,1}N if |p(y) − p(x)| ≤ 1

3 for every x∈ S and y∈ <M such
that |yi − xi | ≤

1
3 for every i= 1, . . . ,M. Therobust degreeof a boolean function

F : S → {0,1}, denotedrdeg(F), is the minimal degree of a robust polynomial
approximating F.

Robust polynomials compose by definition. Buhrman et al. [15] show that
the robust degree of any total functionF : {0,1}N → {0,1} is O(N) by giving
a classical algorithm that uses a quantum subroutine for Grover’s problem [27]
which is tolerant to errors, due to Høyer, Mosca, and de Wolf [29]. Buhrman
et al. [15] also show that rdeg(F) ∈ O(d̃eg(F) logd̃eg(F)) by giving a construction
for turning any approximating polynomial into a robust polynomial at the cost of
at most a logarithmic factor in the degree ofF. This implies that for any composite
functionH = F ◦ (G, . . . ,G), we havẽdeg(H) ∈ O(d̃eg(F)d̃eg(G) logd̃eg(F)). It is
not known whether this is tight. Neither is it known if the approximate degree of
H can be significantly smaller than the product of the approximate degrees ofF
andG. The only known lower bound on the approximate degree ofH is the trivial
boundΩ(d̃eg(F) + d̃eg(G)).

An and-or tree of depth two is a composed functionF ◦ (G, . . . ,G) in which
the outer functionF is the logical AND of

√
N bits, and the inner functionG is the

logical OR of
√

N bits. By the unweighted adversary method, computing and-or
trees of depth two requiresΩ(

√
N) queries. Høyer, Mosca, and de Wolf [29] give

a bounded-error quantum algorithm that usesO(
√

N) queries, which thus is tight.
The existence of that algorithm implies that there exists an approximating poly-
nomial for and-or tree of depth two of degreeO(

√
N). No other characterization

of an approximating polynomial for and-or trees of depth two of degreeO(
√

N)
is currently known. The best known lower bound on the approximate degree of
and-or trees of depth two isΩ(N1/3), up to logarithmic factors inN, by a folklore
reduction from the element distinctness problem on

√
N integers [7].

106 106

106 106

BEATCS no 87 THE EATCS COLUMNS

98

9 Concluding remarks

We have been focusing on two methods for proving lower bounds on quantum
query complexity: the adversary method and the polynomial method. Adversary
lower bounds are in general easy to compute, but are limited by the certificate
complexity. Known lower bounds are constructed by identifying hard input pairs,
finding weights accordingly, and computing either the spectral norm of some ma-
trices, or applying the weighted method. Polynomial lower bounds may yield
stronger bounds, but are hard to prove. Known lower bounds by the polynomial
methods are constructed by identifying symmetries within the problem, reducing
the number of input variables to one or two, and proving a lower bound on the
degree of the reduced polynomial.

Barnum, Saks, and Szegedy give in [17] a third lower bound method that ex-
actly characterizes the quantum query complexity, but this strength turns out also
to be its weakness: it is very hard to apply and every known lower bound obtained
by the method can also be shown by one of the other two methods. In a very
recent work, Ambainis [5] extends the adversary method and uses it to reprove a
strong direct product theorem by Klauck, Špalek, and de Wolf [35] obtained by
techniques that include the polynomial method. Klauck et al. [35] show that their
strong direct product theorem implies good quantum time-space tradeoffs, includ-
ing a quantum lower bound ofT2 · S = Ω(N3) for sorting. A significant body of
work have been conducted on lower bounds on communication complexity, pri-
marily using the polynomial method. We refer to de Wolf’s excellent survey [55]
as a possible starting point.

There is a range of problems for which we do not currently know tight quan-
tum query bounds. One important example is binary and-or trees of logarithmic
depth. A binary and-or tree onN = 4n variables is obtained by iterating the
function F(x1, x2, x3, x4) = (x1 ∧ x2) ∨ (x3 ∧ x4) in total n times. The classical
query complexity for probabilistic algorithms isΘ(N0.753) [52, 49, 45]. No better
bounded-error quantum algorithm is known. The best known lower bound on the
quantum query complexity isΩ(

√
N) by embedding the parity function on

√
N

bits and noting that the parity function has linear query complexity, which can be
shown by either method.

Magniez, Santha, and Szegedy give in [40] a quantum algorithm for deter-
mining if a graph onN vertices contains a triangle which usesO(N1.3) queries to
the adjacency matrix. The best known lower bound isΩ(N) by the unweighted
adversary method, and has been conjectured not to be tight [4]. The problem of
triangle-identification is an example of a graph property, which is a set of graphs
closed under isomorphism. Sun, Yao, and Zhang [53] show that there exists a
non-trivial graph property of quantum query complexityO(

√
N), up to logarith-

mic factors inN.

107 107

107 107

The Bulletin of the EATCS

99

Gasarch, in a survey on private information retrieval, published in this Com-
putational Complexity Column in the Bulletin [26], writes: “A field is interesting
if it answers a fundamental question, or connects to other fields that are interest-
ing, or uses techniques of interest.” It is our hope that the reader will find that thus
surveyed area of quantum lower bounds fulfills each of those three criteria.

Acknowledgments

We thank Michal Koucký and Kolja Vereshchagin for discussions on the proof of
the spectral adversary bound.

References

[1] S. Aaronson. Quantum lower bound for the collision problem. InProceedings of
34th ACM Symposium on Theory of Computing, pages 635–642, 2002.

[2] S. Aaronson. Lower bounds for local search by quantum arguments. InProceedings
of 36th ACM Symposium on Theory of Computing, pages 465–474, 2004.

[3] A. Ambainis. Quantum lower bounds by quantum arguments.Journal of Computer
and System Sciences, 64:750–767, 2002.

[4] A. Ambainis. Polynomial degree vs. quantum query complexity. InProceedings
of the 44th IEEE Symposium on Foundations of Computer Science, pages 230–239,
2003.

[5] A. Ambainis. A new quantum lower bound method, with an application to strong
direct product theorem for quantum search. quant-ph/0508200, 2005.

[6] A. Ambainis. Polynomial degree and lower bounds in quantum complexity: Col-
lision and element distinctness with small range.Theory of Computing, 1:37–46,
2005.

[7] S. Aaronson and Y. Shi. Quantum lower bounds for the collision and the element
distinctness problems.Journal of the ACM, 51(4):595–605, 2004.

[8] H. Bennett, E. Bernstein, G. Brassard, and U. Vazirani. Strengths and weaknesses
of quantum computing.SIAM Journal on Computing, 26(5):1510–1523, 1997.

[9] R. Beals, H. Buhrman, R. Cleve, M. Mosca, and R. de Wolf. Quantum lower bounds
by polynomials.Journal of the ACM, 48(4):778–797, 2001.

[10] H. Buhrman, R. Cleve, R. de Wolf, and Ch. Zalka. Bounds for small-error and
zero-error quantum algorithms. InProceedings of the 40th IEEE Symposium on
Foundations of Computer Science, pages 358–368, 1999.

[11] R. Beigel. The polynomial method in circuit complexity. InProceedings of the 8th
Annual Structure in Complexity Theory Conference, IEEE Computer Society Press.
pages 82–95, 1993.

108 108

108 108

BEATCS no 87 THE EATCS COLUMNS

100

[12] Gilles Brassard and Peter Høyer. An exact quantum polynomial-time algorithm for
Simon’s problem. InProceedings of Fifth Israeli Symposium on Theory of Comput-
ing and Systems, pages 12–23, 1997.

[13] G. Brassard, P. Høyer, and A. Tapp. Quantum algorithm for the collision problem.
SIGACT News, 28:14–19, 1997.

[14] G. Brassard, P. Høyer, M. Mosca, and A. Tapp. Quantum amplitude amplification
and estimation. InQuantum Computation and Quantum Information: A Millennium
Volume, AMS Contemporary Mathematics Series, Volume 305, 2002.

[15] H. Buhrman, I. Newman, H. Röhrig, and R. de Wolf. Robust quantum algorithms
and polynomials. InProceedings of 22nd International Symposium on Theoretical
Aspects of Computer Science, Lecture Notes in Computer Science 3404, 593–604,
2005.

[16] H. Barnum and M. Saks. A lower bound on the quantum query complexity of read-
once functions.Journal of Computer and Systems Sciences, 69(2):244–258, 2004.

[17] H. Barnum, M. Saks, and M. Szegedy. Quantum query complexity and semi-definite
programming. InProceedings of the 18th IEEE Conference on Computational Com-
plexity, pages 179–193, 2003.

[18] C. H. Bennett and S. J. Wiesner. Communication via one- and two-particle operators
on Einstein-Podolsky-Rosen states.Physical Review Letters, 69(20):2881–2884,
1992.

[19] H. Buhrman and R. de Wolf. Complexity measures and decision tree complexity: A
survey.Theoretical Computer Science, 288(1):21–43, 2002.

[20] R. Cleve, W. van Dam, M. Nielsen, and A. Tapp. Quantum entanglement and the
communication complexity of the inner product function. InProceedings of the 1st
NASA QCQC conference, Lecture Notes in Computer Science 1509, pages 61–74,
1998.

[21] Ch. Dürr, M. Heiligman, P. Høyer, and M. Mhalla. Quantum query complexity
of some graph problems. InProceedings of 31st International Colloquium on Au-
tomata, Languages and Programming, Lecture Notes in Computer Science 3142,
pages 481–493, 2004.

[22] D. Deutsch and R. Jozsa. Rapid solution of problems by quantum computation.
Proceedings of the Royal Society, London, A439:553–558, 1992.

[23] M. Ettinger and P. Høyer, and E. Knill. The quantum query complexity of the hid-
den subgroup problem is polynomial.Information Processing Letters, 91(1):43-48,
2004.

[24] E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser.Invariant quantum algorithms
for insertion into an ordered list. quant-ph/9901059, 1999.

[25] L. Fortnow and J. D. Rogers. Complexity limitations on quantum computation.
Journal of Computer and System Sciences, 59(2):240–252, 1999.

109 109

109 109

The Bulletin of the EATCS

101

[26] W. Gasarch. A survey on private information retrieval. The computational complex-
ity column, in theBulletin of the EATCS, 82:72–107, 2004.

[27] L. K. Grover. A fast quantum mechanical algorithm for database search. InPro-
ceedings of 28th ACM Symposium on Theory of Computing, pages 212–219, 1996.

[28] D. Gross. The Future of Physics.CERN Colloquium, January 26, 2005. CERN,
Switzerland.

[29] P. Høyer, M. Mosca, and R. de Wolf. Quantum search on bounded-error inputs. In
Proceedings of 30th International Colloquium on Automata, Languages and Pro-
gramming, Lecture Notes in Computer Science 2719, pages 291–299, 2003.

[30] P. Høyer, J. Neerbek, and Y. Shi. Quantum complexities of ordered searching, sort-
ing, and element distinctness.Algorithmica, 34(4):429–448, 2002.

[31] A. S. Holevo. Bounds for the quantity of information transmitted by a quantum
communication channel.Problemy Peredachi Informatsii, 9(3):3–11, 1973. English
translation isProblems in Information Transmission, 9:177–183, 1973.

[32] P. Høyer and R. Špalek.Tight adversary bounds for composite functions. quant-
ph/0509067, 2005.

[33] M. B. Jacokes, A. J. Landahl, and E. Brookes.An improved quantum algorithm for
searching an ordered list. Manuscript, 2005.

[34] P. Koiran, V. Nesme and N. Portier. A quantum lower bound for the query com-
plexity of Simon’s problem. InProceedings of 32nd International Colloquium on
Automata, Languages and Programming, Lecture Notes in Computer Science 3580,
pages 1287–1298, 2005.

[35] H. Klauck, R. Špalek, and R. de Wolf. Quantum and classical strong direct prod-
uct theorems and optimal time-space tradeoffs. In Proceedings of the 45th IEEE
Symposium on Foundations of Computer Science, pages 12–21, 2004.

[36] S. Kutin. Quantum lower bound for the collision problem with small range.Theory
of Computing, 1:29–36, 2005.

[37] S. Laplante, T. Lee, and M. Szegedy. The quantum adversary method and formula
size lower bounds. InProceedings of 20th IEEE Conference on Computational
Complexity, 2005.

[38] S. Laplante and F. Magniez. Lower bounds for randomized and quantum query
complexity using Kolmogorov arguments. InProceedings of 19th IEEE Conference
on Computational Complexity, pages 294–304, 2004.

[39] R. Mathias. The spectral norm of a nonnegative matrix.Linear Algebra and its
Applications, 139:269–284, 1990.

[40] F. Magniez, M. Santha, and M. Szegedy. Quantum algorithms for the triangle prob-
lem. InProceedings of 16th ACM-SIAM Symposium on Discrete Algorithms, pages
1109–1117, 2005.

110 110

110 110

BEATCS no 87 THE EATCS COLUMNS

102

[41] N. Nisan and M. Szegedy. On the degree of boolean functions as real polynomials.
In Proceedings of 24th ACM Symposium on Theory of Computing, pages 462–467,
1992.

[42] A. Nayak and F. Wu. The quantum query complexity of approximating the me-
dian and related statistics. InProceedings of 31st ACM Symposium on Theory of
Computing, pages 384–393, 1999.

[43] R. Paturi. On the degree of polynomials that approximate symmetric boolean func-
tions (preliminary version). InProceedings of the 24th ACM Symposium on Theory
of Computing, pages 468–474, 1992.

[44] K. Regan. Polynomials and combinatorial definitions of languages. InComplexity
Theory Retrospective II, Springer-Verlag, pages 261–293, 1997.

[45] M. Santha. On the Monte Carlo decision tree complexity of read-once formulae.
Random Structures and Algorithms, 6(1):75–87, 1995.

[46] Ch. Seife. “What are the limits of conventional computing?”Science, 309(5731):96,
1 July 2005.

[47] Y. Shi. Quantum lower bounds for the collision and the element distinctness prob-
lems. InProceedings of the 43rd Annual Symposium on the Foundations of Com-
puter Science, pp. 513-519, 2002.

[48] D. R. Simon. On the power of quantum computation.SIAM Journal on Computing,
26(5):1474–1483, 1997.

[49] M. Snir. Lower bounds on probabilistic decision trees.Theoretical Computer Sci-
ence, 38:69–82, 1985.

[50] M. Santha and M. Szegedy. Quantum and classical query complexities of local
search are polynomially related. InProceedings of the 36th ACM Symposium on
Theory of Computing, pages 494–501, 2004.

[51] R. Špalek and M. Szegedy. All quantum adversary methods are equivalent. In
Proceedings of 32nd International Colloquium on Automata, Languages and Pro-
gramming, Lecture Notes in Computer Science 3580, pages 1299–1311, 2005.

[52] M. Saks and A. Wigderson. Probabilistic boolean decision trees and the complex-
ity of evaluating games trees. InProceedings of the 27th Annual Symposium on
Foundations of Computer Science, pages 29–38, 1986.

[53] X. Sun, A. C. Yao, and S. Zhang. Graph properties and circular functions: How low
can quantum query complexity go? InProceedings of 19th IEEE Conference on
Computational Complexity, pages 286–293, 2004.

[54] L. G. Valiant. Three problems in computer science.Journal of Association of Com-
puting Machinery, 50(1):96–99, 2003.

[55] R. de Wolf. Quantum communication and complexity.Theoretical Computer Sci-
ence, 287(1): 337–353, 2002.

111 111

111 111

The Bulletin of the EATCS

103

[56] Ch. Zalka. Grover’s quantum searching algorithm is optimal.Physical Review A,
60:2746–2751, 1999.

[57] S. Zhang. On the power of Ambainis’s lower bounds. InProceedings of 31st Inter-
national Colloquium on Automata, Languages and Programming, Lecture Notes in
Computer Science 3142, pages 1238–1250, 2004.

[58] S. Zhang.(Almost) tight bounds for randomized and quantum local search on hy-
percubes and grids. quant-ph/0504085, 2005.

112 112

112 112

104

T C C


L A

BRICS, Department of Computer Science
Aalborg University, 9220 Aalborg Ø, Denmark

Dept. of Computer Science, School of Science and Engineering
Reykjavik University, 103 Reykjavik, Iceland

luca@{cs.auc.dk,ru.is}, http://www.cs.auc.dk/~luca/BEATCS

Concurrency theory is home to a plethora of formalisms for the description of
reactive systems, and even when focusing on a single model of concurrent
computation there is a wide choice of possible notions of observable beha-
viour that can be used to induce a notion of “process equivalence” over it—as
witnessed, for instance, by van Glabbeek’s linear time-branching time spec-
trum. This multiplicity of possible semantic views of concurrent computation
requires the development of tools that we can use to put some structure into
it. I believe that expressiveness results play a fundamental role in concurrency
theory, since they offer a powerful, formal way of understanding the relation-
ships amongst models and formalisms for concurrent computation, and their
relative computational power.

This contribution to the concurrency column studies the expressiveness
of two approaches to the description of infinite behaviours in process calculi
like ACP, CCS, CSP and various flavours of the π-calculus, namely recursion
and replication. More specifically, Catuscia Palamidessi and Frank Valencia
offer a unified presentation of work on the relative expressiveness of recursion
and replication in CCS, the π-calculus, and the Ambient calculus. They also
overview the work on this subject in less established calculi such as tcc and
calculi for cryptographic protocols.

I trust that this piece will make some very interesting, recent work by Catus-
cia, Frank and others on the expressiveness of facilities for the description of
infinite behaviours accessible to the concurrency theory community at large.
Enjoy it!

113 113

113 113

The Bulletin of the EATCS

105

As some of the readers of this column might have already noticed, I have
been maintaining a Process Algebra Diary on the web for about eighteen
months now. Those of you who are interested in following my irregular post-
ings are invited to have a look at

http://www.cs.aau.dk/~luca/PA-DIARY/.

Comments and guest postings are most welcome.

R  R  P C:
E∗

Catuscia Palamidessi
INRIA Futurs and LIX, École Polytechnique
catuscia@lix.polytechnique.fr

Frank D. Valencia
CNRS and LIX, École Polytechnique
fvalenci@lix.polytechnnique.fr

1 Introduction

Process calculi such as CCS [12], theπ-calculus [14] and Ambients [6] are among
the most influential formal methods for modelling and analyzing the behaviour of
concurrent systems; i.e. systems consisting of multiple computing agents, usually
calledprocesses, that interact with each other. A common feature of these calculi
is that they treat processes much like theλ-calculus treats computable functions.
They provide a language in which the structure oftermsrepresents the structure
of processes together with anoperational semanticsto represent computational
steps. Another common feature, also in the spirit of theλ-calculus, is that they
pay special attention to economy. That is, there are few process constructors, each
one with a distinct and fundamental role.

For example, a typical process term is theparallel composition P| Q, which is
built from the termsP andQ with the constructor| and it represents the process

∗Supported by the Project Rossignol of the ACI Sécurité Informatique (Ministère de la recher-
che et nouvelles technologies)

114 114

114 114

BEATCS no 87 THE EATCS COLUMNS

106

that results from the parallel execution of the processesP andQ. Another typical
term is therestriction(νx)P which represents a processP with a private resource
x—e.g., a location, a link, or a name. An operational semantics may dictate that
if P can reduce to (or evolve into)P′, writtenP −→ P′, then we can also have the
reductionsP | Q −→ P′ | Q and (νx)P −→ (νx)P′.

Infinite behaviour is ubiquitous in concurrent systems (e.g., browsers, search
engines, reservation systems). Hence, it ought to be represented by process terms.
Two standard term representations of them arerecursive process expressionsand
replication.

Recursive process expressions are reminiscent of the recursive expressions
used in other areas of computer science, such as for example Functional Pro-
gramming. They may come in the formµX.P whereP may have occurrences of
X. The processµX.P behaves asP with the (free) occurrences ofX replaced by
µX.P. Another presentation of recursion is by usingparametric processesof the
form A(y1, . . . , yn) each assumed to have a unique, possibly recursive,definition

A(x1, . . . , xn)
def
= P where thexi ’s are pairwise distinct, and the intuition is that

A(y1, . . . , yn) behaves as itsP with eachyi replacingxi .

Replication, syntactically simpler than recursion, takes the form !P and it is re-
miniscent of Girard’s bang operator; an operator used to express unlimited number
of copies of a given resource in linear-logic [8]. Intuitively, !P meansP | P | · · · ;
an unbounded number of copies of the processP.

Now, it is not uncommon that a given process calculus, originally presented
with one form of defining infinite behavior, is later presented with the other. For
example, theπ-calculus was originally presented with recursive expressions and
later with replication [16]. The Ambient calculus was originally presented with
replication and later with recursion [11]. This is reasonable as a variant may
simplify the presentation of the calculus or be tailored to specific applications.

From the above intuitive description it should be easy to see thatµX.(P | X) ex-
presses the unbounded parallel behaviour of !P. It is less clear, however, whether
replication can be used to express the unbounded behaviour ofµX.P. In particular,
processes that allows for unboundedly manynestedrestrictions as, for example,
in µX.(νx)(P | X) which behaves as (νx)(P | (νx)(P | (νx)(P | · · ·))). In fact, the
ability of expressing recursive behaviours via replication depends on the particular
process calculus under consideration.

The above discussion raises the issue ofexpressiveness. What does it mean for
one variant to be as expressive as another ? The answer to this question is definite
in the realm of computability theory via the notion of language equivalence. In
concurrency theory, however, this issue is not quite settled.

One approach to comparing expressiveness of two given process calculus vari-
ants is by comparing them w.r.t. some standard process equivalence, say∼. If for

115 115

115 115

The Bulletin of the EATCS

107

every processP in one variant there is aQ in the other variant such thatQ ∼ P
then we say that the latter variant is at least as expressive as the former.

Another approach consists in telling two variants apart by showing that in one
variant one can solve some fundamental problem (e.g., leader election) while in
the other one cannot. It should be noticed that, unlike computability theory, the
capability of two variants of simulating Turing Machines does not imply equality
in their expressiveness. For example, [18] shows that under some reasonable as-
sumptions the asynchronous version of theπ-calculus, which can certainly encode
Turing Machines, is strictly less expressive than the original calculus.

In this paper, we shall discuss the work on the relative expressiveness of Recur-
sion and Replication in various process calculi. In particular, CCS, theπ-calculus,
and the Ambient calculus. We shall begin with theπ-calculus, then CCS and then
the Ambients calculus. For the simplicity of the presentation we shall consider the
polyadic variant of theπ-calculus [13]. Finally, we shall also overview the work
on this subject in related calculi such as tcc [19] and calculi for Cryptographic
Protocols [10].

2 The Polyadic Pi Calculus:pπ

One of the earliest discussions about the relative expressiveness between replica-
tion and recursion was in the context of the polyadicπ-calculus [13]; one of the
main calculi for mobility. It turns out that in this calculus replication is just as
expressive as recursion. This results was rather surprising since replication seems
such an elementary construct without much control power.

In what follows we shall introduce the polyadicπ-calculus and the variants
relevant for this paper. The various CCS and Ambients variants will be presented
in the next sections as extension/restrictions of the polyadicπ-calculus.

2.1 Finite Pi-calculus

Namesare the most primitive entities in theπ-calculus. We presuppose a count-
able set of (port, links or channel)names, ranged over byx, y, For each name
x, we assume aco-namex thought of ascomplementary, so we decree thatx = x.
We shall usel, l′, . . . to range over names and co-names. We use~x to denote a fi-
nite sequence of namesx1x2 · · · xn. The other entity in theπ-calculus is aprocess.
Process are built from names by the following syntax:

116 116

116 116

BEATCS no 87 THE EATCS COLUMNS

108

P,Q, . . . :=
∑
i∈I

αi .Pi | (νx)P | P | Q (1)

α := x~y | x(~y)

whereI is a finite set of indexes.
Let us recall briefly some notions as well as the intuitive behaviour of the

various constructs.
The construct

∑
i∈I αi .Pi represents a process able to perform one–but only

one–of itsαi ’s actions and then behave as the correspondingPi. The actions pre-
fixing thePi ’s can be of two forms: An outputxy1 · · · yn and an inputx(y1 · · · yn).
In both casesx is called thesubjectandy1 · · · yn the object. The actionx~y rep-
resents the capability of sending the names~y on channelx. The actionx(~y), with
~y = y1, · · · , ym and no name occurring twice in~y, represents the capability of re-
ceiving the names on channelx, sayz1 · · · zm, and replacing eachyi with zi in its
corresponding continuation.

Furthermore, inx(~y).P the input actions binds the names~y in P. The other
name binder is therestriction (νx)P which declares a namex private toP, hence
bound inP. GivenQ we define in the standard way itsbound names bn(Q) as the
set of variables with a bound occurrence inQ, and itsfree names fn(Q) as the set
of variables with a non-bound occurrence inQ.

Finally, the processP | Q denotesparallel composition; P andQ running in
parallel.

Convention 2.1. We write the summation as0 if |I | = 0, and drop the “
∑

i∈I ” if
|I | = 1. Also we writeπ1.P1 + · · · + πn.Pn for

∑
i∈{1,...,n} πi .Pi.

For simplicity, we omit “()” in processes of the form x().P as well as the
“ .0” in processes of the form x(~y).0. We use(νx1x2 · · · xn)P as an abbreviation
(νx1)(νx2) · · · (νxn)P and

∏
i∈I Pi, where I = {i1, . . . , in}, as an abbreviation of

Pi1 | · · · | Pin. Furthermore, Pσ, whereσ = {z1/y1, . . . , zn/yn}, denotes the proc-
ess that results from the substitution in P of each zi for yi, applyingα-conversion
wherever necessary to avoid captures.

Reduction Semantics of Finite Processes.The above intuition about process
behaviour is made precise by the rules in Table 1. Thereductionrelation −→ is
the least binary relation on processes satisfying the rules in Table 1. The rules are
easily seen to realize the above intuition.

We shall use−→∗ to denote the reflexive, transitive closure of−→. A re-
duction P −→ Q basically says thatP can evolve, after some communication
between its subprocesses, intoQ. The reductions are quotiented by thestructural
congruencerelation≡ which postulates some basic process equivalences.

117 117

117 117

The Bulletin of the EATCS

109

Definition 2.2 (Structural Congruence). Let≡ be the smallest congruence over
processes satisfying the following axioms:

1. P≡ Q if P and Q differ only by a change of bound names (α-equivalence).

2. P | 0 ≡ P, P | Q ≡ Q | P, P | (Q | R) ≡ (P | Q) | R.

3. If x < fn(P) then(νx)(P | Q) ≡ P | (νx)Q.

4. (νx)0 ≡ 0, (νx)(νy)P ≡ (νy)(νx)P.

REACT:
(· · · + x z1 · · · zn.P) | (· · · + x(y1 · · · yn).Q) −→ P | Q{z1/y1, . . . , zn/yn}

PAR:
P −→ P′

P | Q −→ P′ | Q
RES:

P −→ P′

(νx)P −→ (νx)P′

STRUCT:
P ≡ P′ −→ Q′ ≡ Q

P −→ Q

Table 1: Reductions Rules.

2.2 Infinite Processes in the Polyadic Pi-Calculus

In the literature there are at least two alternatives to extend the above syntax to
express infinite behavior. We describe them next.

Pi with Parametric Recursive Definitions: pπD

A typical way of specifying infinite behavior is by using parametric recursive
definitions [14]. In this case we extend the syntax of finite processes (Equation 1)
as follows:

P,Q, . . . := . . . | A(y1, . . . , yn) (2)

Here A(y1, . . . , yn) is an identifier (also call, or invocation) of arity n. We
assume that every such an identifier has a unique, possibly recursive,definition

A(x1, . . . , xn)
def
= P where thexi ’s are pairwise distinct, and the intuition is that

118 118

118 118

BEATCS no 87 THE EATCS COLUMNS

110

A(y1, . . . , yn) behaves as itsP with eachyi replacingxi . We shall presuppose fi-

nitely many such definitions. Furthermore, for eachA(x1, . . . , xn)
def
= P we require

fn(P) ⊆ {x1, . . . , xn}. (3)

The reduction semantics of the extended processes is obtained simply by ex-
tending the structural congruence≡ in Definition 2.2 with the following axiom:

A(y1, . . . , yn) ≡ P[y1, . . . , yn/x1, . . . , xn] if A(x1, . . . , xn)
def
= P. (4)

As usualP[y1 . . . yn/x1 . . . xn] results from syntactically replacing every free
occurrence ofxi with yi and by applyingnameα-conversion, wherever needed to
avoid capture.

We shall usepπD to denote the polyadicπ-calculus with parametric recursive
definitions with the above syntactic restrictions.

Pi with Replication: pπ!

A simple way of expressing infinite behaviour in theπ-calculus is by using replic-
ation. We shall usepπ! to denote the polyadicπ-calculus with replication.

In the pπ! case, the syntax of finite processes (Equation 1) is extended as
follows:

P,Q, . . . := . . . | !P. (5)

Intuitively !P behaves asP | P | . . . | P | !P; unboundedly many copies ofP.
The reduction semantics forpπ! is obtained simply by extending the structural

congruence≡ in Definition 2.2 with the following axiom:

!P ≡ P | !P. (6)

Barbed Bisimilarity

We shall often state expressiveness results by claiming the existence of a process
in one calculus which is equivalent to some given process in another calculus. For
this purpose, here we recall a standard way of comparing processes. We shall use
pπ! to denote the calculus with replication.

Let us begin by recalling a basic notion of observation for theπ-calculus.
Intuitively, given l = x (l = x) we say that (the barb)l can beobservedat P,
written P ↓l , iff P can have an input (output) with subjectx. Formally,

119 119

119 119

The Bulletin of the EATCS

111

Definition 2.3 (Barbs). Define P↓x iff ∃~z, ~y,R : P ≡ (ν~z)(x~y.Q | R) and x is
not in~z. Similarly, P ↓x iff ∃~z, ~y,Q,R : P ≡ (ν~z)(x(~y).Q | R) and x is not in~z.
Furthermore, P⇓l iff ∃Q : P −→∗ Q ↓l .

Let us now recall the notion of barbed (weak) bisimilarity and congruence.
Remember that a processcontext Cin a given calculus is an expression with a
hole [.] such that placing a process in the hole produces a well-formed process
term in the calculus.

For technical purposes, we shall usepπD+! as the calculus whose process syn-
tax arises from extending the syntax of finite processes (Equation 1) with both
replication and recursive definitions. The reduction semantics ofpπD+! of the ex-
tended processes is obtained by extending the structural congruence≡ in Defini-
tion 2.2 with the axioms in Equations 4 and 6.

Definition 2.4 (Barbed Bisimilarity). A (weak) barbed-simulationis a binary
relationR satisfying the following:(P,Q) ∈ R implies that:

1. if P −→ P′ then∃Q′ : Q −→∗ Q′ ∧ (P′,Q′) ∈ R.

2. if P ↓l then Q⇓l .

The relationR is a barbed bisimulationiff bothR and its converseR−1 are
barbed -simulations. We say that P and Q are(weak) barbed bisimilariff (P,Q) ∈
R for some barbed bisimulationR. Furthermore, we say that P and Q are barbed
congruent, written P≈ Q, iff for each context C[·] in pπD+!, C[P] ∼ C[Q].

2.3 Recursive Definitions vs Replication in Pi

Here we recall a result stating that the variantspπ! andpπD can be regarded as
being equally expressive w.r.t (weak) barbed congruence≈ given in Definition
2.4. More precisely, the expressiveness criteria w.r.t to barbed congruence we
shall use in this section can be stated as follows.

Criteria 2.5. We say that aπ-calculus variant is as expressive as another iff for
every process P in the second variant one can construct a process[[P]] in the first
variant such that[[P]] is (weakly) barbed congruent to P.

All the results presented in this section are consequences of the expressiveness
results in [20].

120 120

120 120

BEATCS no 87 THE EATCS COLUMNS

112

From pπD to pπ! and back: Encodings

We shall now provide encodings from one variant into the other and state their
correctness. We shall say that a map [[]] is ahomomorphism for parallel com-
position iff [[P | Q]] = [[P]] | [[Q]]. The notion of homomorphism for the other
operators is defined analogously.

Definition 2.6. Let [[·]]0 be the map frompπD processes and recursive definitions
into pπ! processes given by:

[[0]] 0 = 0,

[[Ai(~xi)
def
= Pi]]0 = ! ai(~xi).[[Pi]]0,

[[Ai(~yi)]]0 = ai~yi ,

and for all other processes[[·]]0 is a homomorphism.

Let P be an arbitrarypπD process with{ A1(~xi)
def
= P1, . . . ,An(~xn)

def
= Pn }

as the set of recursive definitions of its process identifiers. Theencodingof P,
denoted[[P]] , is defined as

[[P]] = (νa1 · · · an)([[P]]0 |
∏

i∈{1,...,n}

[[Ai(~xi)
def
= Pi]]0)

where a1, . . . ,an < fn(P).

Intuitively, eachA(~y), with A(~x)
def
= P, is translated into a particlea~y which

excites a copy ofP (with ~y substituted for~x) by interacting with a replicated
resource, a provider of instances ofP, of the form !a(~x).[[P]]. The correctness of
the encoding is stated below.

Theorem 2.7. Let [[·]] be the encoding in Definition 2.6. For each P inpπD, P ≈
[[P]] .

Let us now give an encoding ofpπ! into pπD. The idea is simple: Each !P is

translated into a processAP, recursively defined asAP(~x)
def
= P | AP(~x) which can

provide an unbounded number of copies ofP.

Definition 2.8. Let [[·]]0 be the map frompπ! processes intopπ! processes given
by:

[[0]] = 0,

[[! P]] = AP(~x) where AP(~x)
def
= P | AP(~x) and fn(P) ⊆ {~x}

and for all other processes[[·]]0 is a homomorphism.

We can now state the correctness with respect to barbed congruence.

Theorem 2.9. Let [[·]] be the encoding in Definition 2.8. For each P inpπ!, P ≈
[[P]] .

121 121

121 121

The Bulletin of the EATCS

113

2.4 Recursion vs Replication in the Private Pi Calculus

The Privateπ-calculus [20] is a sub-calculus with a restricted form of communic-
ation. The idea is that onlybound-outputsare allowed; i.e, outputs of the form
(ν~z)x~z.P. Such bound-outputs are usually abbreviated asx(~z) assuming that no
name occur more than once in~z.

The above syntactic restriction results in a pleasant symmetry between input
and outputs in that they both can be seen as binders. Moreover, the restriction
ensures thatα-conversion is the only kind of substitution required in the calculus.
In fact, the rule REACT in Table 1, which applies a substitution to the continuation
of the input, can be replaced by the following rule:

x(~z).P | x(~z).P −→ (ν~z)(P | Q) (7)

Let us denote byPrivpπ! the calculus that results from applying topπ! the syn-
tactic restriction mentioned above. ThePrivpπD calculus is analogously defined
as a restriction onpπD except that we need an extra-condition to ensure thatα-
conversion is the only substitution needed in the calculus: In every invocation
A(~z), no name may occur more than once in the vector~z.

Now, if we wish an encoding [[·]] from Privpπ! into PrivpπD such that [[P]] ≈
P, we can simply take that of Definition 2.8 restricted to thePrivpπ! case. As
shown below, however, the above restriction makes impossible the existence of an
encoding fromPrivpπD into PrivpπD.

Consider for example the processP = A(z0) where

A(x)
def
= x(z).A(z).

The processP, in parallel with a suitableR, can perform a sequence of actions
where the subject of an action is the object of the next one. This kind of sequences
are calledlogical threads[20]. Moreover,P can perform the infinite logical thread
z0(z1).z1(z2).

Interestingly, as an application of the type theory forPrivpπ!, the results in
[20] state thatno process inPrivpπ! can exhibit an infinite logical thread. Together
with P above, this property ofPrivpπ! can be used to prove the following result.

Theorem 2.10.There is a process P inPrivpπD such that P0 Q for every Q in
Privpπ!.

Therefore, we cannot have an expressiveness result of the kind we have for
pπD andpπ! in the previous section. I.e., there is no encoding [[·]] from PrivpπD
processes intoPrivpπ! processes such that [[P]] ≈ P.

122 122

122 122

BEATCS no 87 THE EATCS COLUMNS

114

3 The Calculus of Communicating Systems (CCS)

Undoubtedly CCS [12], a calculus for synchronous communication, remains as a
standard representative of process calculi. In fact, many foundational ideas in the
theory of concurrency have sprung from this calculus. In the following we shall
consider some variants of CCS without relabelling operations.

3.1 Finite CCS

The finite CCS processes can be obtained as a restriction of the finite processes of
the Polyadicπ-calculus by requiring all inputs and outputs to have empty subjects
only. Intuitively, this means that in CCS there is no sending/receiving of links but
synchronization on them. (Notice that the ability of transmitting names is used
for the encoding of recursion into replication in Definition 2.6.) More, precisely,
the syntax of finite CCS processes is obtained by replacing the second line of
Equation (1) with

α := x | x | τ (8)

whereτ represents a distinguished action; thesilent action, with the decree that
τ = τ.

The (unlabelled) reduction relation−→ for finite CCS processes can be ob-
tained from that for theπ-calculus given in the previous section. However, since
α-conversion does not hold for one of the CCS variants we consider next, we find
it convenient to define−→ in terms of labelled reduction of CCS given in Table 2.
A transitionP

α
−→ Q says thatP can perform an actionα and evolve intoQ. The

reduction relation is then defined as−→
def
=

τ
−→.

SUM ∑
i∈I αi .Pi

α j
−→ P j

if j ∈ I RES
P

α
−→ P′

(νx)P
α
−→ (νx)P′

if α < {x, x}

PAR1
P

α
−→ P′

P | Q
α
−→ P′ | Q

PAR2
Q

α
−→ Q′

P | Q
α
−→ P | Q′

COM
P

α
−→ P′ Q

α
−→ Q′

P | Q
τ
−→ P′ | Q′

RED
P

τ
−→ Q

P −→ Q

Table 2: An operational semantics for finite CCS.

123 123

123 123

The Bulletin of the EATCS

115

3.2 Infinite CCS Processes

Both recursion and replication are found in the CCS literature in the forms we
saw for the polyadicπ-calculus. Nevertheless, as recursion in CCS comes in other
forms. Some forms of recursion exhibitdynamicname scoping while others, as
in theπ-calculus, havestaticname scoping. By dynamic scoping we mean that,
unlike the static case, the occurrence of a name can get dynamically (i.e., during
execution) captured under a restriction. Surprisingly, this will have an impact on
their relative expressiveness.

In the literature there are at least four alternatives to extend the above syntax
to express infinite behavior. We describe them next.

CCS with Parametric Definitions: CCSp

The processes of CCSp calculus are the finite CCS processes plus recursion using
parametric definition exactly as inpπD. So in particular we have the restriction on
parametric definitions in Equation 3. The calculus is the variant in [14]. The rules
for CCSp are those in Table 2 plus the rule:

CALL
PA[y1, . . . , yn/x1, . . . , xn]

α
−→ P′

A(y1, . . . , yn)
α
−→ P′

if A(x1, . . . , xn)
def
= PA (9)

As usualP[y1 . . . yn/x1 . . . xn] results from syntactically replacing every free oc-
currence ofxi with yi renaming bound names, i.e.,nameα-conversion, wherever
needed to avoid capture. (Of course ifn = 0, P[y1 . . . yn/x1 . . . xn] = P).

As shown in [14] in CCSp we can identify process expression differing only
by renaming of bound names; i.e.,nameα-equivalence—hence (νx)P is the same
as (νy)P[y/x].

Constant Definitions: CCSk

We now consider the CCS alternative for infinite behavior given in [12]. We refer
to identifiers with arity zero and their corresponding definitions asconstantand
constant(or parameterless) definitions, respectively. We omit the “()” inA().

GivenA
def
= P, requiring all names infn(P) to be formal parameters, as we did

in pπD (Equation 3), would be too restrictive—P would not have visible actions.
Consequently, let us drop the requirement to consider a fragment allowingonly
constant definitions butwith possible occurrence of free names in their bodies.
The rules for this fragments are those of CCSp.We shall refer to this fragment as
CCSk. In this case Rule CALL, which for CCSk we prefer to call CONS, takes the

124 124

124 124

BEATCS no 87 THE EATCS COLUMNS

116

form

CONS
P

α
−→ P′

A
α
−→ P′

if A
def
= P (10)

i.e., there is noα-conversion involved; thus allowing name captures. As illustrated
in the next section, this causes scoping to be dynamic andα-equivalence not to
hold. This is also the reason we cannot just take the reduction relation−→ of the
π-calculus restricted to CCSk processes as such a relation assumesα-conversion
due to the structural rule.

Recursion Expressions: CCSµ

Hitherto we have seen process expressions whose recursive behavior is specified
in an underlying set of definitions. It is often convenient, however, to have expres-
sions which can specify recursive behavior on their own. Let us now extend the
finite CCS processes to include such recursive expressions. The extended syntax
is given by:

P,Q, . . . := . . . | X | µX.P (11)

HereµX.P binds the occurrences of theprocess variable Xin P. As for bound
and free names, thebound variablesof P, bv(P) are those with a bound occur-
rence inP, and thefree variablesof P, f v(P) are those with a non-bound occur-
rence inP. An expression generated by the above syntax is said to be aprocess
(expression)iff it is closed (i.e., it contains no free variables). The processµX.P
behaves asP with the free occurrences ofX replaced byµX.P. Applying variable
α-conversions wherever necessary to avoid captures. The semanticsµX.P is given
by the rule:

REC
P[µX.P/X]

α
−→ P′

µX.P
α
−→ P′ (12)

We call CCSµ the resulting calculus. From [7] it follows that in CCSµ we can
identify processes up-to nameα-equivalence.

Remark 3.1 (Static and Dynamic Scope: Preservation ofα-Equivalence).
An interesting issue of the substitution [µX.P/X] applied toP is whether italso
requires the renaming ofbound namesin P to avoid captures (i.e.,nameα-
conversion). Such a requirement seems necessary should we want to identify
process up-toα-equivalence. In fact, the requirement gives CCSµ staticscope of
names. Let us illustrate this with an example.

125 125

125 125

The Bulletin of the EATCS

117

Example 3.2. ConsiderµX.P with P = (x | (νx)(x̄.t | X)). First, let us assume
we perform nameα-conversions to avoid captures. So, [µX.P/X] in P renames
the boundX by a fresh name, sayz, thus avoiding the capture ofP′s freez in the
replacement: I.e,

P[µX.P/X] = (x | (νz)(z̄.t | µX.P)) = (x | (νz)(z̄.t | µX.(x | (νx)(x̄.t | X))))

The reader may care to verify (using the rules in Table 2 plus Rule REC) thatt

will not be performed; i.e., there is noµX.P
α1
−→ P1

α2
−→ . . . s.t.αi = t.

Now let us assume that the substitution makes no nameα-conversion, thus
causing a free occurrence ofx in P, shown in a box below, to get bound,dynam-
ically in the scopeof the outermost restriction: I.e.,

P[µX.P/X] = (x | (νx)(x̄.t | µX.P)) = (x | (νx)(x̄.t | µX.(x | (νx)(x̄.t | X)))).

The reader can verify that nowt can eventually be performed. Such an execution
of t cannot be performed byµX.Q whereQ is (x | (νz)(z.t | X)) i.e, P with the
binding and bound occurrence ofx syntactically replaced withz. This shows that
nameα-equivalence does not hold in this dynamic scope case. �

It should be pointed out that using recursive expressions with no nameα-
conversion is in fact equivalent to using instead constant definitions as in the pre-
vious calculus CCSk. In fact, in presenting CCS, [12] uses alternatively both kinds
of constructions; using Rule REC, with no nameα-conversion, for one and Rule

CONS for the other. For example, by takingA
def
= P with P as in Example 3.2 one

can verify that in CCSk, A exhibits exactly the same dynamic scoping behavior il-
lustrated in the above example. So,nameα-equivalence does not hold in CCS.
Notice that the above observations imply some semantics differences between
CCS and theπ-calculus. The former does not satisfy nameα-equivalence be-
cause of the dynamic nature of name scoping—see Example 3.2. The latter uses
static scoping and satisfiesα-equivalence. �

Replication: CCS!

The processes of CCS! are those finite CCS processes plus replication exactly as
in pπ!. This variant is presented in [2]. In the context of CCS, this operators are
studied in [2,3,9].

The operational rules for CCS! are those in Table 2 plus the following rule:

REP
P | !P

α
−→ P′

!P
α
−→ P′ (13)

From [14] we know that in CCS! one can identify processes up to nameα-
equivalence.

126 126

126 126

BEATCS no 87 THE EATCS COLUMNS

118

3.3 Expressiveness Results for CCS

In this section we report results from [2, 3, 9] on the expressiveness for the CCS
variants above.

The following theorem summarizes the expressiveness of the various calculi
and it is an immediate consequence of the results in [2] and [9]. As for theπ-
calculus we compare expressiveness w.r.t. barbed congruence with the obvious
restriction to CCS contexts (see Criteria 2.5).

Theorem 3.3.The following holds for the CCS variants:

1. CCSk is exactly as expressive as CCSp w.r.t to barbed congruence.

2. CCSµ is exactly as expressive as CCS! w.r.t to barbed congruence.

3. The divergence problem (i.e., whether a given process P has an infinite se-
quence of−→ reductions) is undecidable for the calculi in (1) but decidable
for those in (2).

The results (1-3) are summarized in Figure 1. Let us now elaborate on the
significance and implications of the above results. A noteworthy aspect of (1) is
that any finite set of parametric (possibly mutually recursive) definitions can be
replaced by a set,finiteas well, of parameterless definitions . This arises as a result
of the restricted nature of communication in CCS (e.g., absence of mobility). Re-
lated to this result is that of [12] which shows that, in the context of value-passing
CCS, a parametric definition can be encoded using an set of constant definitions
and infinite sums. However, this set isinfinite.

Regarding (1) some readers may feel that given a processP with a parametric
definitionD, one could simply create as many constant definitions as permutations
of possible parameters w.r.t. the finite set of names inP and D. This would
not work for CCSp; the unfolding of call toD within a restriction may needα-
conversions to avoid name captures, thus generating new names (i.e., names not
in P nor D) during execution.

Regarding (2), we wish to recall the encoding [[·]] of CCSµ into CCS! which
resembles that of Definition 2.6 in the context of theπ-calculus.

Definition 3.4. The encoding[[·]] of CCSµ processes into CCS! is homomorphic
over all operators in the sub-calculus defining finite behavior and is otherwise
defined as follows:

[[Xi]] = x̄i

[[µXi .P]] = (νxi)(!xi .[[P]] | x̄i)

where the names xi ’s are fresh.

127 127

127 127

The Bulletin of the EATCS

119

The above encoding is correct w.r.t. barbed congruence, i.e., [[P]] ≈ P. It is
important to notice that it would not be correct had we adopted dynamic scoping
in the Rule REC for CCSk (see Remark 3.1). TheµX.P in Example 3.2 actually
gives us a counter-example.

Another noteworthy aspect of the results mentioned above is the distinction
between static and dynamic name scoping for the calculi under consideration.
Static scoping renders the calculus with recursion decidable,w.r.t. the divergence
problem, and no more expressive than the calculus with replication. In contrast,
dynamic scoping renders the calculus with constant definitions undecidable and
as expressive as that with parametric definitions. This is interesting since as dis-
cussed in Section 3.2 the difference between the calculi with static or dynamic
scoping is very subtle. Using static scoping for recursive expressions was dis-
cussed in the context of ECCS [7], an extension of CCS whose ideas lead to the
design of theπ-calculus [14].

It should be noticed that preservation of divergence is not a requirement for
equality of expressiveness w.r.t to barbed congruence sincebarbed congruence
does not preserve divergence. Hence, although the results in [2] prove that di-
vergence is decidable for CCS! (and undecidable for CCSp), it does not follow
directly from the arrows in Figure 1 that it is also decidable for CCSµ. The decid-
ability of the divergency problem for CCS! is proven in [9]

Finally, it is worth pointing out that, as exposed in [15], decidability of di-
vergence does not imply lack ofTuring expressiveness. In fact the authors in [3]
show that CCS! is Turing-complete. They do this by showing how construct, given
a two-counter machine, a process that can nondeterministically simulate such a
machine. Two-counter machines are standard Turing-complete devices.

Figure 1: Classification of CCS variants. An arrow fromX to Y indicates that for
everyP in Y one can construct a process [[P]] in X which is barbed congruent to
P. (Un)decidability is meant w.r.t. the existence of divergent computations

128 128

128 128

BEATCS no 87 THE EATCS COLUMNS

120

4 The Mobile Ambients Calculus

The calculus of Mobile Ambients is a formalism for the description of distrib-
uted and mobile systems in terms ofambients; i.e. a named collection of active
processes and nested sub-ambients.

The work in [4] studies the expressiveness of recursion versus replication in
Mobile Ambients. In particular, the authors of [4] study the expressive power
of ambient mobility in the (Pure) Mobile Ambients variants with replication and
recursion.

4.1 Finite Processes of Ambients

The Pure Ambient Calculus focuses on ambient and processes interaction. Unlike
theπ-calculus, it abstracts away from process communication.

The syntax of the finite processes can be derived from those of thepπ-calculus
by (1) introducing ambients, and the actions for ambient and processes interaction,
(2) eliminating the action for process communication and (3) restricting summa-
tions to have arity at most one. In summary, we obtain the following syntax:

P,Q, . . . := 0 | α.P | n[P] | (νx)P | P | Q (14)

α := in x | out x | open x

The intuitive behaviour of the ambientn[P] andα actions is better explained
after presenting the reduction semantics of Ambients. The intuitive behaviour of
the others constructs can be described exactly as in theπ-calculus.

Reduction Semantics of Finite Processes.Thereductionrelation−→ for Am-
bients can be obtained by adding the axiom (νn)(m[P]) ≡ m[(νn)P] if m, n to the
structural congruence in Definition 2.2 and the following rules for ambients and
process interaction to the rules of thepπ-calculus in Table 1:

1. n[in m.P | Q] | m[R] −→ m[n[P | Q] | R]

2. m[n[out m.P | Q]|R] −→ n[P | Q] | m[R]

3. open n.P | n[Q] −→ P | Q

4.
P −→ Q

n[P] −→ n[Q]

129 129

129 129

The Bulletin of the EATCS

121

Rules (1-3) describe ambients and their actions and Rule (4) simply says that
reduction can occur underneath ambients. Rule (1) describes how, by using thein
action, an ambient namedn can enter another ambient namedm. Similarly, Rule
(2) describes how an ambient namedn can exit another ambient namedmby using
theout action. Finally Rule (3) describes how a process can dissolve an ambient
boundary to access its contents by performing theopenaction over the namen of
the ambient.

4.2 Infinite Process of Ambients

Infinite behaviour in Ambients can be represented by using replication as inpπ!
or recursive expressions of the formµX.P.

The MA! calculus

The calculusMA! extends the syntax of the finite Ambients processes with !P. Its
reduction semantics−→ is obtained by adding the structural axiom !P ≡ P | !P
to the structural axioms of finite Ambients processes.

The MAr calculus

The calculusMAr extends the syntax of the finite Ambients processes with recurs-
ive expression of the formµX.P exactly as in CCSµ (Section 3.2). Its reduction
semantics−→ is obtained by adding the structural axiomµX.P ≡ P[µX.P/X] to
the structural axioms of finite Ambients processes.

Notice that the issue of the substitution [µX.P/X] applied toP we discussed in
Section 3.2 arises again: Whether the substitutionalso requiresthe renaming of
bound namesin P to avoid captures (i.e.,nameα-conversion). Such a requirement
seems necessary should we want to identify process up-toα-equivalence–which
is included in the structural congruence≡ for Ambients. The CCS examples in
Section 3.2 (see Remark 3.1) can easily be adapted here to illustrate that we obtain
dynamic scoping of names if we do not perform theα-conversion in the substitu-
tion.

It should be noticed that the above has not been completely clarified in the
literature of Ambients. In fact, it raises a technical issue in the results on express-
iveness which we shall recall in the next section.

Expressiveness Results

To isolate the expressiveness of restriction and ambient actions inMA! andMAr ,
[4] considers the following fragments ofMAc with c ∈ {!, r}: (1) MA−νc , theMAc

130 130

130 130

BEATCS no 87 THE EATCS COLUMNS

122

calculus without the restriction constructor (νx)P, (2) MA−mv
c , the MAc calculus

without thein andout actions, and finally (3)MA−mv,ν
c , the corresponding calculus

with no in/out action nor restriction.
The separation results in [4] among the various calculi are given in terms of the

decidability oftermination; i.e., the problem of whether given a processPdoes not
have any infinite sequence of reductions. Obviously, if the question is decidable
in a given calculus then we know that there is no termination-preserving encoding
of Turing Machines into the calculus. The results in [4] are summarized in Figure
2.

Figure 2: Hierarchy of Ambient Calculi.

Remark 4.1. The undecidability of process termination forMA−mv
r is obtained by

a reduction from termination of RAM machines, a Turing Equivalent formalism.
First [4] uses a CCS fragment with recursion anddynamic scope of namesto
provide a termination-preserving encoding of RAMs. Then the CCS fragment is
claimed to be a sub-calculus ofMA−mv

r . The undecidability of process termination
for MA−mv

r follows immediately.
Nevertheless, as illustrated in Section 3.2 Remark 3.1 such dynamic scope

causesα-equivalence not to be preserved. In principle, this may cause a technical
problem in the proof of the result sinceMA−mv

r requiresα-equivalence to be pre-
served; i.e., the CCS fragment used to simulate RAMs is not a sub-calculus of
MA−mv

r .
One way to deal with the above problem is to use a more involved notion ofα-

conversion inMA−mv
r [5]. Another way would be to consider parametric recursion

in MAr , as in CCSp or pπD, and then use CCSp as the sub-calculus ofMA−mv
r to en-

code RAMs. Nevertheless, either way we will be changing the original semantics
of MA−mv

r given in [11] which treatsα-conversion and recursion as in CCSµ [21].

131 131

131 131

The Bulletin of the EATCS

123

5 Recursion vs Replication in Other Calculi

Here, we shall briefly survey work studying the relative expressive power of Re-
cursion vs Replication in other process calculi.

In the context of calculi for security protocols, the work in [10] uses a process
calculus to analyze the class of ping-pong protocols introduced by Dolev and Yao.
The author show that all nontrivial properties, in particular reachability, become
undecidable for a very simple recursive variant of the calculus. The recursive
variant is capable of an implicit description of the active intruder, including full
analysis and synthesis of messages . The authors then show that the variant with
replication renders reachability decidable.

In the context of calculi for Timed Reactive System, the work in [17] studies
the expressive power of some variants of Timed concurrent constraint program-
ming (tcc). The tcc model is a process calculus introduced in [19] aimed at spe-
cifying timed systems, following the paradigms of Synchronous Languages [1].
The work states that: (1) recursive procedures with parameters can be encoded
into parameterless recursive procedures with dynamic scoping, and vice-versa.
(2) replication can be encoded into parameterless recursive procedures with static
scoping, and vice-versa. (3) the languages from (1) are strictly more expressive
than the languages from (2). Furthermore, it states that behavioral equivalence is
undecidable for the languages from (1), but decidable for the languages from (2).
The undecidability result holds even if the process variables take values from a
fixed finite domain.

The reader may have noticed the strong resemblance of the work on tcc and
that of CCS described in the previous section; e.g., static-dynamic scoping issue
w.r.t recursion. In fact, [17] had a great influence in the work we described in
this paper for CCS. In particular, in the discovery of the dynamic name scoping
exhibited by the CCS presentation in [12].

6 Final Remarks

The expressiveness differences between recursion and replication we have sur-
veyed in this paper may look surprising to those acquainted with theπ-calculus
where recursion is a derived operation. Our interpretation of this difference is that
the link mobility of theπ-calculus is a powerful mechanism which makes up for
the weakness of replication.

The expressiveness of the replication !P arises from unbounded parallel be-
haviour, which with recursion can be defined asµX.(P | X). The additional
expressive power of recursion arises from the unbounded nested scope ofµX.P
as inR = µX.(νx)(P | X) which behaves as (νx)(P | (νx)(P | (νx)(P | · · ·))).

132 132

132 132

BEATCS no 87 THE EATCS COLUMNS

124

This, in general, cannot be simulated with replication. However, suppose that
the unfolding of recursion appliesα-conversion to avoid captures as we saw in
Section 3.2. For example for the processR above we will have the unfolding
(νx1)(P[x1/x] | (νx2)(P[x2/x] | (νx3) · · ·))) and eachxi will only occur inP[xi/x].
It is easy to see the replication !(νx)P captures the behaviour ofR. Therefore,R
does not really exhibit (significant) unbounded nesting of scope.

All in all, the ability of expressing recursive behaviours via replication in a
given process calculus may depend on the mechanisms of the calculus to com-
pensate for the restriction of replication as well as on how meaningful the un-
bounded nesting of the recursive expressions are.

References

[1] G. Berry and G. Gonthier. The E synchronous programming language:
design, semantics, implementation.Science of Computer Programming, 19(2):87–
152, November 1992.

[2] N. Busi, M. Gabbrielli, and G. Zavattaro. Replication vs. recursive definitions in
channel based calculi. InICALP: Annual International Colloquium on Automata,
Languages and Programming, 2003.

[3] N. Busi, M. Gabbrielli, and G. Zavattaro. Comparing recursion, replication, and iter-
ation in process calculi. InICALP: Annual International Colloquium on Automata,
Languages and Programming, 2004.

[4] N. Busi and G. Zavattaro. On the expressive power of movement and restriction in
pure mobile ambients.Theoretical Computer Science, 322(3):477–515, September
2004.

[5] N. Busi and G. Zavattaro.Personal Communication, May 2005.

[6] L. Cardelli and A. Gordon. Mobile Ambients. In M. Nivat, editor,Proc. of Found-
ations of Software Science and Computation Structures (FoSSaCS), European Joint
Conferences on Theory and Practice of Software (ETAPS’98), volume 1378 ofLec-
ture Notes in Computer Science, pages 140–155, Lisbon, Portugal, 1998. Springer-
Verlag, Berlin.

[7] U. Engberg and M. Nielsen. A calculus of communicating systems with label-
passing. Technical report, University of Aarhus, 1986.

[8] Jean-Yves Girard. Linear logic.Theor. Comput. Sci., 50:1–102, 1987.

[9] P. Giambiagi, G. Schneider, and F. Valencia. On the expressiveness of infinite beha-
vior and name scoping in process calculi. InFoSSaCS, pages 226–240, 2004.

[10] H. Huttel and J. Srba. Recursion vs. replication in simple cryptographic protocols. In
Proceedings of the 31st Annual Conference on Current Trends in Theory and Prac-
tice of Informatics (SOFSEM’05), volume 3381 ofLNCS, pages 175–184. Springer-
Verlag, 2005.

133 133

133 133

The Bulletin of the EATCS

125

[11] Francesca Levi and Davide Sangiorgi. Mobile safe ambients.ACM Transactions on
Programming Languages and Systems, 25(1):1–69, January 2003.

[12] R. Milner. Communication and Concurrency. International Series in Computer
Science. Prentice Hall, 1989. SU Fisher Research 511/24.

[13] R. Milner. The polyadicπ-calculus: A tutorial. In F. L Bauer, W. Brauer, and
H. Schwichtenberg, editors,Logic and Algebra of Specification, pages 203–246.
Springer-Verlag, Berlin, 1993.

[14] R. Milner. Communicating and Mobile Systems: theπ-calculus. Cambridge Uni-
versity Press, 1999.

[15] S. Maffeis and I. Phillips. On the computational strength of pure ambient calculi. In
EXPRESS’03, 2003.

[16] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, Part I+ II.
Information and Computation, 100(1):1–77, 1992.

[17] M. Nielsen, C. Palamidessi, and F. Valencia. On the expressive power of concurrent
constraint programming languages. InProc. of the 4th International Conference on
Principles and Practice of Declarative Programming (PPDP 2002), pages 156–167.
ACM Press, October 2002.

[18] C. Palamidessi. Comparing the expressive power of the synchronous and the asyn-
chronous pi-calculus. In ACM Press, editor,POPL’97, pages 256–265, 1997.

[19] V. Saraswat, R. Jagadeesan, and V. Gupta. Foundations of timed concurrent cons-
traint programming. InProc. of the Ninth Annual IEEE Symposium on Logic in
Computer Science, pages 71–80, 4–7 July 1994.

[20] D. Sangiorgi and D. Walker.Theπ−calculus: A Theory of Mobile Processes. Cam-
bridge University Press, 2001.

[21] D. Sangiorgi.Personal Communication, May 2005.

134 134

134 134

126

T F S C


H E

Technical University of Berlin, Department of Computer Science
Franklinstraße 28/29, D-10587 Berlin, Germany

ehrig@cs.tu-berlin.de

A—A T   A  G
T S ∗

Barbara König Vitali Kozioura
Universität Stuttgart

Institut für Formale Methoden der Informatik
{koenigba,koziouvi}@fmi.uni-stuttgart.de

Abstract

We describe the tool A for the verification of systems with dynam-
ically evolving structure specified by graph transformation. After giving a
short introduction to graph transformation systems (GTSs), we describe the
verification techniques used by the tool, namely the approximation of GTSs
by Petri nets. Instead of verifying properties directly in the original system,
they can be checked on the approximating Petri net. We explain the work-
ings of the different modules of the A tool using two small case studies
where we model reconfigurable networks and mobile processes.

1 Introduction

The idea behind A is to provide a tool to verify systems with dynamically
evolving structure using suitable approximation techniques. Systems of this kind

∗Research supported by DFG project SANDS.

135 135

135 135

The Bulletin of the EATCS

127

appear in many places: as pointer structures on a program heap or as reconfig-
urable networks with mobile processes. They are characterized by the creation
and deletion of objects and by changes in the system topology during runtime.

A takes as input language a simple yet expressive specification language:
graph transformation systems (GTS) [18, 10]. Graph transformation systems ex-
tend static graph structures with the possibility to describe dynamic changes using
transformation rules. They are well-suited to describe dynamic behavior, espe-
cially of concurrent and distributed systems.

GTSs are in general Turing-powerful and hence abstraction or over-approxi-
mation techniques are needed for the analysis of such systems. In our case we ap-
proximate GTSs by Petri nets, which are a conceptually simpler formalism and for
which several verification techniques have already been developed. More specifi-
cally, the tool is based on an approximate unfolding technique for GTSs, presented
in [3].

We are currently mainly interested in verifying that all reachable graphs satisfy
certain structural properties. In the current implementation we support the spec-
ification of paths using regular expressions, where we check that such paths are
absent in every reachable graph. These properties can be translated to coverability
properties of the approximating Petri net. In order to check coverability for Petri
nets we use standard algorithms, such as coverability graphs [13] and backward
reachability [1].

If the obtained over-approximation is too coarse and does not allow to verify
the property, techniques for refining the approximation are available. One such
technique is counterexample-guided abstraction refinement which starts from a
concrete counterexample found by coverability checking. Another possibility is
to use depth-based refinement, which constructs an over-approximation exact up
to a pre-defined depth in the unfolding.

We have conducted successful case studies such as the verification of mutual
exclusion in an extending ring of processes [8] or the analysis of insertion of new
elements into red-black trees [2].

2 Graph Transformation Systems

A graph transformation system consists of an initial graph and a set of rewriting
rules. In order to obtain more flexibility we consider hypergraphs where an edge
(a hyperedge) is connected to a sequence of nodes (instead of a pair of nodes as
in a directed graph). The initial graph is a hypergraph describing the initial state
of the system. Rewriting rules consist of two hypergraphs (left-hand side and
right-hand side) and specify the possible dynamic transformations of the system.
If an instance of the left-hand side is found in the current state of the system, then

136 136

136 136

BEATCS no 87 THE EATCS COLUMNS

128

this rule can be applied and the instance of the left-hand side of the rule will be
replaced by its right-hand side. Embedding rules specify how this right-hand side
is connected to the rest of the graph.

One of the most common approaches to graph rewriting is the DPO (double-
pushout) approach, which derives its name from the fact that a rewriting step is
described by two pushouts modelling the gluing of graphs. We are currently sup-
porting restricted versions of DPO rules, where we only allow discrete interfaces,
i.e., we can not describe the preservation of edges, and merging as well as deletion
of nodes is forbidden. Edges, however, can be deleted. The extension to non-
discrete interfaces is not very difficult from a theoretical point of view, whereas
merging and deletion lead to more serious problems. Especially deletion means
that we would have to handle negative application conditions, which can only be
modelled using inhibitor arcs in Petri nets.

Other approaches to graph transformation (such as the single-pushout ap-
proach) could also be handled provided that the restrictions mentioned above are
satisfied. For more information on graph transformation systems see [18, 9, 10].
Below we give an example of a very simple GTS meant to illustrate the main
features of A.

21

21

21

2121

Private
Server

Initial Graph
ProcessProcess

Connection Connection

External Process Crosses Connection

External

External
Process

Connection

Connection

Internal

Connection

Create Connection

Connection Connection Connection
1 2

Connection

Process
External

Process
Internal

Process
InternalInternal Process Crosses Connection

Figure 1: Example graph transformation system

In this system external and internal processes may cross connections and new
connections can be created. This means we produce a tree-like structure of con-
nections—starting with two connections—and let the mobile processes move non-
deterministically along some branch of the tree. Transformations extending the

137 137

137 137

The Bulletin of the EATCS

129

network and movement of processes can be interleaved. The initial graph consists
of a private server with an internal process connected to it. Separated by one
connection there is an external process.

In this example we plan to verify the following property: “An external pro-
cess will never reach a private server”, i.e., a hyperedge representing an external
process and a hyperedge representing a private server will never share the same
node.

3 Verification Techniques

We demonstrate the verification technique using the example of the previous sec-
tion. To analyze this GTS the tool constructs an over-approximation, which is a
so-called Petri graph (i.e., a hypergraph with a Petri net structure over it, see [3]).
The hyperedges are at the same time the places of the net. For instance Fig. 2
shows the 0-depth (i.e., the coarsest) over-approximation of the GTS in Fig. 1. In
Fig. 2 the small black rectangles and the arrows attached to them represent Petri
net transitions, black dots represent the initial marking and the remaining structure
depicts a hypergraph. Note that the places of the net coincide with the hyperedges
of the graph.

Internal
Process

Connection

Crosses Connection
Internal Process

1

Process
External

Private
Server

1

1 1

12

Create Connection

Crosses Connection
External Process

Figure 2: 0-depth approximation

This Petri graph is an over-approximation in the following sense: (i) every
reachable graph can be mapped to its hypergraph component via a (usually non-
injective) graph morphism and (ii) the multi-set image of its edges corresponds
to a reachable marking of the net. More generally there exists a simulation rela-
tion between the reachable graphs and the reachable markings of the net. For a
markingm we say thatm representsa graphG whenever there is a mapping from
G to the underlying hypergraph such that the number of edges mapped to a place
agrees with the markingm.

138 138

138 138

BEATCS no 87 THE EATCS COLUMNS

130

Specifically, the initial marking represents the initial graph of the GTS (to-
gether with other graphs). Furthermore each transition is associated with a rule
and over-approximates the effect of this rule when applied to a graph.

We do not describe here how the Petri graph is computed, apart from saying
that the computation is based on an approximative unfolding algorithm. The al-
gorithm is designed in such a way that nice properties of the GTS model, such
as locality (state changes are only described locally) and concurrency (no unnec-
essary interleaving of events) are preserved in the approximating Petri net. More
details can be found in [3, 5].

In this case the over-approximation is rather coarse. Observe specifically that
everygraph consisting of edges of the four types (“Private Server”, “Connection”,
etc.) can be mapped to the underlying graph since all nodes have been merged
into one. The only information we obtain via this approximation is the number of
edges of a certain type. For instance the initial marking reports that in the initial
graph there is one edge of type “Private Server”, two edges of type “Connection”,
etc.

Since the approximation is too coarse, it is not possible to see whether a pro-
cess has already crossed a certain connection and whether external processes may
visit private servers. In fact the initial marking represents (in the sense defined
above) graphs violating the property to be checked. It is also evident, that this
counterexample is spurious, i.e., it has no counterpart in the original system since
the “real” initial graph does not violate the property. In general there is a technique
implemented in A telling the user if a counterexample is spurious, where
a counterexample is a run of the Petri net producing a marking that represents
graphs violating the property to be analyzed.

If some spurious counterexample is found, the over-approximation can be re-
fined, which can be done in two different ways.

(i) One can change the level of accuracy (the depth) of the over-approximation.

(ii) One can construct a refined over-approximation by forbidding to merge cer-
tain nodes.

In our example we choose the second possibility, which usually leads to smaller
Petri graphs. We take the counterexample obtained above and construct the re-
fined over-approximation (see Fig. 3). The edges representing the private server
and the external process are now separated (since the corresponding nodes have
been separated) and the spurious counterexample found above is eliminated. It is
also evident that no marking is coverable which represents a “bad” graph, i.e. a
graph where an external process is connected to the private server . This can be
shown using A, which means that the property can be successful verified in
an automatic way.

139 139

139 139

The Bulletin of the EATCS

131

Connection
1

Server
PrivateInternal

Process

ConnectionInternal
Process

1

External
Process

Crosses Connection
Internal Process 1

1

Create Connection

Internal Process
Crosses Connection Crosses Connection

External Process

1 11 11 2

Create Connection

Figure 3: 1-depth approximation

4 System Description

In this section we look at A in more detail. We briefly describe the follow-
ing modules of A: A, S, B and A (see Fig. 4 for an
overview of A).

A is a module constructing thek-depth approximated unfolding (k-
covering) for the given graph transformation system. As input and output format
two XML-based standards are used (GTXL for describing graph transformation
systems and the GXL for describing the over-approximating Petri graph obtained
by the construction described in Section 3). For more details on GXL (Graph eX-
change Language) and GTXL (Graph Transformation eXchange Language) see
also [23, 21, 12]. The approximation is constructed according to the algorithms
proposed in [3, 5].

Given a hypergraph and a regular expressionr (describing “forbidden” paths),
the module S generates a setM of markings with the following property: a
markingm represents a graph containing a path corresponding tor if and only if m
covers at least one marking ofM. This information can be used in order to show
that no graphs containing undesirable paths can be reached.

This task is performed by B, which is a module using the backward reach-
ability algorithm from [1] in order to determine the coverability of a marking. If
the markings are not coverable, then the property to be verified is true, otherwise
B generates a counterexample.

Finally, module A checks first if the counterexample found by B

140 140

140 140

BEATCS no 87 THE EATCS COLUMNS

132

transformation
system

Level of accuracy

in GXL

Approximation
(Petri net with graph
structure) in GXL

Graph

(Approximated

AUNFOLD

SPONGE
(Encoder)

Graph property
specified as regular
path expression

A*B*

Petri net

coverability algorithm)

ABSTREF

Counter−example
is real

Counter−Example

Iterate by applying the results
of abstraction refinement

GRAPHVIZ

Property
holds

Unfolding
Algorithm)

(Abstraction Refinement
Algorithm)

(Petri Net

BWRA
markings

Visualization of GTXL/GXL files

Figure 4: Overview of A

is real. If this is the case, then the property to be verified is false. Otherwise
refinement conditions will be computed and the approximation procedure starts
again taking into account all refinement conditions obtained earlier.

The procedure can be iterated in this way until either the property is verified,
a counterexample is found or the pre-defined timeout is reached.

A also con‘tains a visualization module, based on the G package.
It can produce postscript files depicting graph transformation systems specified in
GTXL and over-approximating Petri graphs represented as GXL files (see Fig. 5).

A can be obtained viahttp://www.fmi.uni-stuttgart.de/szs/tools/
augur. We would like to encourage people who download and try the tool to report
their problems and experiences.

5 An Extended Example

In this section we describe the verification of a more complex example and give
some more details concerning the usage of A. We consider the system “Pub-
lic/Private Servers” in Fig. 6 (see also example filepub_priv_serv.xml in the
A distribution), which is an extension of the previous example. This system
consists of public and private servers linked by network connections. Generators
produce an unlimited number of public servers and one private server. The servers
in turn produce mobile processes (internal processes by the private and external by

141 141

141 141

The Bulletin of the EATCS

133

Figure 5: Screenshot of A at work

142 142

142 142

BEATCS no 87 THE EATCS COLUMNS

134

the public servers). New connections can be created between the servers, where
however no connection is allowed from a private to a public server. Processes may
cross these connections. Furthermore at some point in time the private server may
decide to become a public server. The property we want to verify here is (as in the
previous example): “No external process will ever reach a private server”.

Public
Server

Public
Server

Public
Server

External

ExternalExternal

Process

ProcessProcess

Process

Process
External

Process

Server
Private

Process

Connection

Connection

ConnectionGENERATOR
PUBLIC

Internal

Create

Create

Create

Connection
Cross

Cross
Connection

Cross
Connection

Public
Server

Internal
Process

Turn to
Public

Internal

Internal

Create

Create

Create

Figure 6: Example “Public/Private Servers”

The corresponding graph transformation systems consists of an initial graph
containing only two generators and a set of rules describing the transformations
schematically depicted in Fig. 6. The entire GTS is too large to be depicted in this
paper.

In order to verify it, we first construct the approximated unfolding using A-
. Now we can call S with the regular expression“Private Server”
“External Process” in order to obtain a set of markingsM with the following
meaning: all markings which cover any marking ofM are exactly the markings
representing “bad” graphs, i.e., graphs which violate the property to be verified.

As in the previous example the 0-depth approximation is too coarse and B

tells us that indeed some markings contained inM are coverable in over-approxi-
mation and gives a counterexample. After checking the obtained counterexample
with A we see that this counterexample is spurious. Using A one can

143 143

143 143

The Bulletin of the EATCS

135

now construct the refined over-approximation as described earlier, which leads to
successful verification.

Regular expression may also be more complex, for example“Private
Server” “Connection”* “External Process” represents the property that
no connection will ever be created from a public to private server. This property
can also be verified after one refinement step.

Fig. 5 shows a screenshot of the verification of the “Public/Private Servers”
system with A. The small window in the upper left corner shows the hy-
pergraph underlying the approximation, whereas the large windows shows a part
of the Petri net component. A step-by-step tutorial for A that shows how to
verify this example is contained in [11].

6 Conclusion

In order to conclude we would like to mention and classify related work on the
verification of graph transformation systems. While some research groups [22, 7]
pursue the idea of translating graph transformation systems into the input language
of a model checker, others attempt to develop new specialized methods for graph
rewriting. Work from our side goes in this latter direction, as well as [15, 14,
16], which led to the tool GROOVE for verifying finite-state GTS. Although it is
tempting to use existing optimized model checking tools, there is good reason for
developing new techniques, even for finite state spaces. Existing tools usually do
not directly support the creation (and deletion) of an arbitrary number of objects
while still maintaining a finite state space, making entirely non-trivial their use for
checking finite-state GTSs. A nice overview comparing these two fundamentally
different approaches can be found in [17].

Further related work is on shape analysis [19], i.e., techniques which address
directly the problem of verifying pointer structures. We have recently started to
address the problem of encoding simple pointer-manipulating programs into graph
rewriting, which will enable us to directly apply our techniques to a given piece
of code.

Analysis techniques for GTSs are not restricted to reachability analysis and
model checking. Other properties (such as termination and confluence via critical
pair analysis) can be analyzed using the AGG tool [20].

Let us also mention that structural properties of graphs can not only be speci-
fied using regular expressions, but also using a monadic second-order graph logic.
While the theory for this logic has already been established [6], we have not yet
implemented the encoding of graph logic into properties of Petri net markings.

Finally, while the techniques presented in this paper are in principle also appli-
cable to finite-state systems, it will usually be better to use specialized methods,

144 144

144 144

BEATCS no 87 THE EATCS COLUMNS

136

such as finite complete prefixes of unfoldings, a partial order representation for
finite-state GTSs [4]. We have already started to extend our implementation in
this direction.

Acknowledgements:We would like to thank Paolo Baldan, Andrea Corradini
and Tobias Heindel for many interesting discussions.

References

[1] Parosh Aziz Abdulla, Bengt Jonsson, Mats Kindahl, and Doron Peled. A general
approach to partial order reductions in symbolic verification. InProc. of CAV ’98,
pages 379–390. Springer, 1998. LNCS 1427.

[2] Paolo Baldan, Andrea Corradini, Javier Esparza, Tobias Heindel, Barbara König,
and Vitali Kozioura. Verifying red-black trees. InProc. of COSMICAH ’05, 2005.
Proceedings available as report RR-05-04 (Queen Mary, University of London).

[3] Paolo Baldan, Andrea Corradini, and Barbara König. A static analysis technique for
graph transformation systems. InProc. of CONCUR ’01, pages 381–395. Springer-
Verlag, 2001. LNCS 2154.

[4] Paolo Baldan, Andrea Corradini, and Barbara König. Verifying finite-state graph
grammars: an unfolding-based approach. InProc. of CONCUR ’04, pages 83–98.
Springer-Verlag, 2004. LNCS 3170.

[5] Paolo Baldan and Barbara König. Approximating the behaviour of graph transfor-
mation systems. InProc. of ICGT ’02 (International Conference on Graph Trans-
formation), pages 14–29. Springer-Verlag, 2002. LNCS 2505.

[6] Paolo Baldan, Barbara König, and Bernhard König. A logic for analyzing abstrac-
tions of graph transformation systems. InProc. of SAS ’03 (International Static
Analysis Symposium), pages 255–272. Springer-Verlag, 2003. LNCS 2694.

[7] Fernando Luís Dotti, Luciana Foss, Leila Ribeiro, and Osmar Marchi Santos. Veri-
fication of distributed object-based systems. InProc. of FMOODS ’03, pages 261–
275. Springer, 2003. LNCS 2884.

[8] Fernando Luís Dotti, Barbara König, Osmar Marchi dos Santos, and Leila Ribeiro.
A case study: Verifying a mutual exclusion protocol with process creation using
graph transformation systems. Technical Report 08/2004, Universität Stuttgart,
2004.

[9] H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg, editors.Handbook of
Graph Grammars and Computing by Graph Transformation, Vol.2: Applications,
Languages and Tools. World Scientific, 1999.

[10] H. Ehrig, H.-J. Kreowski, U. Montanari, and G. Rozenberg, editors.Handbook of
Graph Grammars and Computing by Graph Transformation, Vol.3: Concurrency,
Parallellism, and Distribution. World Scientific, 1999.

145 145

145 145

The Bulletin of the EATCS

137

[11] Barbara König and Vitali Kozioura. A—a tool for the analysis of graph transfor-
mation systems using approximative unfolding techniques, January 2005. Available
from http://www.fmi.uni-stuttgart.de/szs/tools/augur/documentation.ps.

[12] Leen Lambers. A new version of GTXL: An exchange format for graph transforma-
tion systems. InProc. Workshop on Graph-Based Tools (GraBaTs’04), 2004.

[13] W. Reisig. Petri Nets: An Introduction. EATCS Monographs on Theoretical Com-
puter Science. Springer-Verlag, Berlin, Germany, 1985.

[14] Arend Rensink. Model checking graph grammars. InProc. of AVOCS ’03 (Workshop
on Automated Verification of Critical Systems), 2003.

[15] Arend Rensink. Canonical graph shapes. InProc. of ESOP ’04, pages 401–415.
Springer, 2004. LNCS 2986.

[16] Arend Rensink. State space abstraction using shape graphs. InProc. of AVIS ’04
(Third International Workshop on Automatic Verification of Infinite-State Systems),
ENTCS, 2004. to appear.

[17] Arend Rensink and Dániel Varró. Model checking graph transformations: A com-
parison of two approaches. InProc. of ICGT ’04, pages 226–241. Springer, 2004.
LNCS 3256.

[18] Grzegorz Rozenberg, editor.Handbook of Graph Grammars and Computing by
Graph Transformation, Vol.1: Foundations, volume 1. World Scientific, 1997.

[19] Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm. Parametric shape analysis via
3-valued logic.TOPLAS (ACM Transactions on Programming Languages and Sys-
tems), 24(3):217–298, 2002.

[20] Gabriele Taentzer. AGG: A tool environment for algebraic graph transformation.
In Proc. of AGTIVE ’99 (Applications of Graph Transformations with Industrial
Relevance, International Workshop), pages 481–488. Springer, 1999. LNCS 1779.

[21] Gabriele Taentzer. Towards common exchange formats for graphs and graph trans-
formation systems. InProc. of UniGra ’01 (Uniform Approaches to Graphical Pro-
cess Specification Techniques), volume 44.4 ofENTCS, 2001.

[22] Dániel Varró. Towards symbolic analysis of visual modeling languages. InWork-
shop on Graph Transformation and Visual Modeling Techniques ’02, volume 72 of
ENTCS. Elsevier, 2002.

[23] A. Winter. GXL—overview and current status. InProc. of GraBaTs ’02 (Workshop
on Graph-Based Tools), volume 72.2 ofENTCS, 2002.

146 146

146 146

138

I  
G C C 

S M  A HLR
S

Julia Padberg
Technische Universität Berlin

Fakultät IV – Informatik und Elektrotechnik
padberg@cs.tu-berlin.de

Abstract

The integration of two well established theories is presented in this pa-
per, namely the generic framework for components in system modeling and
the adhesive HLR systems. The first theory describes components and com-
position at an abstract level that is independent of the specification tech-
nique. The second theory formalizes rules and transformations for an ab-
stract replacement at the same abstract level.

The main results are the definition of a weak adhesive HLR category for
components, its immediate results as Church-Rosser Theorem, Parallelism
Theorem and Concurrency Theorem, and the new compatibility result for the
transformation and hierarchical composition. We discuss the instantiation
with deterministic automata, Petri nets and others. For these instantiations
we immediately have the results mentioned above.

1 Introduction

The generic component concept for system modeling has been introduced and
elaborated in a series of acknowledged papers [19, 20, 21, 22, 14, 36]. Their core
motivation is to describe components independently of a specific specification
technique. The main concepts are a self-contained semantics and the composi-
tion of components, based on a generic transformation concept. Here we use the
categorical formalization as in [36] where pushouts to characterize the main con-
struction. There have been quite different formal and semi-formal specification

147 147

147 147

The Bulletin of the EATCS

139

techniques used within this framework, such as process algebras, Petri nets, UML
and automata, being introduced in this paper.

Adhesive high-level replacements (HLR) systems [23] are an abstract theory
for the transformation of objects of an arbitrary category in the style of the double
pushout approach to graph transformations [9]. The main characteristic is that
rules are given as a span of morphisms and transformations as two pushouts in
a suitable category. The advantage of adhesive HLR systems is the level of ab-
straction. It is the same as for the generic components, namely the structural part
(categorically spoken objects and arrows) and some assumptions are given, but
the precise specification technique is left open.

The main result of this paper is that generic components form a weak adhesive
HLR system, hence there are rules, transformations and various theorems hold;
the Church-Rosser Theorem, the Parallelism Theorem and the Concurrency The-
orem. These concern the sequential, parallel or concurrent application of rules.
The transformation of components allows the change of a component by chang-
ing its interfaces and/or its body specification. Using components transforma-
tions, changes of components either during development or maintenance can be
described formally. A formal description of change facilitates the complex task
as there are precise conditions for correctness and consistency, as there is the pos-
sibility to define tools with a precise semantics, and as there is the possibility to
model the change itself. The integration of the framework for generic compo-
nents with adhesive HLR systems yields a thorough and extensive theory for the
transformation of generic components. A detailed version of this paper including
examples as well as the proofs is [37].

The paper continues with the review of adhesive HLR systems in section 2
and of the generic framework for components in system modeling in section 3.
In section 4 we show that components yield a weak adhesive HLR category and
state the compatibility of hierarchical composition with transformations. Then
we discuss the instantiation with automata and with Petri nets in section 5. The
conclusion summarizes the results and sketches some further instantiations.

2 Review of Adhesive HLR Systems

High-Level replacement (HLR) systems have been introduced in [16] as a gen-
eralization of the double pushout approach to graph transformations. Basically
the replacement is carried out in an arbitrary category and not in the category of
graphs. The basic notions remain more or less the same, so the notions of rules
and transformations need an additional subclassM of monomorphisms.

Definition 2.1 (Rules and transformations).
A rule is given byr = (L ← K → R) whereL andR are the left and right hand

148 148

148 148

BEATCS no 87 THE EATCS COLUMNS

140

side objects,K is an intermediate object,1 and the morphismsK → L andK → R
belong to a subclass of monomorphismsM. Given a ruler and a context object
C2, we use morphismsK → L,K → RandK → C2 to express a transformation as
pushout constructions (1) and (2) leading to a double pushout as depicted below:

L

��
(1)

K

��

//oo

(2)

R

��
C1 C2

//oo C3

An application of a rule is called direct transformation and describes the change
of an object by that application of the rule. A sequence of these rule applications
yields a transformation. ^

The theory of HLR systems has been developed as an abstract framework for
different types of graph and Petri net transformation systems. Moreover the HLR
framework has been applied to algebraic specifications [18], where the interface
of an algebraic module specification can be considered as a production of an alge-
braic specification transformation system [15]. HLR systems are instantiated with
various types of graphs, as hypergraphs, attributed and typed graphs, structures,
algebraic specifications, various Petri net classes, elementary nets, place/transition
nets, Colored Petri nets, or algebraic high-level nets, and more (see [16, 23]). Ad-
hesive categories have been introduced in [32] and have been combined with HLR
categories and systems in [17] leading to the new concept of (weak) adhesive HLR
categories and systems. The main reason why adhesive categories are important
for the theory of graph transformation and its generalization to high-level replace-
ment systems is the fact that most of the HLR conditions required in [16] are
shown to be already valid in adhesive categories (see [32]). The fundamental con-
struct for (weak) adhesive (HLR) categotries and systems are van Kampen (VK)
squares.

Definition 2.2 (van Kampen square).
A pushout (1) is a van Kampen (VK) square, if for any commutative cube (2) with
(1) in the bottom and back faces being pullbacks, the follwowing holds:
the top is pushout⇔ the front faces are pullbacks.

1In graph and net transformationsK is often called the interface (ofL andR) but in the context
of components, this notion gets too confusing.

149 149

149 149

The Bulletin of the EATCS

141

A m //

f

��

B

g

��

(1)

C n // D

A′

a

��

f ′jjjjj

uujjjjj m′
MM

&&MM
(2)

C′

c

��

n′
MM

&&MM
B′

b

��

g′jj

ttjjjjjjjj

D′

d

��

A
fjjjjjjjjj

ttjj
m

NNN

&&NNN

C
n

MMM

&&MMM
B

gjjjjjj

ttjjjjjj
D

^

(Weak) adhesive HLR systems can be considered as abstract graph transforma-
tion systems in the double pushout approach based on adhesive or weak adhesive
HLR categories.

Definition 2.3 (Weak adhesive HLR category and system [23]).
A categoryCat with a morphism classM is called weak adhesive HLR category
(Cat,M), if

1. M is a class of monomorphisms closed under isomorphisms and closed
under composition (f : A→ B ∈ M, g : B→ C ∈ M ⇒ g ◦ f ∈ M) and
decomposition (g ◦ f ∈ M, g ∈ M ⇒ f ∈ M),

2. Cat has pushouts and pullbacks alongM-morphisms andM-morphisms
are closed under pushouts and pullbacks,

3. pushouts inCat alongM-morphisms are weak VK squares, i.e. the VK
square property holds for all commutative cubes withm ∈ M and (f ∈ M
or b, c,d ∈ M) see definition 2.2.

An adhesive HLR systemAHS = (Cat,M,P) consists of an adhesive HLR cate-
gory (Cat,M) and a set of rulesP. ^

Results 2.4 (for weak adhesive HLR systems).

Parallelism (chapter 5 in [23]) The Church-Rosser Theorem states a local con-
fluence in the sense of formal languages. The Parallelism Theorem states
that sequential or parallel independent transformations can be carried out
either in arbitrary sequential order or in parallel. In the context of step-by-
step development these theorems are important as they provide conditions
for the independent development of different parts or views of the system.

Concurrency and pair factorization (chapter 5 in [23]) The Concurrency the-
orem handles general transformations, which may be non-sequentially in-
dependent. Roughly spoken, for a sequence there is a concurrent rule that
allows the construction of a corresponding direct transformation.

150 150

150 150

BEATCS no 87 THE EATCS COLUMNS

142

Embedding and local confluence (chapter 6 in [23])Further important results
for transformation systems are the Embedding, Extension and the Local
Confluence Theorems. The first two allow to embed transformations into
larger contexts and with the third one we are able to show local confluence
of transformation systems based on the confluence of critical pairs.

3 Review of the Generic Component Concept

We now present the work concerning the generic concept of components in a cat-
egorical frame. In this framework a component consists of an import, an export
and the body. The import states the prerequisites the component assumes. The
body represents the internal functionality. The export gives an abstraction of the
body that can be used by the environment. In [36] we present a categorical formal-
ization of the concepts of the generic framework using specific kinds of pushout
properties.

Definition 3.1 (Generic frameworkT for components [36]).
A generic framework for componentsT = (Cat,I,E) consists of an arbitrary
category and two classes of morphismsI, called import morphisms andE, called
export morphisms such that the followingextension conditionshold:

1. E-I-Pushout Condition:
Given the morphismsA

e
→ B with e ∈ E andA

i
−→

C with i ∈ I, then there exists the pushoutD in Cat

with morphismsB
i′
−→ D andC

e′
→ D as depicted

adjacently.

2. E andI are stable under pushouts:
Given aE-I-pushout as (1) above, then we have
i′ ∈ I ande′ ∈ E as well.

A

i
��

e //

(1)

B

i′

��
C

e′
// D

^

Accordingly, we have to require for a component that the import and export
connection are of the right class of morphisms.

Definition 3.2 (Component [36]).
A componentC = (IMP,EXP, BOD, imp,exp) is given by objectsIMP,EXP,
andBOD in Cat and by morphismsexp: EXP→ BODandimp : IMP→ BOD,
so thatexp∈ E andimp ∈ I. ^

Subsequently we consider the basic operation that allows composing compo-
nentsC1 andC2 hierarchically. As it provides a connectionh : IMP1 → EXP2

from the import interfaceIMP1 of C1 to the export interfaceEXP2 of C2, we are
now able to define the compositionC3 = C1 ◦h C2 as follows.

151 151

151 151

The Bulletin of the EATCS

143

Definition 3.3 (Composition [36]).
Given componentsCi = (IMPi ,EXPi , BODi , impi ,expi) for i ∈ {1,2} and a mor-
phismh : IMP1 → EXP2 in E the compositionC3 of C1 andC2 via h is de-
fined byC3 = (IMP3,EXP3, BOD3, imp3,exp3) with imp3 = imp′1 ◦ imp2 and
exp3 = h′ ◦ exp1 as depicted below,

EXP3 = EXP1

exp1

��
IMP1

imp1 //

h
��

(1)

BOD1

h′

��

EXP2

exp2

��
IMP3 = IMP2

imp2 // BOD2
imp′1 // BOD3

where (1) is pushout diagram in the categoryCat.
The composition is denoted byC3 = C1 ◦h C2. ^

4 The Adhesive HLR System for Generic Compo-
nents

In this section we sketch how the two theories can be integrated. The benefit is that
the notions of rules and transformations as well as the corresponding results can
be carried over to components. The basic idea is that the transformation of each
part of the component, i.e. the export, the import, and the body, is a transforma-
tion in the underlying specification category. Naturally, the specification category
has to be weakly adhesive. As the definition of components involves different
classes of morphisms these need to be taken into consideration. The difficulty to
establish transformations of components is directly dependent on the class of re-
finement morphisms. So first we need to investigate involved morphism classes.
As the morphisms needed for the adhesive HLR system are usually simpler than
the refinement morphisms, we have defined the class of refinement morphisms
forming a supercategory of the morphisms used for the construction of rules and
transformations. Therefore we have to extend the approach in [36] by relating the
morphism classes used for the transformation and the components. This leads to
the adhesive HLR framework for generic components.

Definition 4.1 (Adhesive HLR framework for generic components).
The adhesive HLR framework for generic componentsA = (Catp,Catr ,M) con-
sists of

152 152

152 152

BEATCS no 87 THE EATCS COLUMNS

144

1. Catp the category of specifications with plain morphisms

2. Catr the category of specifications with refinement morphisms is a super-
category ofCatp as the functorInc : Catp → Catr is an inclusion in the
sense thatOb jCatp = Ob jCatr .

3. (Catp,M) is a weak adhesive HLR category

4. Catr has pushouts where at least one morphism is inInc(MorCatp).

5. the inclusion functorInc : Catp → Catr preserves pushouts where at least
one morphism is inM.

6. the inclusion functorInc : Catp → Catr preserves pullbacks where at least
one morphism is inM.

^

We first relate the adhesive HLR framework for generic components to the
generic framework given in definition 3.1. Then we choose the import morphisms
to be plain morphisms, i.e.I = Inc(MorCatp), and the export morphisms to be
refinement morphisms, i.e.E = MorCatr .

Fact 4.2 (Relation of Frameworks).
Given an adhesive HLR framework for generic components (Catp,Catr ,M), there
is the framework for generic componentsT = (Catr , Inc(MorCatp),MorCatr). ^

Due to item 4 of definition 4.1.

So, we have components as in definition 3.2 and hierarchical composition as in
definition 3.3. Next we define the category of componentsComp, for the defini-
tion of component morphisms we use plain morphisms, that have to be compatible
with the corresponding import and export morphisms.

Definition 4.3 (Component Category).
For componentsCi = (IMPi ,EXPi , BODi , impi ,expi), i = 1,2, the component
morphisms are defined bycomp: C1→ C2 with comp= (compI , compB, compB)
s.t.

compI : IMP1→ IMP2

compB : BOD1→ BOD2

compE : EXP1→ EXP2

wherecompI , compB, compB ∈ Mor(Catp)

153 153

153 153

The Bulletin of the EATCS

145

1. compB ◦ imp1 = imp2 ◦ compI

2. compB ◦ exp1 = exp2 ◦ compE

Components and component morphisms constitute the category of compo-
nentsComp. ^

Subsequently we show that the category of componentsComp together with
MC = {comp= (compI , compB, compE)|compI , compB, compE ∈ M} is an adhe-
sive HLR category. The following facts (see [37]) are important for the proof of
Theorem 4.4: There are pushouts with at least oneMC-morphism inComp and
there are pullbacks with at least oneMC-morphism inComp.

Theorem 4.4 ((Comp,MC) is weak adhesive HLR category).
Given the adhesive HLR framework for generic componentsA = (Catp,Catr ,M)
then (Comp,M) is weak adhesive HLR category with
MC = {comp= (compI , compB, compE)|compI , compB, compE ∈ M}. ^

For the proof see [37].
So we can define an adhesive HLR system for components and have the im-

portant following results for the transformation of components.

Results 4.5 (for an weak adhesive HLR system of components).
Given the adhesive HLR framework for generic componentsA = (Catp,Catr ,M)
then we have the weak adhesive HLR system of components (Comp,MC,P)
whereP is a set of rules and we have the results as given in 4.5:
Parallelism results,
Concurrency and pair factorization and
Embedding and local confluence.

Up to now, the instantiations of the HLR theory have been specification tech-
niques as various types of graph transformations, Petri nets, algebraic specifica-
tions, etc. Now we instantiate with a generic component construction upon these
specification techniques. Hence it is obvious that new questions of compatibility
arise. especially the question, whether the operations at the level of components
are compatible with the transformation concept. Subsequently we show the con-
ditions under which transformations and hierarchical composition are compatible.
The proofs are quite lengthy and in principle they are based on the compatibility
of colimit constructions with commutative diagrams, so we omit them here and
refer to [37].

154 154

154 154

BEATCS no 87 THE EATCS COLUMNS

146

Definition 4.6 (Rules and Transformations).
Given a rule inComp with r = (CL ← CK → CR) then the application ofr yields

the transformationC1
r
=⇒ C3 given by the following diagram inCatr :

EXPL

��

��4
44

44
44

44
44

4 EXPK

��

��4
44

44
44

44
44

4
//oo EXPR

��

��4
44

44
44

44
44

4

IMPL
''NNN

��4
44

44
44

44
44

4 IMPK
''OOO

��4
44

44
44

44
44

4
//oo IMPR

''OOO

��4
44

44
44

44
44

4

BODL

��4
44

44
44

44
44

4 BODK

��4
44

44
44

44
44

4
//oo BODR

��4
44

44
44

44
44

4

EXP1

��

EXP2

��

//oo EXP3

��
IMP1

''OOO
IMP2

''OOO
//oo IMP3

''OOO

BOD1 BOD2
//oo BOD3

with the following double pushouts inCatp

EXPL

��

EXPK

��

//oo EXPR

��
EXP1 EXP2

//oo EXP3

IMPL

��

IMPK

��

//oo IMPR

��
IMP1 IMP2

//oo IMP3

BODL

��

BODK

��

//oo BODR

��
BOD1 BOD2

//oo BOD3

^

Fact 4.7 (Hierarchical composition of rules).
Given the rulesr = (CL ← CK → CR) andr ′ = (C′L ← C′K → C′R) in the category
Comp for hL : IMPL → EXP′L, hK : IMPK → EXP′K, andhR : IMPR → EXP′R
so that

1. IMPK → IMPL
hL
→ EXP′L = IMPK

hK
→ EXP′K → EXP′L

2. IMPK → IMPR
hR
→ EXP′R = IMPK

hK
→ EXP′K → EXP′R

as depicted in the following diagram:

155 155

155 155

The Bulletin of the EATCS

147

EXPL

��

EXPK

��

--
mm EXPR

��

IMPL

""FF
FF

FF

hL

��

IMPK

##FF
FF

FF
--

mm

hK

��

IMPR

""FF
FF

FF

hR

��

BODL

��

BODK
--

mm

��

BODR

��

EXP′L

��

EXP′K

��

--
mm EXP′R

��

IMP ′L

!!CC
CC

CC
IMP ′K

!!DD
DD

DD
--

mm IMP ′R

!!CC
CC

CC

BOD′L

!!DD
DD

DD
B′K

--
mm

!!DD
DD

DD
BOD′R

!!DD
DD

DD

B̂ODL B̂ODK
--

mm B̂ODR

then we compose hierarchicallŷr := r ◦h r ′ = (ĈL ← ĈK → ĈR) with h =
(hl ,hK ,hR) where
ĈL = (IMP′L → B̂ODL ← EXPL),
ĈK = (IMP′K → B̂ODK ← EXPK), and
ĈR = (IMP′R→ B̂ODR← EXPR) ^

Due to adhesive HLR framework for generic components in definition 4.1.
The definition below characterizes the conditions for the compatibility of compo-
nent composition and component transformation: both rules are applicable and the
corresponding connecting morphisms are compatible, i.e. we have commutative
squares.

Definition 4.8 (Independence of transformation and composition).
Given the rulesr = (CL ← CK → CR) andr ′ = (C′L ← C′K → C′R) with r ◦h r ′

with h = (hL,hK ,hR) for hL : IMPL → EXP′L, hK : IMPK → EXP′K, andhR :
IMPR → EXP′R then the compositionC1 ◦h1 C′1 is independent fromr andr ′ if
there ish2 : IMP2→ EXP′2 s.t.

1. IMP2
h2
→ EXP′2→ EXP′1 = IMP2→ IMP1

h1
→ EXP′1

2. IMPL → IMP1
h1
→ EXP′1 = IMPL

hL
→ EXP′L → EXP′1

3. IMPK → IMP2
h2
→ EXP′2 = IMPK

hK
→ EXP′K → EXP′2

156 156

156 156

BEATCS no 87 THE EATCS COLUMNS

148

as in the diagram below:

EXPL

��

��-
--

--
--

--
--

--
--

--
EXPK

��

��.
..

..
..

..
..

..
..

..
//oo EXPR

��

��-
--

--
--

--
--

--
--

--

IMPL

##HHHHH

��.
..

..
..

..
..

..
..

..

hL

��

IMPK

$$HHHHH

��.
..

..
..

..
..

..
..

..
//oo

hK

��

IMPR

##HHHHH

��.
..

..
..

..
..

..
..

..

hR

��

BODL

��-
--

--
--

--
--

--
--

--
BODK

��.
..

..
..

..
..

..
..

..
//oo BODR

��-
--

--
--

--
--

--
--

--

EXP1

��

EXP2

��

//oo EXP3

��

IMP1

##GGGGG

h1

��

IMP2

##HHHHH
//oo

h2

��

IMP3

##GGGGG

BOD1 BOD2
//oo BOD3

EXP′L

��

��-
--

--
--

--
--

--
--

--
-

EXP′K

��

��-
--

--
--

--
--

--
--

--
-

//oo EXP′R

��

��-
--

--
--

--
--

--
--

--
-

IMP′L

""EE
EE

E

��,
,,

,,
,,

,,
,,

,,
,,

,,
IMP′K

##FF
FF

F

��-
--

--
--

--
--

--
--

--
-

//oo IMP′R

""FF
FF

F

��,
,,

,,
,,

,,
,,

,,
,,

,,

BOD′L

��-
--

--
--

--
--

--
--

--
-

BOD′K

��-
--

--
--

--
--

--
--

--
-

//oo BOD′R

��-
--

--
--

--
--

--
--

--
-

EXP′1

��

EXP′2

��

//oo EXP′3

��

IMP′1

""FF
FF

F
IMP′2

##GG
GG

G
//oo IMP′3

""FF
FF

F

BOD′1 BOD′2 //oo BOD′3

^

If there are two components and two rules to be applied we can either compose
two components and then use a composed rule to transform the component or
we transform the two components independently and compose the results of the
composition.

The following theorem states that under independence both ways result in the
same component (up to isomorphism).

Theorem 4.9 (Composition Theorem).
Let the rulesr = (CL ← CK → CR) and r ′ = (C′L ← C′K → C′R) with r ◦h r ′

with h = (hl ,hK ,hR) for hL : IMPL → EXP′L, hK : IMPK → EXP′K, and
hR : IMPR→ EXP′R be independ of the compositionC1 ◦h1 C′1, then we have

157 157

157 157

The Bulletin of the EATCS

149

C1
r
=⇒ C3 as well asC′1

r ′

=⇒ C′3 andC1 ◦h1 C′1
r◦hr ′

=⇒ C3 ◦h3 C′3
This can be illustrated in a diagram style by:

Ĉ1

r◦hr ′

��

= C1

r

��

◦h1 C′1

r ′

��

Ĉ3 = C3 ◦h3 C′3

^

For the proof see [37].

5 Instantiations with Automata and with Petri Nets

Automata Components The use of automata for the description of components
and/or their interfaces is well established. In [10] the interfaces are modelled
using input/output automata. The parallel composition of the interfaces is given
and criteria for the compatibility are presented. But this approach concerns the
interfaces only. In [1] input/output automata are used as well. There are three
abstraction levels, the structural description of the architecture, the modeling of
the component behavior and a data type description of the component. But the
component is monolithic, consisting only of an interface.
Parameterized contracts [33, 38] are used for the adequate component composi-
tion and architecture evaluation in practice. Provides and requires interfaces a
given using deterministic automata, and they are related – making parameteriza-
tion of contracts possible – by so-called service effect automata (see [39]). These
service effect automata represent the component specification and allow relating
the interfaces. This component definition is the informal version of the definition
of automata components below, where the provides interface corresponds to the
export interface, the requires interface to the import interface and the service ef-
fect automata correspond to the body specification.
An automata componentAC = (IMP,EXP, BOD) consists of three deterministic
automata, namely the import automatonIMP, the export automatonEXPand the
body automatonBOD. Two morphismsimp : IMP → BOD andexp : EXP→
BOD connect the interfaces to the body withimp ∈ I andexp ∈ E. Automata
component categories satisfy the adhesive HLR framework for generic compo-
nents whereAAut consists of the category of automata with plain morphisms, cat-
egory of automata with refinement morphisms andM the class of plain, injective
morphisms, see [37]. So, there are rules and transformation for automata compo-
nents and we have the same results as in 4.5: Parallelism results, Concurrency and
pair factorization and Embedding and local confluence.
And we have the Composition Theorem as in Theorem 4.9.

158 158

158 158

BEATCS no 87 THE EATCS COLUMNS

150

Petri net modules In the area of Petri nets various structuring concepts have
been proposed during the last 40 years, some of these are even called modules or
modular approach. There are hierarchical concepts (e.g. [29, 6, 28, 24]) as well as
a variety of concepts for connector mechanisms as communication, coordination
or cooperation (e.g. [8, 40, 12, 11]). In other approaches places and transitions of
modules are merged by well-defined operations (e.g. [31, 3, 2, 5]). Most attempts
to Petri net modules (among others [7, 13, 30]) do not provide Petri nets as inter-
faces. For a not really recent survey see [4]. There are either places or transitions,
but no full Petri nets in the interface. When modeling software components these
notions of Petri net modules are not powerful enough, since they do not allow
specifying behavior in the interfaces. Object Coordination Nets [26, 27, 25] are
somewhat more elaborate as they allow specifying simple protocols in their inter-
faces.
A Petri net (in the algebraic notion of [34]) is given by the set of transitions, the
set of places and the pre- and post domain functions that map each transition to
a multi-set of places. Plain morphisms are simple homomorphisms that are gen-
erated over the set of places. Substitution morphism are a generalization of plain
morphisms, where transitions may be replaced by a subnet. They capture a very
broad idea of refinement and hence are adequate for the relation between the ex-
port net and the body net. A Petri net moduleMOD = (IMP,EXP, BOD) consists
of three Petri nets, namely the import netIMP, the export netEXPand the body
net BOD. Two Petri net morphismsm : IMP → BOD and r : EXP→ BOD
connect the interfaces to the body. Petri net modules [35] are an instantiation
of the adhesive HLR framework for generic components whereAPN consists of
the category of place/transition nets with plain morphisms, the category of place
transition nets with substitution morphisms and the class of plain, injective mor-
phisms, see [37]. So, there are rules and transformation for Petri net modules. For
Petri net modules we have again the results 4.5: Parallelism results, Concurrency
and pair factorization and Embedding and local confluence.
And we have the Composition Theorem as in Theorem 4.9.

6 Conclusion

In this paper we use the generic concept of components in a categorical frame,
where a component consists of an import, an export and the body. High-level re-
placement systems are a categorical generalization of the algebraic approach to
graph transformation systems with double pushouts. They allow formulating the
same notions as for graph transformation systems, but not only for graphs but for
objects of arbitrary categories.
The main result of this paper is the integration of both theories and a new re-

159 159

159 159

The Bulletin of the EATCS

151

sult for compatibility of hierarchical composition and transformation. In order
to achieve transformations of components we have to make the approach in [36]
more concrete, by relating the morphism classes used for adhesive HLR systems
and generic components leading to an adhesive HLR framework for generic com-
ponents. Further instantiations of this approach can easily be obtained if the cor-
responding specification technique is shown to be a weak adhesive HLR category
and if it is an instantiation of the generic component concept. These are vari-
ous graph transformation systems, as the transfer of algebraic specification mod-
ules as defined by [18] to process description techniques has been started in [41],
where modules for graph transformation systems and local action systems have
been investigated. Algebraic specifications are an adhesive HLR category [23]
and clearly conform with the generic framework for componets.

References

[1] M. C. Bastarrica, S. F. Ochoa, and P. O. Rossel. Integrated notation for software
architecture specification. InProc. of the XXIV International Conference of the
SCCC, 2004.

[2] E. Battiston, F. De Cindio, and G. Mauri. OBJSA Nets: A Class of High-Level Nets
Having Objects as Domains. In Rozenberg/Jensen, editor,Advances in Petri Nets.
Springer, 1991.

[3] E. Battiston, F. De Cindio, G. Mauri, and L. Rapanotti. Morphisms and Minimal
Models for OBJSA Nets. In12th Int. Conference on Application and Theory of
Petri Nets, pages 455–476, 1991.

[4] L. Bernadinello and F. De Cindio. A survey of basic net models and modular net
classes.Advances in Petri Nets, Lecture Notes in Computer Science 609, 1992.

[5] M. Broy and T. Streicher. Modular functional modelling of Petri nets with individual
tokens.Advances in Petri Nets, Lecture Notes in Computer Science 609, 1992.

[6] P. Buchholz. Hierarchical high level Petri nets for complex system analysis. In
Application and Theory of Petri Nets, Lecture Notes in Computer Science 815, pages
119–138. Springer, 1994.

[7] S. Christensen and L. Petrucci. Modular analysis of Petri nets.Computer Journal,
43(3):224–242, 2000.

[8] S. Christinsen and N.D. Hansen. Coloured Petri nets extended with channels for syn-
chronous communication. InApplication and Theory of Petri Nets, Lecture Notes
in Computer Science 815, pages 159–178. Springer, 1994.

[9] A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Heckel, and M. Löwe. Alge-
braic approaches to graph transformation I : Basic Concepts and Double Pushout

160 160

160 160

BEATCS no 87 THE EATCS COLUMNS

152

Approach. In G. Rozenberg, editor,Handbook of Graph Grammars and Comput-
ing by Graph Transformation, Volume 1: Foundations, chapter 3. World Scientific,
1997.

[10] L. de Alfaro and T.A Henzinger. Interface automata. InESEC/FSE 01: Proceedings
of the Joint 8th European Software Engineering Conference and 9th ACM SIGSOFT
International Symposium on the Foundations of Software Engineering, 2001.

[11] W. Deiters and V. Gruhn. The FS Net Approach to Software Process Manage-
ment. International Journal on Software Engineering and Knowledge Engineering,
4(2):229–256, June 1994.

[12] J. Desel, G. Juhás, and R. Lorenz. Process semantics of Petri nets over partial al-
gebra. In M. Nielsen and D. Simpson, editors, International Conference on Appli-
cations and Theory of Petri Nets, Lecture Notes in Computer Science 1825, pages
146–165. Springer, 2000.

[13] J. Desel, G. Juhás, and R. Lorenz. Petri Nets over Partial Algebras. In H. Ehrig,
G. Juhás, J. Padberg, and G. Rozenberg, editors,Advances in Petri Nets: Unifying
Petri Nets, Lecture Notes in Computer Science 2128. Springer, 2001.

[14] H. Ehrig, B. Braatz, M. Klein, F. Orejas, S. Pérez, and E. Pino. Object-oriented
connector-component architectures. InProc. FESCA, 2005.

[15] H. Ehrig, M. Gajewsky, and F. Parisi-Presicce. High-Level Replacement Systems
with Applications to Algebraic Specifications and Petri Nets. In G. Rozenberg,
U. Montanari, H. Ehrig, and H.-J. Kreowski, editors,Handbook of Graph Grammars
and Computing by Graph Transformations, Volume 3: Concurrency, Parallelism,
and Distribution, chapter 6, pages 341–400. World Scientific, 1999.

[16] H. Ehrig, A. Habel, H.-J. Kreowski, and F. Parisi-Presicce. Parallelism and concur-
rency in high-level replacement systems.Math. Struct. in Comp. Science, 1:361–
404, 1991.

[17] H. Ehrig, A. Habel, J. Padberg, and U. Prange. Adhesive high-level replacement
categories and systems. In F. Parisi-Presicce, P. Bottoni, and G. Engels, editors,
Proc. ICGT’04, Lecture Notes in Computer Science 3256, pages 144–160, 2004.
Springer.

[18] H. Ehrig and B. Mahr.Fundamentals of Algebraic Specification 2: Module Speci-
fications and Constraints, volume 21 ofEATCS Monographs on Theoretical Com-
puter Science. Springer Verlag, Berlin, 1990.

[19] H. Ehrig, F. Orejas, B. Braatz, M. Klein, and M. Piirainen. A Generic Component
Concept for System Modeling. InProc. FASE 2002: Formal Aspects of Software En-
gineering, Lecture Notes in Computer Science 2306, pages 32–48. Springer, 2002.

[20] H. Ehrig, F. Orejas, B. Braatz, M. Klein, and M. Piirainen. A Transformation-Based
Component Framework for a Generic Integrated Modeling Technique.Journal of
Integrated Design and Process Science, 6(4):78–104, June 2003.

161 161

161 161

The Bulletin of the EATCS

153

[21] H. Ehrig, F. Orejas, B. Braatz, M. Klein, and M. Piirainen. A component frame-
work for system modeling based on high-level replacement systems.Software and
Systems Modeling, pages 114–134, 3 2004.

[22] Hartmut Ehrig, Julia Padberg, Benjamin Braatz, Markus Klein, Fernando Orejas,
Sonia Pérez, and Elvira Pino. A generic framework for connector architectures based
on components and transformations. InProc. FESCA’04, satellite of ETAPS’04,
Barcelona, ENTCS, volume 108, pages 53–67, 2004.

[23] K. Ehrig, H.and Ehrig, U. Prange, and G. Taentzer.Fundamentals of Algebraic
Graph Transformation. Springer, 2005. in preparation.

[24] R. Fehling. A concept of hierarchical Petri nets with building blocks. InAdvances
in Petri Nets’93, Lecture Notes in Computer Science 674, pages 148–168. Springer,
1993.

[25] H. Giese. Object Coordination Nets 3.0: Reference Guide. Technical Report 1/01-I,
University Münster, Computer Science, Distributed Systems Group, 2001.

[26] H. Giese, J. Graf, and G. Wirtz. Closing the Gap Between Object-Oriented Mod-
eling of Structure and Behaviour. In R. France and B. Rumpe, editors,UML’99 -
The Second Int. Conference on The Unified Modeling Language, Lecture Notes in
Computer Science 1723, pages 534 – 549. Springer, 1999.

[27] H. Giese and G. Wirtz. The OCoN Approach for Object-Oriented Distributed Soft-
ware Systems Modeling.Computer Systems Science& Engineering, 16(3):157–172,
2001.

[28] X. He. A Formal Definition of Hierarchical Predicate Transition Nets. InAppli-
cation and Theory of Petri Nets, Lecture Notes in Computer Science 1091, pages
212–229. Springer, 1996.

[29] K. Jensen.Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical
Use, volume 1: Basic Concepts. Springer Verlag, EATCS Monographs in Theoreti-
cal Computer Science edition, 1992.

[30] G. Juhás and R. Lorenz. Modelling with Petri modules. In B. Caillaud, X. Xie, and
L. Darondeau, Ph.and Lavagno, editors,Synthesis and Control of Discrete Event
Systems, pages 125–138. Kluwer Academic Publishers, 2002.

[31] E. Kindler.Modularer Entwurf verteilter Systeme mit Petrinetzen. PhD thesis, Tech-
nische Universität München, Institut für Informatik, 1995.

[32] S. Lack and P. Sobociński. Adhesive Categories. InProc. FOSSACS 2004, Lecture
Notes in Computer Science 2987, pages 273–288. Springer, 2004.

[33] J. Matevska-Meyer, W. Hasselbring, and R. Reussner. Software architecture de-
scription supporting component deployment and system runtime reconfiguration.
In Proceedings of Workshop on Component-Oriented Programming (WCOP 2004),
2004.

[34] J. Meseguer and U. Montanari. Petri Nets are Monoids.Information and Computa-
tion, 88(2):105–155, 1990.

162 162

162 162

BEATCS no 87 THE EATCS COLUMNS

154

[35] J. Padberg. Petri net modules.Journal on Integrated Design and Process Technol-
ogy, 6(4):121–137, 2002.

[36] J. Padberg and H. Ehrig. Petri net modules in the transformation-based component
framework.Journal of Logic and Algebraic Programming, page 35, 2005. accepted.

[37] Julia Padberg. High-level replacement systems for software components. Technical
Report 2005-07, Technische Universität Berlin, 2005.

[38] R. Reussner and H. W. Schmidt. Using Parameterised Contracts to Predict Proper-
ties of Component-Based Software Architectures. In I. Crnkovic, S. Larsson, and
J. Stafford, editors,Workshop on Component-Based Software Engineering, 2002.

[39] R. Reussner. Parametrisierte Verträge zur Protokolladaption bei Software-
Komponenten. PhD thesis, Universität Karlsruhe (Technische Hochschule), 2001.

[40] C. Sibertin-Blanc. Cooperative Nets. InApplication and Theory of Petri Nets’94,
pages 471–490. Springer Lecture Notes in Computer Science 815, 1994.

[41] M. Simeoni. A Categorical Approach to Modularization of Graph Transformation
Systems using Refinements. PhD thesis, Università RomaLa Sapienza, 1999.

163 163

163 163

155

T L  C S C


Y G

Microsoft Research
One Microsoft Way, Redmond WA 98052, USA

gurevich@microsoft.com

F-  

Jan Van den Bussche
Universiteit Hasselt

Author: Oh, hi, you’re Quisani, Yuri Gurevich’s student, right?

Quisani: That’s me allright; can I help you?

A: Well, yes, Yuri asked me if I wanted to write a logic column, and suggested to
talk to you for some inspiration.

Q: Sure, we can talk. Do you already have an idea what you will write about?

A: I was thinking, perhaps I could write about first-order topological properties.

Q: I suppose that is first-order as in “first-order logic”, but what’s about the topol-
ogy? I’m afraid I do not know more about topology than what you find about it
in a dictionary. It’s supposed to deal with the shapes of objects; things that do not
change when you deform an object, right?

A: That’s quite right. Topology is basically that part of geometry that deals with
properties that remain invariant under continuous transformations.

Q: But what has that to do with logic?

A: In itself not much. But it is a legitimate question to ask which properties of
geometrical objects are at the same time topological and expressible in first-order
logic.

164 164

164 164

BEATCS no 87 THE EATCS COLUMNS

156

Q: Why would anyone care about that?

A: Well, the original motivation comes from the theory of spatial databases.

Q: Do you mean databases the NASA folks use?

A: They probably do use spatial databases at NASA, but the general term does not
specifically refer to space in that sense. A spatial database is simply any database
that contains data with a geometrical interpretation [24]. Typical application areas
are Geographical Information Systems (GIS) and robotics [29, 8].

Q: I see. I suppose topology could indeed be relevant in such applications.

A: You bet. For certain applications, only the topology of the data is important,
and not the more specific geometrical aspects like precise locations or rotations.
Applications concerned with dimensionality, or with connectivity, fall in this cat-
egory.

Q: Could you be a little bit more concrete?

A: Sure, take the Paris metro map for example. It gives you full information about
the topology of the subway network: how stations are connected. But it is very
unreliable in other aspects, such as precise distances.

Q: And people are fine with that, because anyway they use the map only to check
how they can get from point A to point B, and are happy with using the number
of intermediate stations on the route as a purely topological approximation of
distance. OK, I’m with you. But where does the first-order logic come in the
picture?

A: We’re getting there. Let’s first agree that we are interested in the topology of
some geometrical object, which we formalize in the standard mathematical way
as a setA of points inn-dimensional real spaceRn.

A: By using Cartesian coordinates, we can viewA as ann-ary relation onR.

Q: Excellent remark, because that’s exactly what we will do. This allows us to
use first-order logic sentencesϕ over the vocabulary (<,0,1,+,×,S), evaluated
overR, to express properties about geometric objects. Here,<, 0, 1,+ and× are
the obvious predicates and functions overR, andS is ann-ary relation symbol
interpreted by the setA we want to talk about.

Q: OK, let’s see. . . if I want to express thatS ⊆ R2 is a straight line, I can write

∃a∃b∀x∀y(S xy↔ a× x+ b = y).

A: Very good. It is not a topological property, but it is a first-order expressible
property allright. To give you an example of a first-order property that is topolog-
ical, consider the property thatS ⊆ R2 contains a two-dimensional subset. For
that we can write

∃x0∃y0∃r > 0∀x∀y((x− x0)
2 + (y− y0)

2 < r → S xy).

165 165

165 165

The Bulletin of the EATCS

157

Q: OK. Now let me try to express thatS is topologically connected. Forn = 1
that is easy, because a subset of the real line is connected if and only if it is an
open, half-open, or closed interval, and we can easily express that in first-order
logic. But I do not immediately see how to do it inR2.

A: You will never see it, because it is impossible to do. This was shown by the
combined results of Grumbach and Su [15] and Benedikt, Dong, Libkin and Wong
[3].

Q: But doesn’t that kill your whole story? I thought connectivity questions pro-
vided the motivation to study this stuff in the first place.

A: I didn’t say that. I said that connectivity is a typical example of a topological
question, but there are many others. First-order logic is the theoretical foundation
for all database query languages [1], including spatial database query languages,
and therefore it is important that we understand precisely which topological prop-
erties are expressible in first-order logic, even if we already know connectivity is
not one of them.

Q: Fair enough. I see you are eager to tell me what those expressible properties
are, but please allow me one further question first. Now that you tell me you
are considering first-order logic to be a query language, I wonder how can one
evaluate first-order logic sentences over arbitrary, typically infinite subsets ofRn

in an effective manner? Clearly, we want our query language to be implementable
on a computer, don’t we?.

A: Excellent point; I have almost forgotten to tell you about that. You know about
the decidability of the first-order theory of the reals?

Q: Sure, this is an old theorem of Tarski [27]; he showed that the truth of any
first-order sentence about the reals can be effectively determined. In the setting
we are talking about, these would be the sentences without the extra predicateS.
The example they always give of a true sentence over the reals is the solution of
quadratic equations:

∀a∀b∀c∃x(ax2 + bx+ c = 0↔ b2 − 4ac≥ 0)

A: Very good. In view of this decidability, we will restrict attention to setsA that
are first-order definable overR. That allows us to effectively evaluate a queryϕ on
a setA, simply by plugging in the formula that definesA at all places inϕ where
the predicate symbolS is used.

Q: But are the sets inRn that are explicitly definable by a first-order logic formula
overR interesting enough in practice?

A: They sure are. They include all the geometric objects one encounters in el-
ementary geometry, and form a well-studied class of sets known as the “semi-
algebraic sets”. They are sufficient for robotics applications [25] and are surely

166 166

166 166

BEATCS no 87 THE EATCS COLUMNS

158

enough for GIS and computer graphics applications, where all the data objects are
typically built up from straight line segments.

Q: OK, OK, I see; descriptions of geometrical objects in Cartesian coordinates
using polynomial equations or inequalities, such as lines, arcs, circles, cubes, el-
lipsoids, cylinders, and so on, all fall in the realm of first-order logic formulas.
And then we can also take projections (through existential quantification), unions,
intersections, complements.

But, isn’t going through the first-order theory of the reals an enormously inef-
ficient way of implementing your query language?

A: Of course, specific operations on specific geometric objects can be imple-
mented much more efficiently using specific algorithms from computational ge-
ometry. It is the typical trade-off between specificity and generality. Note, how-
ever, that algorithmic progress on decision procedures for the reals has been on-
going ever since Collins’s cylindrical algebraic decomposition method [2, 7, 16].
And if nothing else, this whole idea of “plug-in evaluation” remains a nice theo-
retical framework. It was first proposed by Kanellakis, Kuper and Revesz in the
form of “constraint databases” [17, 21]. Peter Revesz and his students have im-
plemented quite a few constraint database systems, for different logical theories.

Q: Very interesting. But perhaps we should move on.

A: Yes, let’s move on. What I wanted to show you is a characterisation of the
first-order topological properties of closed semi-algebraic sets in the plane.

Q: So we’re focusing here on subsets of the plane,R2, but what does “closed”
mean?

A: It’s a standard topological concept. It means that the set includes all its border.
For example, the set of points inside the unit circle,x2 + y2 < 1, is not closed, but
the points inside together with the circle itself,x2 + y2 ≤ 1, is closed. Actually,
you can express thatS is closed in first-order:

∀x∀y(Acc(x, y)→ S xy),

where Acc(x, y) stands for the formula

∃ε > 0∀δ ∈]0, ε[∃x0∃y0(S x0y0 ∧ 0 < (x− x0)
2 + (y− y0)

2 < δ)

Q: Got it; Acc(x, y) expresses that (x, y) is an accumulation point. Anyway, from
a practical standpoint, restricting to closed sets does not seem too harmful. I
wouldn’t know how to draw a set on a piece of paper without drawing its borders
as well!

A: You could use different colors, e.g., draw the borders that are not part of the
set in red and the rest in green. But for a drawing in one color you’re right.

167 167

167 167

The Bulletin of the EATCS

159

R

R

L
L

L

Figure 1: A set and the cone of one of its points.

Now locally around each of its points, a closed semi-algebraic set in the plane
looks “conical”, in the sense that if you travel around the point in a small enough
radius, you will always encounter the same circular list of lines and regions. We
call that circular list of L’s and R’s the “cone” of the point. Let me illustrate it
with a drawing (Figure 1).

Q: I see. Is this so because the set is closed?

A: Not really, it is rather because the set is semi-algebraic. Semi-algebraicity rules
out “wild” topologies [28]. If the set is not closed, the cones may be a bit more
complicated than the ones we have here.

Q: Let me look at some special cases to make sure I understand your definition
of cone. If I have a point lying one a line, then its cone is (LL), because we see
the line to the left and the right of the point. For an endpoint of a line, the cone is
simply (L). And for a point in the interior of the geometrical object, the cone is
(R), right?

A: You’re right about the points on a line, and about the endpoints, but a point
with cone (R) is a point on the border of a region. Actually, an interior point is
completely surrounded by a region, something we do not have a notation for yet.
So let’s introduce one and indicate the cone of an interior point by the special
letterF (for “full”).

Q: OK. So in your drawing (Figure 1), all the different cones that we can see, apart
from (RLLRL) for the central point, are three times (L) for the three endpoints of
lines; and infinitely many (LL)’s, (R)’s, andF’s, for all the points on the lines, on
the borders of the regions, and inside the regions, respectively.

Now that I think about it: the cones (LL), (R) andF always occur infinitely
often if they occur at all. Moreover, conesF occur if and only if at least one of
the cones has anR. So,F is in a sense redundant.

A: Good observation, unless the set consists of the entire plane, but let’s forget
about that special case. Now I can present you with a first theorem [20]: two sets
in which precisely the same cones appear, with precisely the same multiplicities,

168 168

168 168

BEATCS no 87 THE EATCS COLUMNS

160

Figure 2: The set on the left has precisely the same cones, with precisely the same
multiplicities, as the set on the right. Hence the two sets are indistinguishable by
topological first-order sentences.

are indistinguishable by topological first-order sentences. Here’s an illustration
(Figure 2).

Q: Awesome! How can such a thing be proved?

A: You should look at the paper [20], but in brief, a number of elementary transfor-
mations are introduced by which two sets with the same cones can be transformed
into each other. These transformations are shown to be indistinguishable by topo-
logical first-order sentences. The proof technique involves a reduction to finite
structures [15], and an fundamental tool is provided by the collapse theorems for
embedded finite models [3, 5, 22].

Q: I’ll add the chapter on embedded finite models of Libkin’s book to my bedtime
reading list.

A: Sweet dreams! Anyway, this indistinguishability theorem really paves the road
for a full characterisation of the first-order topological properties.

Q: Hate to stop you now, but one quick remark: I suppose the indistinguishability
theorem is actually an if and only if, right? I mean, it seems a doable exercise to
express in first-order that a point has a given cone, so if two sets do not agree on
their cones then they are distinguishable by a topological first-order sentence.

A: You got it. Now our second theorem lifts the indistinguishability theorem to
the global level of properties, and says that the first-order topological properties
are precisely the properties that can be expressed in first-order logic when looking
only at the cones.

Q: To make sense of that statement we need some kind of logical interpretation
of cones.

169 169

169 169

The Bulletin of the EATCS

161

A: Precisely. But that is very natural. Recall that a cone is a circular list of L’s
and R’s. We can represent such a list as a finite structure{1,2, . . . ,n}, wheren
is the length of the list, equipped with the following relations:L andR are unary
relations containing the positions that are L and R, respectively;B is the ternary
relation consisting of the triples (i, j, k) of distinct positions such thatj comes
beforek in the sequence

i, i + 1, . . . ,n,1,2, . . . , i − 1.

Q: SoB is a “circular” order relation; I assume ‘B’ stands for ‘between’?

A: You got it. We can now use first-order logic sentences over the vocabulary
(L,R, B) to express properties of cones.

Q: Let me try. To express that there are two consecutive L’s in the cone, I could
write

∃x∃y¬∃z(Bxzy∧ Lx∧ Ly∧ x , y)

A: Correct! We are now ready to define “cone logic sentences”. These are simply
boolean combinations of basic sentences of the form|γ| ≥ k, whereγ is a first-
order sentence over (L,R, B) as above, andk is a natural number. The meaning
of such a basic sentence is simply that there are at leastk points in the set whose
cone satisfiesγ.

Q: I see. So, to express that the set is a bunch of non-intersecting lines and loops,
i.e., that the only cones that can occur are (L) and (LL), we could write

¬(|γ| ≥ 1)

whereγ is
∃x∃y∃z(x , y∧ x , z∧ y , z) ∨ ∃x Rx

A: The formal theorem now is that the first-order topological properties of closed
semi-algebraic sets in the real plane are precisely those that can be expressed as
cone logic sentences [6]. Not surprisingly, it is undecidable whether a given first-
order sentence is topological. So, the theorem gives us an alternative, syntactic
characterisation of an undecidable class of sentences.

Q: I can sympathize with your enthusiasm. It is a beautiful result. How is it
proved?

A: You should again look in the paper (a full version is available from me), but
in brief, sets are put in a normal form consisting of drawings of cones. Sets in
this normal form can be represented by abstract finite structures, which we call
“codes”. We then show how to rewrite a topological first-order sentenceϕ into
a first-order sentenceψ about codes. The major technical hurdle left after that is

170 170

170 170

BEATCS no 87 THE EATCS COLUMNS

162

that the codes contain information about how cones are linked together by lines.
Because we know that this linking information is not captured byϕ, we can re-
move it also fromψ, but this requires a few complicated invariance arguments.
The resultingψ sans linking information then easily yields a cone logic sentence.

Q: Sounds like a nice achievement; congratulations!

A: It was certainly not my achievement alone; a lot of credit goes to my collabo-
rators Michael Benedikt, Bart Kuijpers, Christof Löding, and Thomas Wilke.

Q: So, what does the future hold?

A: A lot of remaining open questions. First of all, we now have a characterisation
of the first-order topological properties, but this is for closed semi-algebraic sets
in the plane only. What about non-closed sets? A semi-algebraic set can always
be written as a boolean combination of closed semi-algebraic sets. Hence, we
can ask more generally, what about properties not of a single set, but of a collec-
tion of sets, even closed sets? Grohe and Segoufin [14] have shown that already
the indistinguishability theorem fails for non-closed sets, even within a class of
very simple sets. For that class they do give a new indistinguishability theorem,
however.

Further, what in higher dimensions? And what about properties of more gen-
eral, not necessarily semi-algebraic, sets? On the one hand, the problem becomes
more difficult, because we lose the tame topology of semi-algebraic sets. On the
other hand, the problem becomes easier, because less first-order sentences will be
topological now.

Q: That’s quite a research program you have there!

A: I must admit, though, that only a handful of people have worked on this topic.
Apart from the people whose papers I’ve already cited, there are Papadimitriou,
Suciu and Vianu [23] who investigated logics over the plane graph representation
of the topology of the set, and Segoufin and Vianu [26], who continued that line
of research with some very interesting results. As far as I know, currently none
of these people is very much occupied with trying to continue the topic. We need
new blood!

Q: We’re not going to end our conversation on a pessimistic note, are we?

A: No, we can’t do that, can we! At any rate, it is quite clear already now that
first-order logic is much too weak to be a useful topological query language. So,
rather than invest effort in understanding better exactly how weak it is, that effort
is perhaps better spent on the investigation of extensions of the language. There
has already been interesting work in that direction [4, 13, 10, 18, 19, 11, 12].
Interestingly, a good understanding of extensions of the first-order language can
necessitate further work on the first-order language itself [9].

Q: Whew. I have plenty to read and think about now.

171 171

171 171

The Bulletin of the EATCS

163

A: You’ve been a great help to me in the writing of this column.

Q: You’re welcome.

References

[1] S. Abiteboul, R. Hull, and V. Vianu.Foundations of Databases. Addison-Wesley,
1995.

[2] S. Basu, R. Pollack, and M.-F. Roy.Algorithms in Real Algebraic Geometry.
Springer, 2003.

[3] M. Benedikt, G. Dong, L. Libkin, and L. Wong. Relational expressive power of
constraint query languages.Journal of the ACM, 45(1):1–34, 1998.

[4] M. Benedikt, M. Grohe, L. Libkin, and L. Segoufin. Reachability and connec-
tivity queries in constraint databases.Journal of Computer and System Sciences,
66(1):169–206, 2003.

[5] M. Benedikt and L. Libkin. Relational queries over interpreted structures.Journal
of the ACM, 47(4):644–680, 2000.

[6] M. Benedikt, C. Löding, J. Van den Bussche, and T. Wilke. A characterization
of first-order topological properties of planar spatial data (extended abstract). In
Proceedings 23th ACM Symposium on Principles of Database Systems, pages 107–
114. ACM Press, 2004.

[7] B.F. Caviness and J.R. Johnson, editors.Quantifier Elimination and Cylindrical
Algebraic Decomposition. Springer, 1998.

[8] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf.Computational
Geometry. Springer, 2000.

[9] F. Geerts. Expressing the box cone radius in the relational calculus with real poly-
nomial constraints.Discrete and Computational Geometry, 30(4):607–622, 2003.

[10] F. Geerts and B. Kuijpers. Expressing topological connectivity of spatial databases.
In R.C.H. Connor and A.O. Mendelzon, editors,Research Issues in Structured and
Semistructured Database Programming, volume 1949 ofLecture Notes in Computer
Science, pages 224–238. Springer, 2000.

[11] F. Geerts, B. Kuijpers, and J. Van den Bussche. Linearization and completeness
results for terminating transitive closure queries on spatial databases.SIAM Journal
on Computing. To appear.

[12] F. Geerts, L. Smits, and J. Van den Bussche. N- versus (N+1)-dimensional con-
nectivity testing of first-order queries to semi-algebraic sets.Acta Informatica. To
appear.

[13] C. Giannella and D. Van Gucht. Adding a path connectedness operator to FO+poly.
Acta Informatica, 38(9):621–648, 2002.

172 172

172 172

BEATCS no 87 THE EATCS COLUMNS

164

[14] M. Grohe and L. Segoufin. On first-order topological queries.ACM Transactions
on Computational Logic, 3(3):336–358, 2002.

[15] S. Grumbach and J. Su. Queries with arithmetical constraints.Theoretical Computer
Science, 173(1):151–181, 1997.

[16] J. Heintz and B. Kuijpers. Constraint databases, data structures, and efficient
query evaluation. In B. Kuijpers and P. Revesz, editors,Constraint Databases—
Proceedings CDB 2004, volume 3074 ofLecture Notes in Computer Science, pages
1–24. Springer, 2004.

[17] P.C. Kanellakis, G.M. Kuper, and P.Z. Revesz. Constraint query languages.Journal
of Computer and System Sciences, 51(1):26–52, August 1995.

[18] S. Kreutzer. Fixed-point query languages for linear constraint databases. InPro-
ceedings 19th ACM Symposium on Principles of Database Systems, pages 116–125.
ACM Press, 2000.

[19] S. Kreutzer. Operational semantics for fixed-point logics on constraint databases. In
R. Nieuwenhuis and A. Voronkov, editors,Logic for Programming, Artificial Intel-
ligence, and Reasoning—Proceedings LPAR 2001, volume 2250 ofLecture Notes in
Computer Science, pages 470–484, 2001.

[20] B. Kuijpers, J. Paredaens, and J. Van den Bussche. On topological elementary
equivalence of closed semi-algebraic sets in the plane.Journal of Symbolic Logic,
65(4):1530–1555, 2000.

[21] G. Kuper, L. Libkin, and J. Paredaens, editors.Constraint Databases. Springer,
2000.

[22] L. Libkin. Elements of Finite Model Theory. Springer, 2004.

[23] C.H. Papadimitriou, D. Suciu, and V. Vianu. Topological queries in spatial
databases.Journal of Computer and System Sciences, 58(1):29–53, 1999.

[24] P. Rigaux, M. Scholl, and A. Voisard.Spatial Databases. Morgan Kaufmann, 2001.

[25] J.T. Schwartz, M. Sharir, and J. Hopcroft, editors.Planning, Geometry, and Com-
plexity of Robot Motion. Ablex Publishing Corporation, Norwood, New Jersey,
1987.

[26] L. Segoufin and V. Vianu. Querying spatial databases via topological invariants.
Journal of Computer and System Sciences, 61(2):270–301, 2000.

[27] A. Tarski. A Decision Method for Elementary Algebra and Geometry. University of
California Press, 1951.

[28] L. van den Dries.Tame Topology and O-Minimal Structures. Cambridge University
Press, 1998.

[29] M. Worboys and M. Duckham.GIS: A Computing Perspective. CRC Press, 2004.

173 173

173 173

165

T N C C


G R

Leiden University, Leiden Center for Natural Computing
Niels Bohrweig 1, 2333 CA Leiden, The Netherlands

rozenber@liacs.nl

D   B C: F
in silico    in vitro  in vivo

Yasubumi Sakakibara
Keio University, Department of Biosciences and Informatics

yasu@bio.keio.ac.jp

Abstract

We overview a series of our research on implementing finite automatain
vitro and in vivo in the framework of DNA-based computing [4, 5]. First,
we employ the length-encoding technique proposed and presented in [8, 7]
to implement finite automata in test tube. In the length-encoding method,
the states and state transition functions of a target finite automaton are effec-
tively encoded into DNA sequences, a computation (accepting) process of
finite automata is accomplished by self-assembly of encoded complemen-
tary DNA strands, and the acceptance of an input string is determined by
the detection of a completely hybridized double-strand DNA. Second, We
report our intensivein vitro experiments in which we have implemented and
executed several finite-state automata in test tube. We have designed and
developed practical laboratory protocols which combine severalin vitro op-
erations such as annealing, ligation, PCR, and streptavidin-biotin bonding
to executein vitro finite automata based on the length-encoding technique.
We have carried laboratory experiments on various finite automata of from
2 states to 6 states for several input strings. Third, we present a novel frame-
work to develop a programmable and autonomousin vivo computer using

174 174

174 174

BEATCS no 87 THE EATCS COLUMNS

166

Escherichia coli (E. coli), and implementin vivofinite-state automata based
on the framework by employing the protein-synthesis mechanism ofE. coli.
Our fundamental idea to develop a programmable and autonomous finite-
state automata onE. coli is that we first encode an input string into one plas-
mid, encode state-transition functions into the other plasmid, and introduce
those two plasmids into anE. coli cell by electroporation. Fourth, we ex-
ecute a protein-synthesis process inE. coli combined with four-base codon
techniques to simulate a computation (accepting) process of finite automata,
which has been proposed forin vitro translation-based computations in [7].
This approach enables us to develop a programmablein vivo computer by
simply replacing a plasmid encoding a state-transition function with others.
Further, ourin vivo finite automata are autonomous because the protein-
synthesis process is autonomously executed in the livingE. coli cell. We
show some successful experiments to run anin vivo finite-state automaton
onE. coli.

1 Introduction

Biological molecules such as DNA, RNA and proteins are natural devices to
store information, activate (chemical) functions and communicate between sys-
tems (such as cells). DNA computer study utilizes these biological devices to
make a computer. One of the ultimate goals is to make an autonomous cell-based
turing machine and apply to genetic and life engineering. Our attempts to make a
bacteria-based computer make progress toward this goal.

The finite-state automata (machines) are the most basic computational model
in Chomsky hierarchy and are the start point to build universal DNA comput-
ers. Several works have attempted to develop finite automatain vitro. How-
ever, there have been no experimental research works which attempt to build a
finite automatonin vivo. Benenson et al. [1] have successfully implemented the
two state finite automata by the sophisticated use of the restriction enzyme (ac-
tually, FokI) which cut outside of its recognition site in a double-stranded DNA.
However, their method has some limitations for extending to more than 2 states.
Yokomori et al. [8] have proposed a theoretical framework using length-encoding
technique to implement finite automata on DNA molecules. Theoretically, the
length-encoding technique has no limitations to implement finite automata of any
larger states.

In our first research work [4], we have attempted to implement and execute
finite automata of a larger number of statesin vitro, and carry intensive laboratory
experiments on various finite automata of from 2 states to 6 states for several input
strings.

On the other hand, in our next research work [5], we have previously proposed

175 175

175 175

The Bulletin of the EATCS

167

a method using the protein-synthesis mechanism combined with four-base codon
techniques to simulate a computation (accepting) process of finite automatain
vitro [7] (a codon is normally a triplet of base, and different base triplets encode
different amino acids in protein). The proposed method is quite promising and
has several advanced features such as the protein-synthesis process is very accu-
rate and overcomes mis-hybridization problem in the self-assembly computation
and further offers an autonomous computation. Our aim was to extend this novel
principle into a living system, by employing thein vivo protein-synthesis mech-
anism ofEscherichia coli (E. coli). (Escherichia coli is a typical bacteria living
inside our body, large intestine.) Thisin vivocomputation possesses the following
two novel features, not found in any previous biomolecular computer. First, anin
vivofinite automaton is implemented in a livingE. coli cell; it does not mean that
it is executed simply by an incubation at a certain temperature. Second, this au-
tomaton increases in number very rapidly according to the bacterial growth; one
bacterial cell can multiply to over a million cells overnight. The present study
explores the feasibility ofin vivocomputation.

The main feature of ourin vivo computer based onE. coli is that we first en-
code an input string into one plasmid, encode state-transition functions into the
other plasmid, and transformE. coli cells with these two plasmids by electropo-
ration. Second, we execute a protein-synthesis process inE. coli combined with
four-base codon techniques to simulate a computation (accepting) process of finite
automata, which has been proposed forin vitro translation-based computations in
[7]. The successful computations are detected by observing the expressions of a
reporter gene linked to mRNA encoding an input data. Therefore, when an en-
coded finite automaton accepts an encoded input string, the reporter gene,lacZ, is
expressed and hence we observe a blue color. When the automaton rejects the in-
put string, the reporter gene is not expressed and hence we observe no blue color.
Our in vivocomputer system based onE. coli is illustrated in Fig. 1.

Thus, ourE. coli-based computer enables us to develop a programmable and
autonomous computer. To our knowledge, this is the first experimental develop-
ment ofin vivo computer and has succeeded to execute an finite-state automaton
onE. coli.

2 Methods

2.1 Length-encoding method to implement finite-state
automata

Let M = (Q,Σ, δ,q0, F) be a (deterministic) finite automaton, whereQ is a finite
set of states numbered from 0 tok, Σ is an alphabet of input symbols,δ is a state-

176 176

176 176

BEATCS no 87 THE EATCS COLUMNS

168

plasmid encoding
input string

plasmid encoding Ser tRNA
reading AGGU

E. coli

LacZ expression

colony exhibits a blue
color = accept

incubation
= computation

LacZ no expression

transformation

colony exhibits no
color = reject

Figure 1: The framework of ourin vivocomputer system based onE. coli.

transition function such thatδ : Q× Σ −→ Q, q0 is the initial state, andF is a set
of final states. We adopt the length-encoding technique [8] to encode each state in
Q by the length of DNA subsequences.

For the alphabetΣ, we encode each symbola in Σ into a single-strand DNA
subsequence, denotede(a), of fixed length. For an input stringw onΣ, we encode
w = x1x2 · · · xm into the following single-strand DNA subsequence, denotede(w):

5’- e(x1) X1X2 · · · Xk︸ ︷︷ ︸
k times

e(x2) X1X2 · · · Xk︸ ︷︷ ︸
k times

· · · e(xm) X1X2 · · · Xk︸ ︷︷ ︸
k times

-3’,

whereXi is one of four nucleotidesA, C, G, T, and the subsequencesX1X2 · · · Xk are
used to encodek + 1 states of the finite automatonM. For example, when we
encode a symbol ’1’ into a ssDNA subsequenceGCGC and a symbol ’0’ intoGGCC,
and encode three states intoTT, a string “1101” is encoded into the following
ssDNA sequence:

5’-

1︷︸︸︷
GCGC TT

1︷︸︸︷
GCGC TT

0︷︸︸︷
GGCC TT

1︷︸︸︷
GCGC TT -3’

In addition, we append two supplementary subsequences at both ends for PCR
and probes for affinity purifications with magnetic beads which will be used in
laboratory protocol:

5’- S1S2 · · · Ss︸ ︷︷ ︸
PCR primer

e(x1)X1X2 · · · Xk · · · e(xm)X1X2 · · · Xk Y1Y2 · · · Yt︸ ︷︷ ︸
probe

R1R2 · · · Ru︸ ︷︷ ︸
PCR primer

-3’.

177 177

177 177

The Bulletin of the EATCS

169

For a state-transition function from stateqi to stateqj with input symbola ∈ Σ,
we encode the state-transition functionδ(qi ,a) = qj into the following comple-
mentary single-strand DNA subsequence:

3’- Xi+1Xi+2 · · · Xk︸ ︷︷ ︸
k−i times

e(a) X1X2 · · · X j︸ ︷︷ ︸
j times

-5’

whereXi denotes the complementary nucleotide ofXi, andy denotes the com-
plementary sequence ofy. Further, we put two more complementary ssDNA se-
quences for the supplementary subsequences at both ends:

3’- S1S2 · · · Ss -5’, 3’- Y1Y2 · · · YtR1R2 · · · Ru︸ ︷︷ ︸
biotinylated

-5’,

where the second ssDNA is biotinylated for streptavidin-biotin bonding.
Now, we put all those ssDNAs encoding an input stringw and encoding state tran-
sition functions and the supplementary subsequences of probes and PCR primers.
Then, a computation (accepting) process of the finite automataM is accomplished
by self-assembly among those complementary ssDNAs, and the acceptance of an
input stringw is determined by the detection of a completely hybridized double-
strand DNA.

The main idea of length-encoding technique is explained as follows. Two
consecutive valid transitionsδ(h,an) = i andδ(i,an+1) = j are implemented by
concatenating two corresponding encoded ssDNAs, that is,

3’- AAA · · · A︸ ︷︷ ︸
k−h

e(an) AAA · · · A︸ ︷︷ ︸
i

-5’,

and
3’- AAA · · · A︸ ︷︷ ︸

k−i

e(an+1) AAA · · · A︸ ︷︷ ︸
j

-5’

together make

3’- AAA · · · A︸ ︷︷ ︸
k−h

e(an) AAA · · · A︸ ︷︷ ︸
k

e(an+1) AAA · · · A︸ ︷︷ ︸
j

-5’.

Thus, the subsequenceAAA · · · A︸ ︷︷ ︸
k

plays a role of “joint” between two consecutive

state-transitions and it guarantees for the two transitions to be valid inM.

2.2 Designing laboratory protocols to execute finite automata
in test tube

In order to practically execute the laboratory experiments for the method described
in the previous section, we design the following experimental laboratory protocol,
which is also illustrated in Fig. 2:

178 178

178 178

BEATCS no 87 THE EATCS COLUMNS

170

0. Encoding: Encode an input string into a long ssDNA, and state transition func-
tions and supplementary sequences into short pieces of complementary ss-
DNAs.

1. Hybridization: Put all those encoded ssDNAs together into one test tube, and
anneal those complementary ssDNAs to be hybridized.

2. Ligation: Put DNA “ligase” into the test tube and invoke ligations at tem-
perature of 37 degree. When two ssDNAs encoding two consecutive valid
state-transitionsδ(h,an) = i andδ(i,an+1) = j are hybridized at adjacent
positions on the ssDNA of the input string, these two ssDNAs are ligased
and concatenated.

3. Denature and extraction by affinity purification: Denature double-stranded
DNAs to ssDNAs and extract concatenated ssDNAs containing biotinylated
probe subsequence by streptavidin-biotin bonding with magnetic beads.

4. Amplification by PCR: Amplify the extracted ssDNAs with PCR primers.

5. Detection by gel-electrophoresis:Separate the PCR products by length using
gel-electrophoresis and detect a particular band of the full-length. If the
full-length band is detected, that means a completely hybridized double-
strand DNA is formed, and hence the finite automaton “accepts” the input
string. Otherwise, it “rejects” the input string. In our laboratory experi-
ments, we have used a “capillary” electrophoresis microchip-based system,
called Bioanalyser 2100 (Agilent Technologies), in place of conventional
gel-electrophoresis. The capillary electrophoresis is of higher resolution
and more accurate than gel electrophoresis such as agarose gel.

3 In vitro experiments

We have carried laboratoryin vitro experiments on various finite automata for
several input strings.

3.1 4-states automaton with three input strings

Our first experiment attempts 4-states automaton shown in Fig. 3 (upper left) for
the three input strings (a) 1101, (b) 1110, and (c) 1010. This 4-states automaton
accepts the language (1(0∪ 1)1)∗ ∪ (1(0∪ 1)1)∗0, and hence it accepts 1110 and
1010 and rejects 1101.

The results are shown in Fig. 3 (upper right) in gel-like image. As in the first
experiment, the full-length DNA is of 190 bps (mer). Bands at position of 190

179 179

179 179

The Bulletin of the EATCS

171

Hybridization

case: Accept

Ligation

Purification
by beads

PCR

case: Reject

supplementary
sequence

detection
sequence

input string

Figure 2: The flowchart of laboratory protocol to executein vitro finite automata
which consists of five steps: hybridization, ligation, denature and extraction by
affinity purification, amplification by PCR, and detection by gel-electrophoresis.
The acceptance of the input string by the automata is the left case, and the rejection
is the right case.

A F
0

B C
0

1

1 1

(a) (b) (c)

190mer

Figure 3: (Left:) A 4-states automaton used for this experiment. (Right:) The
results of electrophoresis are displayed in gel-like image. Lane (a) is for the input
string 1101, lane (b) for 1110, and lane (c) for 1010. Since the full-length band
(190 mer) is detected in lane (b) and (c), we determine the automaton accepts two
input strings (b) 1110 and (c) 1010.

180 180

180 180

BEATCS no 87 THE EATCS COLUMNS

172

mer is detected in lane (b) and lane (c). Hence, ourin vitro experiments have
successfully detected that the automaton accepts two input string (b) 1110 and (c)
1010.

3.2 From 2-states to 6-states automata with one input string
“111111” of length 6

Our second experiments are 5 different automata of from 2 states to 6 states shown
in Fig. 4 (upper) for one input string “111111” of length 6. The automaton (2) ac-
cepts the language (11)∗, that is, strings with even numbers of symbol ’1’, (3)
accepts the language (111)∗, strings repeating three times of 1s, (4) accepts the
language (1111)∗, strings repeating four times of 1s, (5) accepts the language
(11111)∗, strings repeating five times of 1s, (6) accepts the language (111111)∗,
strings repeating six times of 1s. Since 6 is a multiple of 2, 3 and 6, the automata
(2), (3) and (6) accept the input string 111111 of length 6.

The results are shown in Fig. 4 (lower) in gel-like image. For the input string
111111, the full-length DNA is of 240 bps (mer). Bands at position of 240 mer
are detected in lanes (2), (3) and (6) in Fig. 4. Hence, in ourin vitro experiments,
the automaton (2), (3) and (6) have correctly accepted the input string 111111 and
the automaton (4) and (5) have correctly rejected 111111.

3.3 Simulating computation process of finite automata using
four-base codons and protein-synthesis mechanism

Sakakibara and Hohsaka [7] have proposed a method using the protein-synthesis
mechanism combined with four-base codon techniques to simulate a computation
(accepting) process of finite automata. Our approach to makein vivo computer is
to execute the proposed method onE. coli in order to improve the efficiency of
the method and further develop a programmablein vivo computer. We describe
the proposed method using an example of simple finite automaton, illustrated in
Fig. 5, which is of two states{s0, s1}, defined on one symbol ’1’, and accepts input
strings with even numbers of symbol 1 and rejects input strings with odd numbers
of 1s.

The input symbol ’1’ is encoded to the four-base subsequenceAGGU and an
input string is encoded into an mRNA by concatenatingAGGU andA alternately
and addingAAUAAC at the 3’-end. This one-nucleotideA in betweenAGGU is used
to encode two states{s0, s1}, which is a same technique presented in [8]. For
example, a string “111” is encoded into an mRNA:

AGGU︸︷︷︸
1

A AGGU︸︷︷︸
1

A AGGU︸︷︷︸
1

AAAUAAC.

181 181

181 181

The Bulletin of the EATCS

173

1

1

1 1

1

1 1

1

1

1

1

1
A C

A C

EFCA

B

1

1

11

1

1

A

B

C

D

E

F

1 1

1

1 1

A

C

D

EF

240mer

(2) (3) (4) (5) (6)

Figure 4: (Upper:) Five different automata of from 2 states to 6 states used for
this experiment. (Lower:) The results of electrophoresis are displayed in gel-like
image. Lane (2) is for the automaton (2), (3) for (3), (4) for (4), (5) for (5), and
(6) for (6). Since the full-length bands (240 mer) are detected in lane (2), (3) and
(6), we determine the automata (2), (3) and (6) accepts the input string 111111.

s0 s1
1

1

Figure 5: A simple finite automaton of two states{s0, s1}, defined on one symbol
’1’, and accepting input strings with even numbers of symbol 1 and rejecting input
strings with odd numbers of 1s.

182 182

182 182

BEATCS no 87 THE EATCS COLUMNS

174

A G G U A A G G U A A G G U A A G G U A A A U A A C lacZmRNA

tRNAs

U C C A U U C C A U U C C A U U C C A U U U A U U G

1 1 1 1

5’- -3’

A G G U A A G G U A A G G U A A A U A A C lacZ
U C C A U U C C A U U C C A U U U

Stop codon

1 1 1

5’- -3’

Figure 6: Examples of accepting processes: (Upper) For an mRNA encoding a
string “1111”, the translation successfully goes through the mRNA and translates
the reporter gene oflacZ emitting the blue signal. (Lower) For an mRNA encod-
ing a string “111”, the translation stops at the stop codonUAG, does not reach to
the lacZ region and produces no blue signal.

The four-base anticodon (3’)UCCA(5’) of tRNA encodes the transition rules0
1
−→

s1, that is a transition from states0 to states1 with input symbol 1, and the combi-
nation of two three-base anticodons (3’)UUC(5’) and (3’)CAU(5’) encodes the rule

s1
1
−→ s0. Further, the encoding mRNA is linked tolacZ-coding RNA subse-

quence as a reporter gene for the detection of successful computations. Together
with these encodings and tRNAs containing four-base anticodon (3’)UCCA(5’), if
a given mRNA encodes an input string with odd numbers of symbol 1 , an execu-
tion of thein vivoprotein-synthesis system stops at the stop codon, which implies
that the finite automaton does not accept the input string, and if a given mRNA
encodes even numbers of 1s, the translation goes through the entire mRNA and
the detection of acceptance is found by thebluesignal of lacZ. Examples of ac-
cepting processes are shown in Fig. 6: (Upper) For an mRNA encoding a string
“1111”, the translation successfully goes through the entire mRNA and translates
the reporter gene oflacZ which emits the blue signal. (Lower) For an mRNA en-
coding a string “111”, the translation stops at the stop codonUAA, does not reach
to thelacZ region and produces no blue signal.

If the competitive three-base anticodon (3’)UCC(5’) comes faster than the four-
base anticodon (3’)UCCA(5’), the incorrect translation (computation) immediately
stops at the following stop codonUAA.

183 183

183 183

The Bulletin of the EATCS

175

4 In vivo experiments

We have done some laboratory experiments by following the laboratory protocols
presented in [5] to execute the finite automaton shown in Fig. 5, which is of two
states{s0, s1}, defined on one symbol ’1’, and accepts input strings with even
numbers of symbol 1 and rejects input strings with odd numbers of 1s.

We tested our method for six input strings, “1”, “11”, “111”, “1111”, “11111”,
and “111111”, to see whether the method correctly accepts the input string “11”,
“1111”, “111111”, and rejects the strings “1”, “111”, “11111”.

The results are shown in Fig. 7. Blue-colored colonies which indicates the
expression oflacZ reporter gene have been observed only in the plates for the
input strings 11, 1111, and 111111. Therefore, ourin vivo finite automaton has
succeeded to correctly compute the six input strings, that is, it correctly accepts
the input strings 11, 1111, 111111 of even numbers of symbol ’1’ and correctly
rejects 1, 111, 11111 of odd number of 1s. To our knowledge, this is the first
experimental development ofin vivo computer and has succeeded to execute an
finite-state automaton onE. coli.

4.1 A framework of programmable and autonomous in vivo
computer on E. coli

Two important issues on developing DNA-based computers areprogrammable
andautonomous. We realize these two mechanisms by using the main features of
our in vivocomputer based onE. coli.

4.1.1 Programmable:

The programmable means that a program is stored as a data (i.e., stored program
computer) and any computation can be accomplished by just choosing a stored
program. In DNA-based computers, it requires that a program is encoded into a
molecule different from the main and fixed units of DNA computer, a molecule
encoding programs can be stored and changed, and a change of molecules encod-
ing programs accomplishes any computations.

The main features of ourin vivocomputer enable us to develop a programmablein
vivo computer. We simply replace a plasmid encoding a state-transition function
with other plasmid encoding a different state-transition function, and theE. coli
cell transformed a new plasmid computes a different finite automaton.

184 184

184 184

BEATCS no 87 THE EATCS COLUMNS

176

(-)

(-)

(+)

(-)

(-)

(-)

“1” “11” “111”

(+)

(-)

(-)

(-)

(+)

(-)

“1111” “11111” “111111”

Figure 7: Computation by theE. coli cells with plasmids of the input strings: 1,
11, 111, 1111, 11111, 111111. In each panel, the upper plate (part of a LB plate)
shows the result in the presence of the suppressor tRNA with UCCU anticodon
in the cell, while the lower plate shows the result of control experiment with no
suppressor tRNA expressed. The signs (+) and (-) indicate the theoretical values
about the expressions oflacZ reporter gene: (+) means that the culturedE. coli
cells must expresslacZ theoretically, and (-) means it must not express. Circles
indicate the blue-colored colony expressinglacZ. Therefore, ourin vivo finite
automaton has correctly computed the six input strings, that is, it correctly accepts
the input strings 11, 1111, 111111 of even numbers of symbol ’1’ and correctly
rejects 1, 111, 11111 of odd number of 1s.

185 185

185 185

The Bulletin of the EATCS

177

plasmid encoding
input string

Programmable:
choosing plasmid encoding tRNAs

E. coli

Autonomous:

computation is executed by living E.coli

transformation
. . .A B Z

Figure 8: A programmable and autonomousin vivo computer system based on
E. coli.

4.1.2 Autonomous:

The autonomous DNA computers mean that once we set a program and an input
data and start a computation, the entire computational process is carried out with-
out any operations from the outside. Ourin vivo finite automata are autonomous
in the sense that the protein-synthesis process which corresponds to a computation
(accepting) process of an encoded finite automata is autonomously executed in a
living E. coli cell and require no laboratory operations from the outside.

5 Discussions

The presented experiments of ourin vivofinite automata based onE. coli propose
a kind of population computations in the following two senses: (1) While a com-
putation by one singleE. colicell is not effective and accurate, a colony consisting
of a large number ofE. coli cells provides a reliable computation. (2) Since one
bacterial cell can multiply to over a million cells overnight, ourin vivo computa-
tion framework offers a massively parallel computation. Further, ourin vivofinite
automata have a quite distinguished feature that anin vivofinite automaton is im-
plemented in a livingE. coli cell; it is not implemented simply by an incubation
at a certain temperature.

186 186

186 186

BEATCS no 87 THE EATCS COLUMNS

178

Acknowledgements

This work is supported in part by Grant-in-Aid for Scientific Research on Prior-
ity Area No. 14085205. This work was also performed in part through Special
Coordination Funds for Promoting Science and Technology from the Ministry of
Education, Culture, Sports, Science and Technology, the Japanese Government,
and a grant of Keio Leading-edge Laboratory of Science and Technology (KLL)
specified research projects.

References

[1] Benenson, Y., T. Paz-Ellzur, R. Adar, E. Keinan, Z. Livneh, and E. Shapiro. Pro-
grammable and autonomous computing machine made of biomolecules.Nature,
414, 430–434, 2001.

[2] Hohsaka, T., Y. Ashizuka, H. Taira, H. Murakami, M. Sisido. Incorporation of
nonnatural amino acids into proteins by using various four-base codons in anEs-
cherichia coliin vitro translation system.Biochemistry, 40, 11060–11064, 2001.

[3] Hohsaka, T., Y. Ashizuka, H. Murakami, M. Sisido. Five-base codons for incorpo-
ration of nonnatural amino acids into proteins.Nucleic Acids Research, 29, 3646–
3651, 2001.

[4] Kuramochi, J. and Y. Sakakibara. Intensive in vitro experiments of implementing
and executing finite automata in test tube.Proceedings of 11th International Meeting
on DNA Based Computers, London, Ontario, 59–67, 2005.

[5] Nakagawa, H., K. Sakamoto, and Y. Sakakibara. Development of an in vivo com-
puter based on Escherichia coli.Proceedings of 11th International Meeting on DNA
Based Computers, London, Ontario, 68–77, 2005.

[6] Păun, Gh., G. Rozenberg, and A. Salomaa.DNA Computing. Springer-Verlag, Hei-
delberg, 1998.

[7] Sakakibara, Y. and T. Hohsaka. In vitro translation-based computations.Proceedings
of 9th International Meeting on DNA Based Computers, Madison, Wisconsin, 175–
179, 2003.

[8] Yokomori, T., Y. Sakakibara, and S. Kobayashi. A Magic Pot : Self-assembly com-
putation revisited.Formal and Natural Computing, LNCS 2300, Springer-Verlag,
418–429, 2002.

187 187

187 187

T
C

188 188

188 188

189 189

189 189

181

A       NFA∗

Pedro García† Manuel Vázquez de Parga‡

Abstract

We propose a new solution to the problem of the existence of a thresh-
old for a regular languageL such that every AFN acceptingL must contain
mergible states. The proposed solution is based in a known property of the
universal automaton.

1 Introduction

We face in this work the problem of the possibility of the existence, for a given
regular languageL, of nondeterministic finite automata of any size without mergi-
ble states. Câmpeanu et al [2] have recently enounced this problem in a precise
way as follows:

Let L be an arbitrary regular language, and k≥ 2 an arbitrary integer. Does
it exist (and if “yes”, effectively construct it) a constant EL,k such that any NFA of
size at least EL,k has at least k mergible states?

The solution proposed in [2] is based in the definition, for every state of a NFA,
of two equivalence relations, one of them related to Nerode’s right congruence and
the other to the syntactic congruence. The threshold obtained in this way is:

Ek,L = (k− 1)P(HL)NLP(NL) + 1

whereNL is the index of the Nerode’s right congruence (size of the minimalDFA
that acceptsL), HL is the index of the syntactic congruence andP(n) is the number
of all possible partitions of the set{1, ...,n}. Note thatHL is bounded above byNNL

L .
That bound seems too high to the authors of the cited work and they propose

to obtain a tighter one as future work. We propose in this work a smaller threshold
using the definition of Universal Automaton of a languageL [1, 3] and its property
of representing a canonical automaton forL.

∗Work partially supported by the Spanish CICYT under contract TIC2003-09319-C03-02
†Universidad Politécnica de Valencia,pgarcia@dsic.upv.es
‡Universidad Politécnica de Valencia,mvazquez@dsic.upv.es

190 190

190 190

BEATCS no 87 TECHNICAL CONTRIBUTIONS

182

2 Preliminaries and notation

The free monoid over the alphabetA in denoted asA∗. The empty word is denoted
as 1. For any wordu of and a languageL ⊆ A∗, u−1L denotes the residual{w ∈
A∗ | uw ∈ L}. A non-deterministic automaton (NFA) is denotedA = (Q,A, δ, I , F)
whereI , F are subsets ofQ, (initial and final states), and the transition function
is δ : Q × A∗ → 2Q. L(A) denotes the language accepted byA andLAq = {w ∈
A∗ | q ∈ δ(I ,w)}, IAq = {w ∈ A∗ | q ∈ δ(q,w)}, RAq = {w ∈ A∗ | δ(q,w)

⋂
F , ∅}

denote respectively the left, inner and right languages of the stateq. The states
p1, ..., pk inA are mergible if and only if [2]: k⋃

i=1

LApi

  k⋃
i=1

IApi

∗  k⋃
i=1

RApi

 ⊆ L

Nerode’s right congruente will be denoted as'L. The index of'L is the size of
the minimalDFA acceptingL andD = {u−1L | u ∈ A∗} is the set of states of such
a DFA. The equivalente class of the wordu is denoted as [u]'L .

Theuniversal automatonof the regular languageL is defined [4],[5] asU =
(U,A, δ, I , F) with U = {u−1

1 L
⋂
...
⋂

u−1
k L | k ≥ 0,u1, ...,uk ∈ A∗}, I = {q ∈ U | q ⊆

L}, I = {q ∈ U | 1 ∈ q} and for the statesp andq in U anda in A, q ∈ δ(p,a) if
q ⊆ a−1p. The size ofU is bounded above by 2NL .

3 Mergible states and universal automaton

The universal automaton of a languageL is a canonical automaton as it is shown
in the following proposition:

Proposition 1 ([1]). LetU be the universal automaton of the regular language
L ⊆ A∗. Then,

1. U accepts L.

2. For any NFAA = (Q,A, δ, I , F) accepting a subset of L, the functionϕ that
assigns to every q in Q,ϕ(q) =

⋂
u∈LUq

u−1L is an homomorphism that mapsA

inU.

Remark. For everyq in U, let us suppose that{u1, ...,uk} is a maximal set of words

overA such that, fori, j ∈ {1, ..., k}, if i , j, thenu−1
i L , u−1

j L andq =
k⋂

i=1
u−1

i L. It

is easily seen that any word of [ui]'L reaches the stateu−1
i L and from the definition

of the transition function ofU, it reaches any state ofU which is a subset ofu−1
i L.

ThereforeLUq =
k⋃

i=1
[ui]'L

191 191

191 191

The Bulletin of the EATCS

183

Proposition 2. LetA be a NFA accepting L and letU be the universal automaton
of L. Letϕ be the homomorphism that mapsA inU. Then:

1. LAq ⊆ LUϕ(q)

2. RAq ⊆ ϕ(q) = RUϕ(q)

3. IAq ⊆ IUϕ(q)

Proof. The statement 1 directly follows fromRemark 1. The inclusion of the
right languages comes from the fact that if stateq is reached by words belonging
to different classes of'L, their suffixes inL must belong to the intersection of the
residuals. Finally, 3 follows from the fact thatϕ is an automata morphism.

�

Proposition 3. LetA be a NFA accepting L and letU be the universal automaton
of L. Letϕ the morphism that mapsA in U. Then, if there exist k states ofA,
q1, ...,qk such thatϕ(q1) = ... = ϕ(qk), then the states q1, ...,qk are mergibles.

Proof. By the previous proposition

 k⋃
i=1

LAqi

  k⋃
i=1

IAqi

∗  k⋃
i=1

RAqi

 ⊆ LUϕ(q1)(I
U
ϕ(q1))

∗RUϕ(q1) ⊆ L

�

From this result it is possible to obtain a threshold such that automata of
greater size must contain mergible states.

Proposition 4. LetA be a NFA accepting L being its set of states Q. If|Q| ≥
(k− 1)2NL , the automatonA has at least k mergible states.

Proof. The number of states of the universal automaton is bounded above by
2NL . Using pigeon-hole principle, if|Q| ≥ (k− 1)2NL , at leastk will have the same
image underϕ. �

The above threshold can not be reduced. To prove this fact it is enough to
define, for every alphabetAa family of minimal DFA such that all the intersections
of their residuals are different. Forn ≥ 2, le tus considerA(n) = (Zn,A, δ,0,Zn −

{0}) With the transition function defined as follows:
For i in Zn anda ∈ A, δ(i,a) = i + 1 modn.

192 192

192 192

BEATCS no 87 TECHNICAL CONTRIBUTIONS

184

References

[1] A. Arnold, A. Dicky, M. Nivat. A note about minimal non-deterministic automata.
Bull. EATCS 47, 166-169,1970.

[2] C. Câmpeanu, N. Sântean, S. Yu.Mergible states in large NFATheoretical Computer
Science, 330, 23-34, 2005 .

[3] C. Carrez. On the minimalization of Non-deterministic Automaton. Laboratoire de
Calcul de la Faculté des Sciences de LUniversité de Lille, 1970.

[4] S. Lombardy. Approche structurelle de quelques problèmes de la théorie des auto-
mates. Thèse, Ecole Doctorale d’Informatique, Téléconuuications et Electronique de
Paris, 2001.

[5] L. Polák Minimalizations of NFA using the universal automatonLNCS 3317, 325-
326 2005 .

193 193

193 193

185

O  
  

Olivier Finkel
Equipe de Logique Mathématique,

U.F.R. de Mathématiques, Université Paris 7
2 Place Jussieu 75251 Paris cedex 05, France.

finkel@logique.jussieu.fr

Abstract

We solve some decision problems for timed automata which were raised
by Tripakis in [9] and by Asarin in [3]. In particular, we show that one
cannot decide whether a given timed automaton is determinizable or whether
the complement of a timed regular language is timed regular.

1 Introduction

We assume the reader to be familiar with the basic theory of timed languages and
timed automata (TA) [1].
The set of positive reals will be denotedR. A (finite length) timed word over a
finite alphabetΣ is in the formt1.a1.t2.a2 . . . tn.an, where, for all integersi ∈ [1,n],
ti ∈ R andai ∈ Σ. It may be seen as atime-event sequence, where theti ∈ R
represent time lapses between events and the lettersai ∈ Σ represent events. The
set of all (finite length) timed words over a finite alphabetΣ is the set (R × Σ)?. A
timed language is a subset of (R×Σ)?. The complement (in (R×Σ)?) of a timed
languageL ⊆ (R × Σ)? is (R × Σ)? − L denotedLc.
We consider a basic model of timed automaton, as introduced in [1]. A timed au-
tomatonA has a finite set of states and a finite set of transitions. Each transition
is labelled with a letter of a finite input alphabetΣ. We assume that each transition
ofA has a set of clocks to reset to zero and onlydiagonal-freeclock guard [1]. As
usual, we denoteL(A) the timed language accepted (by final states) by the timed
automatonA. A timed languageL ⊆ (R × Σ)? is said to be timed regular iff there
is a timed automatonA such thatL = L(A).
Many decision problems for timed automata have been studied and solved par-
tially, see [2] for a survey of these results. Some decision problems were recently

194 194

194 194

BEATCS no 87 TECHNICAL CONTRIBUTIONS

186

raised by Tripakis in [9] and by Asarin in [3]. We give in this paper the answer to
several questions of [9, 3]. In particular, we show that one cannot decide whether
a given timed automaton is determinizable or whether the complement of a timed
regular language is timed regular.
For that purpose we use a method which is very similar to that one used in [4] to
prove undecidability results about infinitary rational relations.

2 Complementability and determinizability

We first state our main result about the undecidability of determinizability or reg-
ular complementability for timed regular languages.

Theorem 2.1. It is undecidable to determine, for a given TAA, whether

1. L(A) is accepted by a deterministic TA.

2. L(A)c is accepted by a TA.

Proof. It is well known that the class of timed regular languages is not closed
under complementation. LetΣ be a finite alphabet and leta ∈ Σ. Let A be the set
of timed words in the formt1.a.t2.a . . . tn.a, where, for all integersi ∈ [1,n], ti ∈ R
and there is a pair of integers (i, j) such thati, j ∈ [1,n], i < j, andti+1+ ti+2+ . . .+
t j = 1. The timed languageA is formed by timed words containing only lettersa
and such that there is a pair ofa’s which are separated by a time distance 1. The
timed languageA is regular but its complement can not be accepted by any timed
automaton because otherwise this timed automaton should have an unbounded
number of clocks to check that no pair ofa’s is separated by a time distance 1, [1].

We shall use the undecidability of the universality problem for timed regular lan-
guages: one cannot decide, for a given timed automatonA with input alphabetΣ,
whetherL(A) = (R × Σ)?.

Let c be an additional letter not inΣ. For a given timed regular languageL ⊆
(R × Σ)?, we are going to construct another timed languageL over the alphabet
Γ = Σ ∪ {c} defined as the union of the following three languages.

• L1 = L.(R × {c}).(R × Σ)?

• L2 is the set of timed words overΓ having not any lettersc or having at least
two lettersc.

• L3 = (R × Σ)?.(R × {c}).A, whereA is the above defined timed regular
language over the alphabetΣ.

195 195

195 195

The Bulletin of the EATCS

187

The timed languageL is regular becauseL and A are regular timed languages.
There are now two cases.

(1) First case. L = (R × Σ)?. ThenL = (R × (Σ ∪ {c}))?. ThereforeL has
the minimum possible complexity.L is of course accepted by a determin-
istic timed automaton (without any clock). Moreover its complementLc is
empty thus it is also accepted by a deterministic timed automaton (without
any clock).

(2) Second case.L is strictly included into (R×Σ)?. Then there is a timed word
u = t1.a1.t2.a2 . . . tn.an ∈ (R×Σ)? which does not belong toL. Consider now
a timed wordx ∈ (R×Σ)?. It holds thatu.1.c.x ∈ L iff x ∈ A. Then we have
also :u.1.c.x ∈ Lc iff x ∈ Ac.
We are going to show thatLc is not timed regular. Assume on the contrary
that there is a timed automatonA such thatLc = L(A). There are only
finitely many possible global states (including the clock values) ofA after
the reading of the initial segmentu.1.c. It is clearly not possible that the
timed automatonA, from these global states, accept all timed words inAc

and only these ones, for the same reasons which imply thatAc is not timed
regular. ThusLc is not timed regular. This implies thatL is not accepted
by any deterministic timed automaton because the class of deterministic
regular timed languages is closed under complement.

In the first caseL is accepted by a deterministic timed automaton andLc is timed
regular. In the second caseL is not accepted by any deterministic timed automaton
andLc is not timed regular. But one cannot decide which case holds because of
the undecidability of the universality problem for timed regular languages.�

Below T A(n,K) denotes the class of timed automata having at mostn clocks and
where constants are at mostK. In [9], Tripakis stated the following problems
which are similar to the above ones but with “bounded resources".

Problem 10 of [9]. Given a TAA and non-negative integersn,K, does there exist
a TAB ∈ T A(n,K) such thatL(B)c = L(A) ? If so, construct such aB.

Problem 11 of [9]. Given a TAA and non-negative integersn,K, does there exist
a deterministic TAB ∈ T A(n,K) with L(B) = L(A) ? If so, construct such aB.

Tripakis showed that these problems are not algorithmically solvable. He asked
also whether these bounded-resource versions of previous problems remain unde-
cidable if we do not require the construction of the witnessB, i.e. if we omit the

196 196

196 196

BEATCS no 87 TECHNICAL CONTRIBUTIONS

188

sentence “If so construct such aB" in the statement of Problems 10 and 11.
It is easy to see, from the proof of preceding Theorem, that this is actually the case
because we have seen that, in the first case,L andLc are accepted by deterministic
timed automatawithout any clock.

3 Minimization of the number of clocks

The following problem was shown to be undecidable by Tripakis in [9].

Problem 5 of [9]. Given a TAA with n clocks, does there exists a TAB with n−1
clocks, such thatL(B) = L(A) ? If so, construct such aB.

The corresponding decision problem, where we require only a Yes/ No answer
but no witness in the case of a positive answer, was left open in [9].
Using a very similar reasoning as in the preceding section, we can prove that this
problem is also undecidable.

Theorem 3.1. Let n≥ 2 be a positive integer. It is undecidable to determine, for
a given TAA with n clocks, whether there exists a TAB with n− 1 clocks, such
that L(B) = L(A)

Proof. LetΣ be a finite alphabet and leta ∈ Σ. Let n ≥ 2 be a positive integer, and
An be the set of timed words in the formt1.a.t2.a . . . tk.a, where, for all integers
i ∈ [1, k], ti ∈ R and there aren pairs of integers (i, j) such thati, j ∈ [1, k], i < j,
and ti+1 + ti+2 + . . . + t j = 1. The timed languageAn is formed by timed words
containing only lettersa and such that there aren pairs ofa’s which are separated
by a time distance 1.An is a timed regular language but it can not be accepted by
any timed automaton with less thann clocks.

Let c be an additional letter not inΣ. For a given timed regular languageL ⊆
(R × Σ)?, we construct another timed languageVn over the alphabetΓ = Σ ∪ {c}
defined as the union of the following three languages.

• Vn,1 = L.(R × {c}).(R × Σ)?

• Vn,2 is the set of timed words overΓ having not any lettersc or having at
least two lettersc.

• Vn,3 = (R × Σ)?.(R × {c}).An.

The timed languageVn is regular becauseL andAn are regular timed languages.
There are now two cases.

197 197

197 197

The Bulletin of the EATCS

189

(1) First case.L = (R × Σ)?. ThenVn = (R × (Σ ∪ {c}))?, thusVn is accepted
by a (deterministic) timed automatonwithout any clock.

(2) Second case.L is strictly included into (R×Σ)?. Then there is a timed word
u = t1.a1.t2.a2 . . . tk.ak ∈ (R×Σ)? which does not belong toL. Consider now
a timed wordx ∈ (R × Σ)?. It holds thatu.1.c.x ∈ Vn iff x ∈ An.
Towards a contradiction, assume thatVn is accepted by a timed automaton
B with at mostn − 1 clocks. There are only finitely many possible global
states (including the clock values) ofB after the reading of the initial seg-
mentu.1.c. It is clearly not possible that the timed automatonB, from these
global states, accept all timed words inAn and only these ones, because it
has less thann clocks.

But one cannot decide which case holds because of the undecidability of the uni-
versality problem for timed regular languages accepted by timed automata withn
clocks, wheren ≥ 2. �

Remark 3.2. For timed automata with only one clock, the inclusion problem,
hence also the universality problem, have recently been shown to be decidable by
Ouaknine and Worrell [8]. Then the above method can not be applied. It is easy
to see that it is decidable whether a timed regular language accepted by a timed
automaton with only one clock is also accepted by a timed automaton without any
clock.

4 Concluding remarks

We have restricted here the study to the case offinite timed words as in [9, 3].
However the above results can be easily extended to the case of timed regularω-
languages accepted by Büchi timed automata.
The simple idea behind the proofs was already used in [4] and relies heavily on
the undecidability of the universality problem.
It could be easily used in other contexts, for instance to study the notion of am-
biguity for context-free languages. Ginsburg and Ullian proved in [5] that one
cannot decide whether a given context-free language is non-ambiguous or inher-
ently ambiguous. We know that the class of inherently ambiguous context-free
languages can be partitioned in an infinite hierarchy by considering the degree of
ambiguity of a context-free language [6]. Moreover in recent works of Wich and
Naji the context-free languages which are inherently ambiguous of infinite de-
grees can also be distinguished by considering the growth-rate of their ambiguity
with respect to the length of the words [7, 10]. We are not aware of published re-
sults about the decidability of membership to subclasses of context-free languages

198 198

198 198

BEATCS no 87 TECHNICAL CONTRIBUTIONS

190

defined with these notions of degrees of ambiguity.
Using the undecidability of the universality problem for context-free languages
and a similar method as in this paper, we can easily prove results like: one cannot
decide whether a given context-free language has a degree of ambiguity which is
smaller thank, wherek ≥ 2 is a positive integer, or which is smaller than “expo-
nentially ambiguous" (in the sense of Naji and Wich).

References

[1] R. Alur and D. Dill, A Theory of Timed Automata, Theoretical Computer Science,
Volume 126, p. 183-235, 1994.

[2] R. Alur and P. Madhusudan, Decision Problems for Timed Automata: A Survey,
in Formal Methods for the Design of Real-Time Systems, International School on
Formal Methods for the Design of Computer, Communication and Software Sys-
tems, SFM-RT 2004, Revised Lectures. Lecture Notes in Computer Science, Vol-
ume 3185, Springer, 2004, p. 1-24.

[3] E. Asarin, Challenges in Timed Languages, From Applied Theory to Basic Theory,
Bulletin of the European Association for Theoretical Computer Science, Volume 83,
p. 106-120, June 2004.

[4] O. Finkel, Undecidability of Topological and Arithmetical Properties of Infinitary
Rational Relations, RAIRO-Theoretical Informatics and Applications, Volume 37
(2), 2003, p. 115-126.

[5] S. Ginsburg and J.S. Ulllian, Ambiguity in Context Free Languages, JACM 13 (1),
1966, p. 62-89.

[6] H. A. Maurer, The Existence of Context Free Languages which are Inherently Am-
biguous of any Degree, Dept. of Mathematics, Research Series, University of Cal-
gary, 1968.

[7] M. Naji, Grad der Mehrdeutigkeit Kontextfreier Grammatiken und Sprachen, Diplo-
marbeit, FB Informatik, Johann-Wolfgang-Goethe-Universität, Frankfurt am Main,
1998.

[8] J. Ouaknine and J. Worrell, On the Language Inclusion Problem for Timed Au-
tomata: Closing a Decidability Gap, in the Proceedings of the 19th Annual IEEE
Symposium on Logic in Computer Science , LICS 2004, Turku, Finland, IEEE
Computer Society, 2004, p. 54-63.

[9] S. Tripakis, Folk Theorems on the Determinization and Minimization of Timed Au-
tomata, in the Proceedings of FORMATS’2003, Lecture Notes in Computer Science,
Volume 2791, p. 182-188, 2004.

[10] K. Wich, Exponential Ambiguity of Context-free Grammars, Proc. of 4th Int. Conf.
on Developments in Language Theory 1999, World Scientific, Singapore.

199 199

199 199

191

T      
:   ∗

Pál Dömösi† Géza Horváth‡

To the memory of Professor Alexandru Mateescu

Abstract

In this paper we give two simple proofs to show that the languageQ of all
primitive words over a nontrivial alphabet is not regular. We also give two
simple proofs to show the non-regularity of well-known sublanguages ofQ.

1 Introduction

A word is called primitive if it is not a repetition of another word. Otherwise we
speak about a nonprimitive word. It is a widely known (in)famous problem in
theoretical computer science whether or not the languageQ of all primitive words
over a nontrivial alphabet (having at least two letters) is context-free [2, 3]. It is
strongly conjectured that this language is not context-free. The problem seems
to be simple but nobody could solve it by this time. It is a much more simpler
question whether or notQ is regular. Actually, this question has already answered
indirectly in [2] and [3]: It was shown that the complementer language ofQ is not
context-free.
By well-known results (see, for example, [4]), this implies thatQ is not determin-
istic context-free, i.e.Q is not regular. Later it was shown in [6] thatQ is not
linear which directly implies thatQ is not regular.

∗ This paper was supported by a grant of the Japan-Hungary joint research project given by
Japan Society for Promotion of Science and Hungarian Academy of Sciences. It was also sup-
ported by a grant of the Hungarian National Foundation for Scientific Research (OTKA T049409).
The first author of this work was also supported by a grant from Japan Society for Promotion of
Science (No. L04710) and Xerox Foundation UAC grant (1478-2004), U.S.A. The second author
of this work was also supported by a grant from Japan Society for Promotion of Science (No.
P04028)

†Faculty of Informatics, Debrecen University, Debrecen, Egyetem tér 1., H-4032, Hungary,
domosi@inf.unideb.hu

‡Faculty of Informatics, Debrecen University, Debrecen, Egyetem tér 1., H-4032, Hungary,
geza@inf.unideb.hu

200 200

200 200

BEATCS no 87 TECHNICAL CONTRIBUTIONS

192

All the well-known definitions, notions and notations of the formal language
theory and the automata theory are omitted. (See, for example, [4] and [5] for the
details.)

LetLDFA denote the class of languages which can be accepted by deterministic
finite automata. It is well-known (see, for example, [4, 5]) thatLDFA and the class
of regular languages coincide.

The following statement is well-known.

Theorem 1. (Classical Pumping/Iteration Lemma for Regular Languages)[1]
Let R be a regular language overΣ. Then there is a constant k, depending on R,
such that for each w∈ R with |w| ≥ k there exist words x, y, z ∈ Σ∗ such that
w = xyz and|xy| ≤ k, |y| > 0, xytz ∈ R for all t ≥ 0.

�

It is also well-known (see, for example, [4]) that for every context-free lan-
guageL and regular languageR, L ∩ R is also context-free. Therefore,Q is not
context-free if there exists a regular languageR for which Q ∩ R is not context-
free. The unsuccessful efforts to find a regular languageR having this property
are summarized in the following statement.

Theorem 2. [7, 8] R∩ Q is context-free if R= (ab∗)n,n = p1
f1 . . . pk

fk, where
p1, . . . , pk are distinct prime numbers and either k≤ 4 or 1/p1+ . . .+1/pk ≤ 4/5.

�

The above investigations lead to the next unsolved problem.

Problem 1. [7, 8] Is Q∩ (ab∗)n context-free for every positive integer n?

2 Primitive words and regular languages

Theorem 3. Q is not regular.

Proof. Suppose the opposite. Then, applying Theorem 1, there is a constantk,
depending onQ, such that for eachw ∈ Qwith |w| ≥ k there exist wordsx, y, z ∈ Σ∗

such thatw = xyzand|xy| ≤ k, |y| > 0, xytz ∈ Q for all t ≥ 0.
It is obvious that for every fixed positive integerk there exists a positive integer

m such that the diophantic equation system (k − `)x` + ` = m, ` = 0, . . . , k − 1
has a nontrivial solution with appropriate positive integersx1, . . . , x` > 1. (Then
m = k + i j, wherei is the least common divisor of 2, . . . , k and j is an arbitrary
positive integer.) Consider the wordakbamb with a,b ∈ Σ,a , b. Then for every
` = 0, . . . , k − 1, there exists a positive integerx` > 1 such thata(k−`)x`+`bamb =

201 201

201 201

The Bulletin of the EATCS

193

(amb)2 < Q. Hence, for anỳ = 0, . . . , k − 1,u = 0, . . . , `, xytz < Q, whenever
x = au, y = ak−`, z= a`−ubamb, t = x`. On the other hand, because ofk < m, xyz=
akbamb ∈ Q, a contradiction. �

Next we give another proof of this statement using automata theoretic meth-
ods.

Second proof :Suppose to the contrary, there exists a finite, deterministic automa-
ton A, which accepts the languageQ. We denote the number of states ofA by i.
Let a,b be letters of the input alphabet ofA, and letp = (abm)2 be a word, where
m > i. The automatonA rejects the wordp, becausep is a non-primitive word.
Sincei < m, there exist distinct positive integersj, k with 1 ≤ j < k ≤ m such
that the automaton is in the same state after readingabj andabk. From this, we
can see that the automaton is in the same state after reading the wordabm, and the
word abm−(k− j). Finally, the automaton is in the same state after reading the word
p = (abm)2 = abmabm and the wordabm−(k− j)abm, so the automaton will reject both
words, but the wordabm−(k− j)abm is primitive, which is a contradiction.

�

Now we give two easy proofs for a partial solution of Problem 1.

Theorem 4. For every integer n≥ 2, Q∩ (ab∗)n is not regular.

Proof. Suppose the opposite again. Then, applying Theorem 1, there is a constant
k, depending onQ, such that for eachw ∈ Q with |w| ≥ k there exist words
x, y, z ∈ Σ∗ such thatw = xyzand|xy| ≤ k, |y| > 0, xytz ∈ Q for all t ≥ 0.

We shall use the fact again that for every fixed positive integerk there exists a
positive integermsuch that the diophantic equation system (k− `)x` + ` = m, ` =
0, . . . , k−1 has a nontrivial solution with appropriate positive integersx1, . . . , x` >
1. Consider the wordabk−1(abm−1)n−1. Because ofk < m,abk−1(abm−1)n−1 ∈ Q ∩
(ab∗)n. If x = λ, y = abr , z = bk−r−1(abm−1)n−1 with r ≤ k − 1 then, clearly,xytz <
(ab∗)n, t , 1 and thusxytz < Q ∩ (ab∗)n, t , 1. Now let x = abu, y = b(k−`), z =
b`−u−1(abm−1)n−1 for some` andu with ` = 1, . . . , k − 1,u = 0, . . . , ` − 1. Then
xyx`z < Q, i.e. xytz < Q ∩ (ab∗)n with t = x`. Therefore, there are no words
x, y, z ∈ Σ∗ such thatabk−1(abm−1)n−1 = xyz(∈ Q ∩ (ab∗)n) and |xy| ≤ k, |y| >
0, xytz ∈ Q∩ (ab∗)n for all t ≥ 0, a contradiction. �

Now we also show another proof of this statement using automata theoretic
methods.

Second proof :Suppose to the contrary, there exists a finite, deterministic automa-
ton A, which accepts the languageQ ∩ (ab∗)n. We denote the number of states
of A by i. Let p = (abm)n be a word, wherem > i. The automatonA rejects

202 202

202 202

BEATCS no 87 TECHNICAL CONTRIBUTIONS

194

the wordp, becausep is a non-primitive word. Sincei < m, there exist distinct
positive integersj, k, with 1 ≤ j < k ≤ m such that the automaton is in the same
state after readingabj andabk. From this, we can see that the automaton is in
the same state after reading the wordabm, and the wordabm−(k− j). Finally, the
automaton is in the same state after reading the wordp = (abm)n = abm(abm)n−1

and the wordabm−(k− j)(abm)n−1, so the automaton will reject both words, but the
wordabm−(k− j)(abm)n−1 is a primitive word, which is a contradiction.

�

References

[1] Bar-Hillel,Y., Perles, M., Shamir, E. :On formal properties of simple phrase struc-
ture grammars.Zeitschrift für Phonetik, Sprachwissenschaft, und Kommunikations-
forschung,14 (1961), 143-172.

[2] Dömösi, P., Horváth, S., Ito, M.: On the connection between formal languages
and primitive words.In: Proc. First Session on Scientific Communication, Univ.
of Oradea,Oradea, Romania, 6-8 June, 1991,Anns. Univ. of Oradea, Fasc. Mat.,
1991, 59 – 67.

[3] Dömösi, P., Horváth, S., Ito, M., Formal languages and primitive words,Publ.
Math., Debrecen,20 (1993), 315 – 321.

[4] Harrison, M. A. : Introduction to Formal Language Theory.Addison-Wesley Pub-
lishing Company, Reading, Massachusetts, Menlo Park, California, London, Ams-
terdam, Don Mils, Ontario, Sidney, 1978.

[5] J.E. Hopcroft, J.E., Ullmann, J.D. :Introduction to Automata Theory, Languages,
and Computation.Addison-Wesley, Reading, Massachusetts, Menlo Park, Califor-
nia, London, Amsterdam, Don Mils, Ontario, Sidney, 1979.

[6] Horváth, S.: Strong interchangeability and nonlinearity of primitive words.Proc.
Worksh. AMiLP’95 (Algebraic Methods in Language Processing, 1995),Univ. of
Twente, Enschede, the Netherlands, 6-8 Dec., 1995, Univ. Twente Service Centrum,
1995, 173-178.

[7] Kászonyi, L., Katsura, M., On the context-freeness of a class of primitive words,
Publ. Math., Debrecen,bf 51 (1997), 1 – 11.

[8] Kászonyi, L., Katsura, M., Some new results on the context-freeness of languages
Q∩ (ab∗)n, Publ. Math., Debrecen,54 (1999), 877 – 884.

203 203

203 203

T P C


L R

LRI, Orsay CNRS-Université de Paris Sud
Bât 490, 91405 Orsay France
Laurent.Rosaz@lri.fr

Readers are invited to send comments, and to send exercises, even if they
don’t know the answer. Write to Laurent.Rosaz@lri.fr.

72 Coffee or Milk ?

You have two cups, one with coffee, the other one with milk.
Take a spoon. Take a spoonful of coffee from the coffee cup, and poor it in the

milk. Stir. Take a spoonful of milk (which will include a little coffee) and poor it
in the coffee.

Is there more milk in the coffee or more coffee in the milk ?

73 Bags of coins

You are likely to already know that problem, but look still at the last question.
You haveN bags of coins, withK coins each,K being large. A bag contains

either only valid coins, or only fake coins. A valid coin weighs 10 grams. A fake
one weighs 11 grams. You have a scale that tells you the exact weigh of what you
put on the scale.

First, you know that exactly one bag contains fake coins. Find which one
with one weigh. How big do you needK to be ? Prove that this value ofKmin of
optimal.

Second, every bag may contain fake coins (possibly none of them, possibly all
of them). Find again which ones with one weigh. How big do you needK to be ?
Is yourKmin optimal ? In particular, is there a solution with 10 bags of 500 coins ?
What about 10 bags of 400 coins ?

204 204

204 204

196

S  P P

70 The 50 prisoners

50 prisoners are gathered and are told the following:

There is a room with a lamp, and nobody but a prisoner can switch it on or off.
From time to time, a prisoner is brought into the room. He will see if the lamp is
on or off, and is allowed to switch it off or on. At any time, a prisoner is allowed
to claim that every prisoner has been at least once in the room. If he is right,
every prisoner is freed. If he is wrong, every prisoner is beheaded. Right now,
the prisoners do not know whether the lamp is on or off. The choice of who is
brought in the room in which order is unknown to the prisoners, it is only known
that if no prisoner ever makes a claim, then each prisoner will be brought in the
room infinitely often. Right now, the prisoners can talk, so they can decide for a
protocol, but then, they will be separated and will not be able to talk or see each
other any more.

You are one of the prisoners. Suggest a protocol.

Solution

Choose a prisoner that we will call the leader. If you are a non-leader: when
you are brought into the room, and that the light is off, switch it on. Do so twice,
then don’t do anything. If you are the leader: when you are brought into the room,
and that the light is on, then switch it off. Do so 97 times and when you find the
light off for the 98th time, claim that every prisoner has been at least once in the
room.

There will eventually be a claim, which will be correct:

If the light is initially off, then the 49 non-leaders will switch the light on twice
before the leader makes his claim.

If the light is initially on, then 48 non-leaders will switch the light on twice
and one will switch it on once, before the leader makes his claim.

Note that, if we knew that the light is initially off, a faster protocol is

If you are a non-leader: when you are brought into the room, and that the light
is off, switch it on. Do so ONCE. If you are the leader: when you are brought into
the room, and that the light is on, then switch it off. Do so 48 times and when you
find the light off for the 49th time, claim that every prisoner has been at least once
in the room.

205 205

205 205

The Bulletin of the EATCS

197

71 About a few partitions of integers

A partition of an integern is a decreasing sequence of non-negative integers whose
sum isn. For example, (5,3,2,2,1,1,1) is a partition of 15.

A partition can be represented by a “Young table” which is the histogram of
the sequence. For example, here is the Young table of (5,3,2,2,1,1,1):

A partition isAll-Differentiff the integers are different. It isSlowly-Decreasing
iff two successive integers differ by 0 or 1, and the last integer is 1. It isOdd-
Numberediff every integer is odd.

Let AD(n), S D(n), ON(n), be the number ofAll-Different, respectivelySlowly-
Decreasing, resp.Odd-Numberedpartitions. For example,AD(6) = S D(6) =
ON(6) = 4.1

Show that for everyn, AD(n) = S D(n) = ON(n)

Solution
Transposition (i.e. inverting the x-axis and the y-axis, i.e. applying a sym-

metry with respect to thex = y axis) is a bijection between Young tables ofAll-
Differentpartitions and Young tables ofSlowly-Decreasingpartitions.

To transform anAll-Differentpartition into anOdd-Numberedpartition, write
every numbern occurring in the partition as 2k ∗ p wherek ≥ 0 andp is odd, and
replacen by 2k occurrences ofp.

This is a bijection. To do the converse transformation, count the numberα of
occurrences of the odd numberp, write α as a sum 2k1 + ... + 2ks of powers of 2,
and replace thep’s by 2k1 ∗ p, ..., 2ks ∗ p.

1The corresponding sets of partitions are:
{(6), (5,1), (4,2), (3,2,1)} respectively {(3,2,1), (2,2,1,1), (2,1,1,1,1), (1,1,1,1,1,1)} respec-
tively {(5,1), (3,3), (3,1,1,1), (1,1,1,1,1,1)}.

206 206

206 206

207 207

207 207

R 
C

208 208

208 208

209 209

209 209

201

R  ICALP 2005 / PPDP 2005

32nd Int. Colloquium on Automata, Languages and Programming

and

7th Conference on Principles and Practice of Declarative Programming

July 11-15, 2005, Lisboa, Portugal

Manfred Kudlek

ICALP’05, the 32th (25-th) in this series of conferences on Theoretical Com-
puter Science, took place from July 11-15, 2005, together with the workshops
from July 10-17, 2005, atLisboa, for the first time in Portugal. It was co-located
with PPDP’05 (The 7th ACM/SIGPLAN Conference onPrinciples and Practice
of Declarative Programming) which was held from July 11-13, 2005. There was
also anInternational Conference on Semigroups and Languages (CSL’2005)in
Honour of the 65th birthday of Donald B. McAlister which took place from July
12 to 15, 2005 at Centro de Algebra da Universidade de Lisboa. Conference site
for ICALP and PPDP wasGulbenkian Foundation, and for the workshops Insti-
tuto Superior Técnico.

ICALP’05 was organized by Departamento de Informática e de Centro Infor-
mática e Tecnologias da Informação, Faculdade de Ciências e Tecnologia, Uni-
versidade Nova de Lisboa. The Organizing Committee consisted of L́ C
(co-chair), M M (finance chair), L́ M (co-chair), A-
́ R (workshops co-chair), V V (workshops co-chair),
J̃ S, J́ P, and A D, S R, F R, P
A̃, M-  D̃, PM, FM, J̃ R, R
S, C T, H V.

PPDP’05 was organized by Centro de Inteligência Artificial, Faculdade de
Ciências e Tecnologia, Universidade Nova de Lisboa. The organizing committee
consisted of P B, F A, and J C.

ICALP’05 was sponsored by EATCS, CITI (Centro de Informática e Tecnolo-
gias da Informação, FCT UNL), CLC (Centre for Logic and Computation, IST),
Elsevier, FCT (Fundação para a Ciência e Tecnologia), Faculdade de Ciências
e Tecnologia da Universidade Nova de Lisboa, Springer-Verlag, Associação de
Turismo de Lisboa, Caixa Geral de Depósitos, Microsoft, and Fundação Calouste
Gulbenkian. PPDP’05 was sponsored by ACM, FCT (Fundação para a Ciência
e Tecnologia), CENTRIA (Centro de Inteligência Artificial), and Faculdade de
Ciências e Tecnologia da Universidade Nova de Lisboa.

ICALP’05 was accompanied by satellite 8 workshops. Dates, number of in-
vited talks and accepted papers, as well as total numbers of participants (P) and of

210 210

210 210

BEATCS no 87 REPORTS FROM CONFERENCES

202

such for the workshops only (W) are given below.

WS D I A P W
COSMICAH 7.10. 1 7 14 10
DCM 7.10. 1 13 26 18
PDMC 7.10. 1 9 15 9
SOS 7.10. 2 7 23 10
ARSPA 7.16. 2 7 24 9
SD 7.16. 2 14 28 23
PCC 7.16.-17. 14 23 16
WSA 7.16. 1 12 46 33

ICALP’05 itself was attended by 255 participants (including 11 students) from
29 countries, together with satellite workshops by 384 participants from 32 coun-
tries. PPDP’05 was attended by 60 participants, 28 of them also attended ICALP
such that both conferences together had 416 participants. For ICALP this is a
new record. Details are given below where W and P indicate participants only for
workshops, and PPDP, respectively.

C I W P C I W P C I W P C I W P
BE 3 1 EE 2 2 IT 18 6 3 RU 2 3 2
BR 1 ES 3 1 2 JP 11 4 SE 9 1
CA 13 2 1 FI 4 1 1 KR 3 SG 1
CH 6 3 1 FR 30 20 13 NG 1 6 SK 1
CN 1 GR 2 NL 8 5 2 TW 1
CZ 10 1 HK 1 NO 1 1 UA 1
DE 23 24 1 IL 6 PL 4 2 1 UK 10 25 3
DK 5 4 IN 5 PT 27 27 8 US 45 2 8

ICALP’05 covered the following fields in 3 tracks. (A): Algorithms, Au-
tomata, Complexity and Games, (B): Logic, Semantics, and Theory of Program-
ming, (C): Security and Cryptography Foundations.

The scientific program consisted of 6 invited lectures, 2 special lectures, and
113 contributions selected from 407 submitted papers from 39 countries, the high-
est number of submissions for ICALP so far. Statistical details on invited lec-
tures, submitted, and accepted papers are given in the tables below. The sci-
entific program of PPDP consisted of 3 invited lectures (2 joint with ICALP)
and 20 contributions. The program of ICALP’05, and those of the workshops,
can be found athttp://icalp05.di.fct.unl.pt/, and that of PPDP’05 at
http://centria.di.fct.unl.pt/.

211 211

211 211

The Bulletin of the EATCS

203

A B C Σ

S A S A S A S A
1 73 9 11 3 10 6 94 18
2 100 26 30 7 33 13 163 46
3 50 20 25 10 19 3 94 33
4 28 8 6 4 11 2 45 14
5 5 2 3 8 2
6 2 1 3

258 65 75 24 74 24 407 113

I A B C Σ

S A S A S A S A
AU 11

4
1
2 13

4

BE 2
3 21

4 11
4 211

12 11
4

BG 1
4

1
4

1
4

1
4

BR 21
3 21

3

CA 1 1641
60 91

4
1
2

1
2

3
4 1714

15 93
4

CH 61
6 11

2 111
30

1
3 51

2 1 13 1
30 25

6

CL 1 1
CM 1

3
1
3

1
3

1
3

CN 52
3 5 31

2 141
6

CZ 51
3 1 51

3 1
DE 1 24 5

12 81
2 711

30 15
6 33

4 1 35 8
15 111

3

DK 413
30 313

30 11
2

1
2 514

15 314
15

EE 11
3

1
3 11

3
1
3

ES 43
4 11

3
1
3 2 8 1

12
1
3

FI 21
6

5
6 21

6
5
6

FR 21
5 152

5 311
15 9 7

15 3 51
2 21

2 3011
30 9 7

30

GR 33
4 1 2 53

4 1
HK 45

6 1 45
6 1

HR 1 1
HU 1

3 1 11
3

IE 1 1 2
IL 1 2141

60 343
60 1 1 1 2341

60 443
60

IN 41
3 21

3
1
2 3 1 75

6 31
3

IT 9 3 9 32
3 31

2 2 211
2 82

3

JP 61
6

1
2 31

6 3 1 121
3 11

2

KR 2 8 10

212 212

212 212

BEATCS no 87 REPORTS FROM CONFERENCES

204

LV 1 1
NL 4 13

4 2 7
10 2 2 1 8 7

10 43
4

NO 15
6

1
3 15

6
1
3

PL 11
4

3
4

1
2

1
2 11

2 31
4 11

4

PT 1 1
4

1
4 1 21

4
1
4

RU 21
2 21

2

SE 81
6 41

2 11
3 11

3 1 1 101
2 65

6

SG 11
3 11

6 111
12

2
3 4 5

12
2
3

TR 1 1
TW 1 1

4
1
4 11

4 21
2

1
4

UK 1 51
5 11

6 91
2 32

3
1
4 1419

20 45
6

US 14
5 86 1

60 16 7
10 153

5 51
2 183

4 10 12011
30 321

5

YU 1 1
7 258 65 75 24 74 24 407 113

The conference site is a centre for cultural, educational and human activi-
ties, hosting the fine art collection of the Armenian millionaire and philanthropist
C S G, born in 1869, who came to Portugal in 1942 and
died there in 1955, dedicating a great amount of his property to the foundation.

ICALP’05 consisted of 34 sessions (20 in A, 7 in B, 7 in C), held in up to 3 (4
with PPDP’05 on Tuesday) parallel sessions, such that there were some decision
problems where to go, in particular for track A which 7 times was split into 2. All
contributions were presented, that of HW by H L.

ICALP’05 was opened on Monday morning by L́ M who gave de-
tails on the conference and thanks to all authors, PC members, organizers, invited
speakers and sponsors. L́C gave hints on Lisboa and explained the ICALP
logo, showingPonte 25 de Abril, the bridge over theTejo.

The first invited lecture was‘Cryptography - State of the Science’by A
S. It was his second one on ICALP’s, an excellent and very interesting,
also personal, overview on the history of and recent results in the field. He talked
on cryptograpy as a tool, security as a goal, the security paradox, privacy (Clinton
in 1989 : ‘Enough is enough’), the lack of theoretical basis in 1980, the devel-
opment of provable security, and the first crypto conferences (CRYPTO’81 with
first chair R R and first speaker himself), the progress between 1980 and
1990, on differential and linear cryptoanalysis, the darkest secret (NSA, FBI, CIA,
hackers), that there is nothing fundamental on public key systems since 1990, new
crypto systems, and some predictions, also asking and answering‘Break RSA by
listening to sound of PC? Yes!’.

The second one, given by L G. V, (already his third invited talk
on ICALP’s), on ‘Holographic Circuits’, was also an excellent and interesting

213 213

213 213

The Bulletin of the EATCS

205

summary of complexity theory, complexity classes (‘At 1000th ICALP: how will
it look like?’), application of linear superpositions to classify algorithms, reduc-
tions, relations to physical problems, holographic circuits, and finishing with the
question if the existence of a holographic algorithm‘either is true or the most
obviously false statement in Computer Science’.

J C. M (joint with PPDP) (co-authors A D, A D,
V S, M T) presented the third, also very good one, with
‘Security Analysis of Network Protocols: Logical and Computational Methods’
(in the proceedings ‘Probabilistic Polynomial-Time Semantics for a Protocol Se-
curity Logic’), on protocols, symbolic analysis of protocol security, computational
analysis, combination of both, asking also‘If proceedings exist, there is a 2 page
list of references. Does anyone have seen them?’, symbolic and computational
models and their combination, using temporal logic, and presenting CPCL (com-
putational protocol compositional logic). He finished with‘Science is a special
process’.

The fourth one by G C (joint with PPDP) (co-author A
F) on ‘A Gentle Introduction to Semantic Subtyping’was a very good and
clear introduction on activations and goals (models, circularity (‘the dog bites it-
self ’, bootstrap (‘dog with shoe’)), semantic subtyping (‘we need the model to
state how types are related’), subtyping algorithms, applications to a language,
and extensions. His conclusion was‘La morale d’histoire est ...’.

The fifth invited lecture by B M (co-authors M G,
T L̈, K T) on ‘Nash Equilibria, the Price of Anarchy
and the Fully Mixed Nash Equilibrium Conjecture’was a good and interesting,
well illustrated talk on alove affair with game theory, in particular its fields of
applications like the WWW and related ones, routing games, weighted games,
equilibria and existence of such, and the price of anarchy. At the end he showed
his 7 co-authors (including family members!).

L L, with the sixth invited lecture‘Logics for Unranked Trees: An
Overview’, gave a good and fast survey on relation between ranked, unranked,
unordered trees and logics (MSO, LTL), efficient tree logic, navigation in trees,
and applications (XML). He started with‘Most works have been published other
than at ICALP’, and also mentioned an example of a possible query result‘Titles
of all books co-authored by W. G. Bush’.

There first invited lecture in PPDP’05 was given by M H on
‘Abstraction Carrying Code and Resource Awareness’.

To mention are also the very good and interesting talks by the award winners
of best (student) papers. M Z, solving a long open problem in cryp-
tography and complexity, although that looks very simple, N K on the
complexity of solving equations on finite fields, D P on weak bisimu-

214 214

214 214

BEATCS no 87 REPORTS FROM CONFERENCES

206

lation, M P̆̧ on dynamic data structures (referring also toXρoνoς and
Yggdrasill), and N S on communication complexity.

The good talks by H L on public-coin argument systems, by O
H on lower bounds on efficiency of crypto systems, by N T-
, starting with ‘This gives me 45 minutes’, on hierarchical data processing,
and by K K on protocols for atomic broadcasting, mentioning also the
system SINTRA (‘useful topic you can work a lot of time on it’), should not be
omitted, either.

Good and interesting presentations were also given by T M, with An-
thropo Cryptographyand good illustrations, on cryptographic protocols, by N-
 H, showing nice illustrations with Alice and Bob in prison trying to
escape, on steganography, and by A B on classification of Boolean func-
tions with relation to cryptography as well.

Very nice talks gave G S on new results on finite automata, S-
 L on equivalence ofZ-automata, E C on inverse cellular
automata, and F̧ L on groupoids recognizing regular languages. A
colourful talk, with pink background, was given by M B, and a very
good and interesting one, also in pink, by M́ A on password encryption.
Nice and interesting talks presented also E B on Petri algebras, W
F on failure semantics, K C, speaking very fast, with
good illustrations, on complexity of stochastic Rabin and Streett games, and M-
 Y on probabilistic and stochastic models for decision problems.

Other good and interesting talks presented S D on the complexity of
SAT, V K on visibly pushdown languages, J F on multiparty com-
munication complexity, and N S on propositional proof complexity.
Nice good presentations were given by D W̈, his first non-crypto
talk, on GCD-algorithm in rings of integers, by R Š on query complex-
ity, by F́́ M, starting with‘No quantum theory needed’, on quantum
complexity of group commutativity, and by MG on extension preserva-
tion in finite structures.

The proceedings, edited by L́ C, G I, L́ M,
C P, and M Y (the highest number of editors so far, and
with XXVII +1480 pages the biggest ICALP volume so far), have been published
as Springer LNCS 3580. They contain all contributions, and 5 of the invited lec-
tures (that of G C only as an extended abstract, and unfortunately
not that of A S). The proceedings of PPDP’05, edited by E F and
containing all invited lectures and contributions, have been published as a report
of ACM/SIGPLAN.

The EATCSGeneral Assembly was held on Tuesday evening. On it there is
a separate report. B R distributed presents to the organizers and PC

215 215

215 215

The Bulletin of the EATCS

207

Jean-Eric Pin 101
2 ICALP Contributors

Kurt Mehlhorn 101
6

Juhani Karhumäki 847
60 Michael Rabin 5

Zvi Galil 8 Arnold Schönhage 5
Philippe Flajolet 71

4

Amir Pnueli 71
6 Burkhard Monien 459

60

Grzegorz Rozenberg 7 Dominique Perrin 45
6

Paul Vitányi 611
12 Zohar Manna 45

6

Mihalis Yannakakis 611
12 Thomas Henzinger 43

4

Claus-Peter Schnorr 61
2 Juraj Hromkovǐc 4 7

10

Torben Hagerup 61
2 Denis Thérien 4 7

12

Karel Čulik II 6 Manfred Droste 41
2

Géraud Sénizergues 6 Robin Milner 41
2

John Reif 53
4 Ming Li 4 5

12

Walter Vogler 51
2 Moshe Vardi 41

3

Joost Engelfriet 51
2 Maurice Nivat 41

4

Matthew Hennessy 51
2 Moti Yung 41

4

Arto Salomaa 51
2 Volker Diekert 41

6

Juris Hartmanis 51
3 Piotr Berman 41

6

Andrzej Lingas 51
3 Christophe Reutenauer 4

Ronald Book 51
4 Marcel Paul Schützenberger4

Christos Papadimitriou 51
4 Davide Sangiorgi 4

Christian Choffrut 5 Leslie Valiant 4

chairs. At the end the author of this report gaveEATCSbuttons to those having
reached 5 or more full papers on ICALP’s (M Y, A S,
C P who due to an error in updating didn’t get them earlier,
and A L), as well as to the 5 editors of the proceeedings (see above).
The current list of active contributors is given in the table above.

On Thursday afternoon several special events took place.
The first one was theEATCSAward ceremony. After M N gave a

short introduction, J  L explained the decision of the award commit-
tee (M D-C, W T, and himself) to present
the award to R M for his outstanding contributions to the development
of mathematical theory of computation. After that he offered the prize to the hon-
oured. In the following R M gave an excellent talk (it was his third in-

216 216

216 216

BEATCS no 87 REPORTS FROM CONFERENCES

208

vited or special lecture on ICALP’s)‘Software Science from Virtual to Reality’on
30 years history of machines, programming languages, semantics, modelling of
systems, interactive processes (‘No intrinsic mathematical justification for mod-
els, lack of dignity of pure science’). He finished with‘Much more chance than
ever before to apply models in practice. Informatics has a long time to go’.

After that G A informed us on the G̈ P 2005 which was
given on STOC’2005 to NA, YM, MS for their article
‘The Space Complexity of Approximating the Frequency Moments’(JCSS 58, pp
137-147 (1999)). It was already the second one for M S.

Following that was the presentation of best paper (BPA) and best student paper
awards (BSPA). Because of 8 equivalent high quality papers there was no BPA in
A. The BSPA was given by G I to M P̆̧ (the co-author
C E. P̆̧ was not present) for the paper‘On Dynamic Bit-probe Com-
plexity’. The BPA in B was given by C P to M G, and
N S who gave the presentation (the 3rd author C K
was not present) for their paper‘Tight Lower Bounds for Query Processing on
Streaming and External Memory Data’, and the BSPA to D P for the con-
tribution ‘Up-to Tecniques for Weak Bisimulation’. For track C M Y gave
the BPA to M Z for the paper‘Simple Extractors via Constructions of
Cryptographic Pseudo-random Generators’, and the BSPA to N K for
his paper‘Solvability of a System of Bivariate Polynomial Equations over a Finite
Field’. All their presentation were very good and interesting, with a number of
nice new results.

The next highlight was theElsevier TCS30th Anniversary Ceremony. M-
 N informed us on the history ofEATCSandTCS. Next D S
explained the reasons for the prize which was given to the author of the mostly
cited paper inTCS(≥ 475 citations),‘Linear Logic’ by J-Y G (TCS
50(1), pp 1-102 (1987)). It is an extraordinary paper for its short title, length, and
its influence on many other fields. Furthermore, it is the only paper never refereed.

In the following J-Y G gave an interesting and very vivid talk
on the history of his works, how he came to logics, that it was his first work in
Computer Science, and on influence on other fields like linguistics. Adressing
M N he said‘Maurice, don’t do it for a second time!’

The social program started on Monday evening 18h with a visit ofOceanario
de Lisboa. After exhaustive views on oceanic life a reception was held. After 21h
we left that interesting place. The second event, starting at 14h on Wednesday,
was the excursion toSintra, where we visitedPalácio da Penaon top, and the
village at the foot ofSerra de Sintrawhere there was some time for shopping.
After that we crossed the mountains to visit the cliffs and light house ofCabo da
Roca, the western most point of the continent. Along the coast, passing through

217 217

217 217

The Bulletin of the EATCS

209

Cascais, we returned to Lisboa, arriving there by 20h.
The last event was the conference dinner on Thursday evening atEstufa Real,

a Royal green house and hunting place, nearPalácio Nacional de Ajudain the
western parts of Lisboa. It was well after 23h when we left that place. The menu
consisted of

Seafood Vol-au-Vent
Grilled Tenderloin Estufa Real
Tulip of Exotic Fruits with Hazelnut Ice Cream
Coffee and Petits Fours
Wines - white and red Adega Vila Bucelas
Water

Thus this anniversary ICALP was successful again, of a high scientific level,
very well organized and in a relaxed atmosphere.Muito abrigado. Next ICALP
will be held inVenezia, from July 10 to 14, 2006, together with workshops from
July 9 to 16, 2006.

A L  andB  V.

218 218

218 218

210

R  APC25

Algebraic Process Calculi: The First Twenty Five Years and Beyond
August 1–5, 2005

University of Bologna Residential Center
Bertinoro (Forlì), Italy

Luca Aceto

Now that the dust has settled, and I am back in Reykjavík, I feel that it is
appropriate for me to produce a short report on the workshop “Algebraic Process
Calculi: The First Twenty Five Years and Beyond” that I co-organized in Berti-
noro together with Mario Bravetti, Jim Davies, Wan Fokkink, Andrew D. Gor-
don, Joost-Pieter Katoen, Faron Moller and Steve Schneider. The event in part
was driven by the idea of a “CONCUR re-union” endorsed by Jos Baeten, Jan
Bergstra, Tony Hoare, Robin Milner, and Jan Willem Klop. It was sponsored by
the Bertinoro International Center for Informatics (BICI), BRICS and Microsoft
Research. Unesco offered some scholarships to support the participation of PhD
students.

Being one of the organizers makes me extremely biased in the evaluation of the
event, but I do believe that the workshop was a great success, both scientifically
and socially. First of all, we had about eighty participants, most of whom attended
the whole workshop. Secondly, the quality of the presentations and of the ensuing
discussions was very high, and pleasant academic chat continued well into the
night at the local restaurants and wine bars. Echoing Robin Milner’s words at the
closing of the workshop, I feel that I have learned much from the event, despite
having to miss parts of talks in order to take care of some organizational issues,
and that the workshop has given a very good snapshot of the status of research in
concurrency theory within the process calculi community.

Since many of the participants wished to contribute talks, we decided to divide
the presentations into three main categories: five one hour keynote addresses (one
per day), thirty minute “standard talks”, and fifteen minute short presentations.

The keynote addresses were delivered to a consistently large audience by
Martín Abadi, Rob van Glabbeek, Tony Hoare, Jan Willem Klop and Robin Mil-
ner at the beginning of the programme for each day of the workshop.

Tony Hoare kicked off the workshop on Monday, 1 August, by presenting
some work of his that aims at using the notion of retraction to unify different
theories of concurrency. More precisely, he argued that theories of concurrency
can be distinguished by their choice of pre-ordering relation, used to compare
processes and to prove their correctness. For example, theories based on CCS are
often pre-ordered by some notion of simulation or bisimulation, whereas theories

219 219

219 219

The Bulletin of the EATCS

211

based on CSP choose some notion of observational refinement (inclusion) as their
pre-order. Hoare’s strategy for unification of two theories is based on the definition
of a functionL (for link), which maps the processes of the source theory onto those
of the target theory. The ordering relation of the target theory is a composition of
the linkL with the ordering relation of the source theory. In his talk, Hoare showed
how to use SOS transition rules of a structured operational semantics to define a
series of such functions, and that their composition is a retraction.

Robin Milner’s talk reported on his long term efforts to base a broad theory of
processes on the way that placing, or locality, interacts with linking or connectiv-
ity. This theme has been around in many forms—for instance, in the ambient cal-
culus of Cardelli and Gordon, and in Parrow’s net-like variants of theπ-calculus.
In his lecture, Milner introduced bigraphs, and traced, by means of examples, the
ways that placing and linking collaborate to yield many aspects of process activ-
ity: remote interaction, suppression or enablement of activity, parametric reaction
regimes, and binding (static or dynamic).

Jan Willem Klop’s seminar presented a lovely historical reflection on his de-
velopment of the theory of ACP together with Jan Bergstra (who, unfortunately,
could not be with us in Bertinoro because of previous engagements). He showed
us photos of Jan and him as young men, copies of slides used in early talks re-
porting on their ACP work, and delighted us with a description of some on-going
work with Clemens Grabmayer and Bas Luttik on the development of a geometry
of processes.

Jan Willem Klop’s presentation was followed by a forty five minute address
by Jos Baeten, one of the prime movers behind the CONCUR conference series
and the early CONCUR projects funded by the European Union. Jos presented
some recent joint work with Mario Bravetti that aims at contributing to the uni-
fication of work done in the three classic process algebras CCS, CSP and ACP.
He defined a generic process algebra where each basic mechanism of CCS, CSP
and ACP is expressed by an operator, and which can be used as an underlying
common language. He showed an example of the advantages of adopting such
a language instead of one of the three more specialized algebras: producing a
complete axiomatization of finite-state behaviours.

Martín Abadi delivered his address the morning after the conference excur-
sion to Ravenna, where we had the chance to admire some of its world famous
and beautiful mosaics, and the conference dinner in Cesenatico. Despite the late
return to Bertinoro, a packed room listened to his well paced lecture on the use of
process calculi to model and analyze security mechanisms. He focused on secu-
rity protocols and their study through dialects of theπ-calculus, and reviewed the
development of those dialects and their applications. He also presented some of
his recent progress in providing complexity-theoretic justifications for symbolic
models of cryptography.

220 220

220 220

BEATCS no 87 REPORTS FROM CONFERENCES

212

In the last of the invited addresses, Rob van Glabbeek raised the question of
how to specify timeouts in process algebra, and argued that the basic formalisms
fall short in this task—at least if we consider generative rather than reactive ma-
chines. The lecture was “vintage Rob van Glabbeek”, and generated a fair amount
of discussion.

The thirty minute and the short presentations offered a bird’s eye view of the
field of algebraic process calculi and other topics in concurrency theory. There
were so many interesting talks that I cannot hope to do justice to all that was said
at the workshop in the short space of this report. Here, it suffices to say that the
audience was treated to a collection of talks

• putting the history of the development of the theory of some process calculi
into perspective—e.g., talks by Stephen Brookes and Joel Ouaknine on the
development of the theory of CSP, by Rocco De Nicola on Klaim, by Davide
Sangiorgi on the history of the notion of bisimulation, and by Kim G. Larsen
on the notion of quotienting—,

• presenting applications of ideas of process calculi in other fields of (com-
puter) scientific research—e.g., talks by Samson Abramsky on quantum
computation, Corrado Priami on the use of process calculi in biology, by
Ed Brinksma on embedded systems and by Gianluigi Zavattaro on web
services—,

• describing the use of process calculi in the description and analysis of non-
trivial computing systems and discussing the strengths and weaknesses of
these formalisms in applications—e.g., talks by Hubert Garavel on interfac-
ing process calculi with the real world, by Jan Friso Groote on the appli-
cations ofµCRL as well as suitably thought provoking addresses by Uwe
Nestmann and Peter Sewell—or

• reporting on the development of variations on classic process calculi to ac-
count for the description of phenomena in reactive computation like real-
time or stochastic behaviour, or issues related to security in computation—
e.g., talks by Cedric Fournet, Catuscia Palamidessi, Holger Hermanns and
Christel Baier.

The complete list of the talks that were delivered at the workshop is available at
http://www.cs.auc.dk/~luca/BICI/PA-05/abstracts.html, and the or-
ganizers plan to make the slides for all of the talks available there soon. This will
allow the readers of this piece to experience, at least in part, some of the excit-
ing presentations that we were treated with in Bertinoro. For the time being, I
encourage all of you to browse through volume NS-05-3 of the BRICS Notes Se-
ries (edited by Andrew D. Gordon and myself) that contains a collection of short

221 221

221 221

The Bulletin of the EATCS

213

essays that we commissioned to several members of the research community on
algebraic process calculi. The organizing committee decided from the very start
that the volume shouldnot consist of a collection of long technical articles. (After
all, there are already plenty of standard outlets for those contributions.) Rather,
we decided to solicit from the participants at the workshop, and other selected
members of our community, short essays on the theme of algebraic process cal-
culi. Some ideas for papers that we proposed to potential contributors were: a
reminiscence about the early days; a prospectus for future research; a statement
of challenges or open problems; a history of a thread of research; a critical as-
sessment of an idea or a project; a review of a seminal paper and its impact; or
even a self-contained technical observation. The response from the colleagues we
contacted was overwhelmingly positive, and beyond our most optimistic expecta-
tions. I trust that you will enjoy reading their varied and interesting contributions.
As we did not seek scientific articles in the usual sense, the contributions in the
volume are unrefereed.

Apart from our sponsors, on behalf of the organizing committee, I thank Elena
Della Godenza (University Residential Centre of Bertinoro) for her tireless orga-
nizational and secretarial assistance at all times, and Uffe Engberg (BRICS) for
his work in the production of the aforementioned volume of essays on algebraic
process calculi.

Overall, I feel that this workshop gave an excellent testimony of the vitality of
research in the field of algebraic process calculi, and offered further confirmation
of the suitability of the facilities in Bertinoro for the hosting of research work-
shops, schools and other high quality events in Computer Science. I encourage
the readers of the Bulletin interested in organizing workshops on all aspects of
Theoretical Computer Science to consider the University Residential Centre of
Bertinoro as a possible location for their events. I, for one, might be tempted to
organize a third workshop on process calculi there within a couple of years.

222 222

222 222

214

Pictures from APC 25 (by L. Aceto)

The participants

223 223

223 223

215

R  CPM’2005

16th Annual Symposium on Combinatorial Pattern Matching
Jeju Island, Korea, June 19 – 22, 2005

Shiri Dori

The 16th annual Symposium on Combinatorial Pattern Matching was held 19–
22 June 2005 in the picturesque Jeju Island in Korea. The venue was the Ramada
Hotel in Jeju City, along the coast.

The conference was organized by Dong Kyue Kim, Yoo-Jin Chung, Sung-
Ryul Kim, Heejin Park, Jeong Seop Sim and Jin Wook Kim, and led by the ven-
erable Kunsoo Park. Upon arrival, foreign participants were debriefed regarding
Korean family names, so that they should not wonder whether the organizers are
all related to each other (they are not).

Two invited talks were presented. The first by Ming Li titledSuper pat-
terns and their applications in bioinformatics and finance, and the second by
Esko Ukkonen -In the search of motifs (and other hidden structures). There
were 37 interesting talks, and over 80 participants from fifteen countries attended.
Further details of the program can be found on the conference web site,http:
//theory.snu.ac.kr/cpm2005/.

Social highlights included a formal banquet and two excursions. The banquet
consisted of a formal dinner in Western style. The dinner was followed by an en-
chanting show of Korean traditional music, presented by the lovely Sukhie Moon,
Kunsoo Park’s wife, and performed by four students. In the first excursion, par-
ticipants toured through Eastern Jeju, taking a cruise around some smaller islands
and viewing sunrise peak; the tour continued to a beach, and wrapped up with a
visit to a fun maze park. The second excursion was spontaneously organized, due
to requests of many participants to climb Mount Halla, an extinct volcano and the
largest mountain in South Korea. This excursion occurred on June 23, after the
conference officially ended.

CPM 2006 will be hosted in Barcelona, Spain in July 5–7, as announced by
Gabriel Valiente, who will be co-chair. Surely, next year’s conference will be as
successful as CPM 2005.

List of Talks

• Sharper Upper and Lower Bounds for an Approximation Scheme for
CONSENSUS-PATTERNby Brona Brejova, Daniel G. Brown, Ian M. Har-
rower, Alejandro Lopez-Ortiz, and Tomas Vinar.

224 224

224 224

BEATCS no 87 REPORTS FROM CONFERENCES

216

• On the Longest Common Rigid Subsequence Problemby Bin Ma and
Kaizhong Zhang.

• Text Indexing with Errorsby Moritz G. Maass and Johannes Nowak.

• A New Compressed Suffix Tree Supporting Fast Search and its Construction
Algorithm Using Optimal Working Spaceby Dong Kyue Kim and Heejin
Park.

• Succinct Suffix Arrays based on Run-Length Encodingby Veli Makinen and
Gonzalo Navarro.

• Linear-time Construction of Compressed Suffix Arrays Using O(n loge n)-
Bit Working Space for Large Alphabetsby Joong Chae Na.

• Faster algorithms for delta, gamma-matching and related problemsby Peter
Clifford, Raphael Clifford, and Costas Iliopoulos.

• A fast algorithm for approximate string matching on gene sequencesby
Zheng Liu, Xin Chen, James Borneman, and Tao Jiang.

• Approximate Matching in the L1 Metric by Amihood Amir, Ohad Lipsky,
Ely Porat, and Julia Umanski.

• An Efficient Algorithm for Generating Super Condensed Neighborhoodsby
Luis M. S. Russo and Arlindo L. Oliveira.

• The median problem for the reversal distance in circular bacterial genomes
by E. Ohlebusch, M.I. Abouelhoda, K. Hockel, and J. Stallkamp.

• Using PQ Trees for Comparative Genomicsby Gad M. Landau, Laxmi
Parida, and Oren Weimann.

• Hardness of Optimal Spaced Seed Designby Francois Nicolas and Eric
Rivals.

• Weighted Directed Word Graphby Meng Zhang and Yi Zhang.

• Construction of Aho Corasick Automaton in Linear Time for Integer Alpha-
betsby Shiri Dori and Gad M. Landau.

• An extension of the Burrows Wheeler Transform and Applications to Se-
quence Comparison and Data Compressionby Sabrina Mantaci, Antonio
Restivo, Giovanna Rosone, and Marinella Sciortino.

• DNA Compression Challenge Revisited : A Dynamic Programming Ap-
proachby Behshad Behzadi and Fabrice Le Fessant.

• On the Complexity of Sparse Exon Assemblyby Carmel Kent, Gad M. Lan-
dau, and Michal Ziv-Ukelson.

• An Upper Bound on the Hardness of Exact Matrix Based Motif Discovery
by Paul Horton and Wataru Fujibuchi.

• Incremental Inference of Relational Motifs with a Degenerate Alphabetby

225 225

225 225

The Bulletin of the EATCS

217

Nadia Pisanti, Henry Soldano, and Mathilde Carpentier.

• Speeding up Parsing of Biological Context-Free Grammarby D. Fredouille
and C.H. Bryant.

• A New Periodicity Lemmaby Kangmin Fan, W. F. Smyth, and R. J. Simp-
son.

• Two Dimensional Parameterized Matchingby Carmit Hazay, Moshe
Lewenstein, and Dekel Tsur.

• An Optimal Algorithm for Online Square Detectionby Gen-Huey Chen,
Jin-Ju Hong, and Hsueh-I Lu.

• A Simple Fast Hybrid Pattern-Matching Algorithmby Frantisek Franek,
Christopher G. Jennings, and W. F. Smyth.

• Prefix-Free Regular-Expression Matchingby Yo-Sub Han, Yajun Wang and
Derick Wood.

• Reducing the size of NFAs by using equivalences and preordersby Lucian
Ilie, Roberto Solis-Oba, and Sheng Yu.

• Regular expression constrained sequence alignmentby Abdulla N. Arslan.

• A linear tree edit distance algorithm for similar ordered treesby Helene
Touzet.

• A Polynomial Time Matching Algorithm of Ordered Tree Patterns hav-
ing Height-Constrained Variablesby Kazuhide Aikou, Yusuke Suzuki,
Takayoshi Shoudai, Tomoyuki Uchida, and Tetsunhiro Miyahara.

• Assessing the significance of Sets of Wordsby Valentina Boeva, Julien
Clement, Mireille Regnier, and Mathias Vandenbogaert.

• Inferring a Graph from Path Frequencyby Tatsuya Akutsu and Daiji Fuka-
gawa.

• Exact and Approximation Algorithms for DNA Tag Set Designby Ion I.
Mandoiu and Dragos Trinca.

• Parametric Analysis for Ungapped Markov Models of Evolutionby David
Fernandez-Baca and Balaji Venkatacha.

• Linear Programming for Phylogenetic Reconstruction Based on Gene Re-
arrangementsby Jijun Tang and Bernard M.E. Moret.

• Identifying similar surface patches on proteins using a spin-image surface
representationby M. E. Bock, G. M. Cortelazzo, C. Ferrari, and C. Guerra.

• Mass Spectra Alignments and their Significanceby Sebastian Bocker and
Hans-Michael Kaltenbach.

226 226

226 226

218

R WG 2005

The 31st International Workshop on
Graph Theoretic Concepts in Computer Science

Hans L. Bodlaender

From June 23 – 25, 2005, the31st International Workshop on Graph-
Theoretic Concepts in Computer Science, WG 2005, was held in the city of
Metz. The number of submitted papers was an all-time record of 125 (of which
one was withdrawn). From these, 38 papers were accepted for presentation. In
addition to these 38 regular lectures, there were two invited lectures. There were
over 90 participants, from all over the world.

The meeting started with a welcome reception which gave the participants an
excellent taste of the French cuisine on the evening of June 22. Thursday, June
23 started with a welcome word. Ludek Kucera then spoke words to remember
Ondrej Sykora, who died May 12 this year from an illness.

There were two invited lectures. The meeting started with the first invited
lecture by Georg Gottlob:Hypertree decompositions: structure, algorithms, and
applications. Applications, e.g., from constraint satisfaction and database query
optimisation, motivate the concepts of hypertree width and hypertree decomposi-
tion: these are related to treewidth and tree decomposition, but use hypergraphs
instead of graphs. The second invited lecture was given Friday afternoon, by
Gregory Kucherov:Combinatorial search on graphs motivated by bioinformatics
applications: a case study and generalizations; the talk reviewed several results
on combinatorial problems motivated from applications from bioinformatics.

Each of the 38 accepted papers was presented at the meeting by one of the
authors. The talks showed a variety of topics concerning graphs, with many of
their aspects in relation to computer science. Many talks gave new or better al-
gorithms for graph problems, some with a theoretical formulation, and some with
an application. The overall quality of the presented results and the presentations
was high. These talks and the two invited lectures made that WG 2005 had an
excellent scientific program.

The participants of WG 2005 received not one, but two excellent conference
dinners, in two different restaurants, one at Thurday evening, and one at Friday
evening. On Friday evening there was also a very interesting guided tour through
the charming city of Metz.

Many thanks are due to Dieter Kratsch and his crew for the excellent organ-
isation of WG 2005. This Workshop on Graph Theoretic Concepts in Computer
Science was (again) a very pleasant meeting, with a lot of interesting science,
excellent food, and good interactions between the participants. WG 2006 will

227 227

227 227

The Bulletin of the EATCS

219

be held near Bergen in Norway, and this is a meeting to look forward to. The
scientific program of WG 2005 is given below.

Thursday, June 23, 2005

8:50 Opening of WG 2005
9:00-9:50 Invited Talk: Georg Gottlob (Vienna, Austria)

Hypertree Decompositions: Structure, Algorithms
and Applications

9:50-10:15 Divesh Aggarwal, Shashank K. Mehta, Jitender S. Deogun
Domination Search on Graphs with Low Dominating-Target
Number

10:15-10:40 Christophe Crespelle, Christophe Paul
Fully dynamic algorithm for modular decomposition and
recognition of permutation graphs

11:00-11:25 Sang-il Oum
Approximating Rank-width and Clique-width Quickly

11:25-11:50 Omer Gimenez, Petr Hlineny, Marc Noy
Computing the Tutte Polynomial on Graphs of Bounded
Clique-Width

11:50-12:15 Frank Gurski, Egon Wanke
Minimizing NLC-width is NP-complete

12:15-12:40 Frederic Havet, Jean-Sebastien Sereni
Channel assignment and improper choosability of graphs

14:15-14:40 Daniel Meister
Computing treewidth and minimum fill-in for permutation graphs
in linear time

14:40-15:05 Mathieu Liedloff, Ton Kloks, Jiping Liu, Sheng-Lung Peng
Roman domination over some graphs classes

15:05-15:30 Jiri Fiala, Daniel Paulusma, Jan Arne Telle
Algorithms for comparability of matrices in partial orders
imposed by graph homomorphisms

15:30-15:55 Zuzana Beerliova, Felix Eberhard, Thomas Erlebach, Alexander
Hall, Michael Hoffmann, Matus Mihalak, L. Shankar Ram
Network Discovery and Verification

16:15-16:40 Emeric Gioan
Complete graph drawings up to triangle mutations

16:40-17:05 Derek G. Corneil, Feodor F. Dragan, Ekkehard Köhler,
Chenyu Yan
Collective tree 1-spanners for interval graphs

228 228

228 228

BEATCS no 87 REPORTS FROM CONFERENCES

220

17:05-17:30 Van Bang Le, Raffaele Mosca, Haiko Müller
On stable cutsets in claw-free graphs and planar graphs

Friday, June 24, 2005

9:00-9:25 Prosenjit Bose, Vida Dujmovic, David R. Wood
Induced Subgraphs of Bounded Degree and Bounded Treewidth

9:25-9:50 Pinar Heggernes, Daniel Lokshtanov
Optimal broadcast domination of arbitrary graphs in polynomial
time

9:50-10:15 A. Berry, R. Krueger, G. Simonet
Ultimate generalizations of LexBFS and LEX M

10:15-10:40 Stavros D. Nikolopoulos, Leonidas Palios
Adding an Edge in a Cograph

11:00-11:25 Michael Gatto, Riko Jacob, Leon Peeters, Anita Schöbel
The Computational Complexity of Delay Management

11:25-11:50 Daniel Goncalves, Mickaël Montassier
Acyclic choosability of graphs with small maximum degree

11:50-12:15 Shin-ichi Nakano, Takeaki Uno
Generating Colored Trees

12:15-12:40 Ephraim Korach, Margarita Razgon
Optimal hypergraph tree-realization

14:15-15:05 Invited Talk: Gregory Kucherov (Nancy, France)
Combinatorial search on graphs motivated by bioinformatics
applications: a case study and generalizations

15:05-15:30 Guillaume Blin, Guillaume Fertin, Danny Hermelin, Stephane
Vialette
Fixed-parameter algorithms for protein similarity search under
mRNA structure constraints

15:30-15:55 Peter Damaschke
On the Fixed-Parameter Enumerability of Cluster Editing

16:15-16:40 Manuel Bodirsky, Daniel Kral
Locally Consistent Constraint Satisfaction Problems with
Binary Constraints

16:40-17:05 Robert Elsaesser, Thomas Sauerwald
On Randomized Broadcasting in Star Graphs

17:05-17:30 Torsten Tholey
Finding Disjoint Paths on Directed Acyclic Graphs

229 229

229 229

The Bulletin of the EATCS

221

Saturday, June 25, 2005

9:00-9:25 Eric Angel, Evripidis Bampis, Laurent Gourves
Approximation algorithms for the bi-criteria weighted max cut
problem

9:25-9:50 Akihisa Kako, Takao Ono, Tomio Hirata, Magnus
M. Halldorsson
Approximation Algorithms for the Weighted Independent Set
Problem

9:50-10:15 Erik Jan van Leeuwen
Approximation Algorithms for Unit Disk Graphs

10:15-10:40 P. Berthome, S. Lebresne, K. Nguyen
Computation of chromatic polynomials using triangulations and
clique trees

11:00-11:25 Fedor Fomin, Frederic Mazoit, Ioan Todinca
Computing branchwidth via efficient triangulations and blocks

11:25-11:50 Joachim Kneis, Daniel Moelle, Stefan Richter, Peter Rossmanith
Algorithms Based on Treewidth of Sparse Graphs

11:50-12:15 Michael Dom, Jiong Guo, Falk Hüffner, Rolf Niedermeier
Extending the tractability border for Closest Leaf Powers

12:15-12:40 Joachim Giesen, Dieter Mitsche
Bounding the Misclassification Error in Spectral Partitioning
in the Planted Partition Model

14:15-15:40 Ross M. McConnell, Fabien de Montgolfier
Algebraic Operations on PQ Trees and Modular Decomposition
Trees

14:40-15:05 Yoshio Okamoto, Takeaki Uno, Ryuhei Uehara
Linear-Time Counting Algorithms for Independent Sets in Chordal
Graphs

15:05-15:30 Anne Berry, Alain Sigayret, Jeremy Spinrad
Faster Dynamic Algorithms for Chordal Graphs, and an
Application to Phylogeny

15:30-15:55 Stavros D. Nikolopoulos, Leonidas Palios
Recognizing HHDS-free Graphs

15:55-16:05 Closing Remarks

230 230

230 230

222

R  AFL 2005

11th International Conference of Automata and Formal Languages
May 17–20, 2005

Dobogók̋o, Hungary

Manfred Kudlek

AFL’05 was held from May 17-20, 2005, at Dobogókő, about 35 km north-
west from Budapest, situated nicely in Visegrádi Heggység (Visegrád Mountains).
It was the 11th conference in this series, founded by István Peák in 1980. Confer-
ence site was Hotel Nimród at 700 m above sea level, where the majority of the
participants stayed, some in Platán Panzió.

AFL’05 was organized by theInstitute of Informatics, University of Szeged.
The organizing committee consisted of Z́ A, Z́ É (chair), Z
G, ÉG́, B́ I (chair), S I́, Z K, L́́
M, Z́ L. N́, and A P.

It was supported byInstitute of Informatics of University of Szeged, EATCS,
Hungarian Academy of Sciences, Fund for Szeged, andNovadat Company.

AFL’05 was attended by 59 participants from 16 countries, their distribution
as follows :

HU 21 CZ 4 PL 2 AT 1 IN 1 SK 1
DE 8 FR 4 RO 2 ES 1 JP 1
FI 6 CA 3 US 2 IN 1 RU 1

The scientific program consisted of 7 invited lectures and 21 contributions,
selected from 37 submissions.

C I A C I A C I A C I A
AT 1 ES 1

2 IN 1 RO 1
CA 2 FI 1 3 IT 1 US 1 1
CZ 2 2

3 FR 1 2 JP 1
DE 2 2 1

3 HU 3 PL 1

All contributions were presented in 12 sessions by one of the authors. The
program can be found athttp://www.inf.u-szeged.hu/afl05. Session 7 and
8 were shifted from Thursday to Wednesday afternoon, and the Friday afternoon
sessions were 30 minutes earlier.

The conference was opened on Tuesday afternoon by Z́ É, talking on
the history of AFL and its founder I́ P́, who died in 1990.

231 231

231 231

The Bulletin of the EATCS

223

In the first invited lecture‘Weighted Automata and Weighted Logics’M
D gave a very good and interesting survey on the relation between automata
and logic, on the effect of weights in automata and their correspondence in logic.
TW (co-author R K̈) presented a nice and interesting second
one with‘Automated Analysis of Cryptographic Protocols by Automata-theoretic
Means’, talking on rewriting and automata techniques, finite model checking, and
logic programming for cryptographic protocols.

Another good and interesting third one was presented by A R
(co-authors S M, M S) with ‘The Burrows-Wheeler
Transform from Data Compression to Combinatorics on Words’. He started with
‘A very special technique in a very special application’, talked on the relation
of combinatorics of words to biological sequences, and when asked by S

B ‘What is the meaning of this picture ?’he answered‘The Gorilla is very
close to you I think’. K L also gave a nice presentation with the forth
invited lecture‘Looking Back at Process Algebra’, starting with‘Time reversal’,
‘A lunch talk’, and‘Only a lot of questions !’, and presenting a survey on several
algebraic structures in the field. He also gave an example of a coffee machine with
Indian currency.

An excellent and very interesting fifth invited talk,‘Automata on Linear Or-
derings : Complementation’, presented OC on automata on linear and
scattered orderings, cuts of linear orderings, and closure of rational and recogniz-
able sets under complementation.

J K̈, with ‘Combinatorics on Words and Complexity’gave a
very good sixth invited talk on various complex phenomena as aperiodic tilings,
the relation of complexity of words to fields like Mathematics, Physics, Biology,
and in particular to Mathematical complexity. He started with thanks to M
K for the excellent excursion the day before, announced the conference on
words in Montreal, and also mentioned the chimney in Turku with Fibonacci num-
bers (not Fibonacci words).

Also ‘Some Remarks on Regular Words’by S L. B was a good
seventh one on categorial theories of words, axiomatization of regular operations,
and two special theories of words. It started with‘Short talk on long words’, with
exercises, and the question‘What is the most general structure, associative and
having fixed points ?’.

Good and interesting presentations were given by W K on various
semirings, referring also to the talk of M D, by V M on
multiple patterns and decision problems related to them, and by M P́
on relations between generalized contextual grammars and reset automata.

Z́ L. N́ gave a nice talk on infinite bi-posets and bi-semigroups,
L P́ an interesting one on conjunctive varieties of regular languages, and
K S another good one on closures of star-free languages.

232 232

232 232

BEATCS no 87 REPORTS FROM CONFERENCES

224

K S gave a good presentation on sets and hypersets of trajectories,
P A an excellent one on the history of computing (automatonfirst ap-
pears inIlias), especially onWilliam Stanley Jevons(1835-1882) and his mechan-
ical machine.

Ṕ D̈̈, having dedicated his talk to the memory of AM
who had passed away on January 23, 2005, gave a nice and interesting presenta-
tion on products of primitive words, M I another good one on commuta-
tive closure of languages, and M K offered an interesting talk on largest
solutions of left-linear language inequalities.

Good and interesting presentations were given by A O on a
Boolean grammar for a programming language, by T P́ on quasi
orders, languages and algebras, and by B T on picture languages.

The Friday morning sessions were entirely contributed byTurku, except for
the first chairman A R who also advertised DLT’05.

AFL’05 was closed on Friday late afternoon by Z́ É, announcing high
temperatures for the following days, thanking all contributors, participants and
organizers, announcing a special issue ofTCSand Acta Cybernetica, and also
AFL’08 which will be organized by E́ C-V́ and take place at
MTA /SZTAKI in Budapest.

The proceedings, edited by Z́ É, and Z́ F̈̈, containing all in-
vited talks, although that by MD as short, and that of OC
as extended abstract, have been published byInstitute of Informatics, University
of Szeged, and been printed byNovadat, Győr.

Because of bad weather (fog with visibility under 50 m, rain, and temperatures
below 15◦) the excursion (two hiking tours, one of 15, the other one of 5 km),
planned for Wednesday afternoon, was first postponed to Thursday, and eventually
cancelled entirely. The social program started on Tuesday evening with a welcome
party. Fruits, salads, and cakes were offered, as well as mineral water, juice, beer
and wine (whiteTokaji Hárslevelű 2003, Nyárlörinci Cserszegi Fűszeres 2002,
roséKékfrankos Rosé 2001, and redEgri Bikavér 2001) as well as coffee. It was
well after 22h when this party ended. The second event was the conference dinner
on Wednesday evening, opened with champagne.

Thus AFL’05 was a successful conference on a high scientific level, in a nice
atmosphere (except for the weather), and well organized.

233 233

233 233

225

R WSA 2005

Workshop on Semigroups and Automata
July 16, 2005, Lisbon, Portugal

Manfred Kudlek

WSA’05 was held as a joint satellite workshop of ICALP 2005 and CSL 2005
(International Conference on Semigroups and Languages in Honour of the 65 th
birthday ofDonald B. McAlister) in Lisboa on July 16, 2005, exactly one year
after another workshop with identical name. Conference site wasInstituto Supe-
rior Técnico(IST). The only entrance of this institute on the weekend was rather
difficult to find, and some participants had problems.

WSA’05 was organized by L́ C, A́ R, V V,
and V́ H F, G M. S. G, J-É P, M V.
V. The workshop was supported by the AMA project of theEuro-
pean Science Foundation (ESF). WSA’05 was attended by 43 participants from
11 countries, in details : CA 2, CN 1, CZ 1, DE 6, ES 1, FI 4, FR 2, PT 16, RU 3,
UK 5, US 2. The scientific program consisted of an invited lecture and 12 contri-
butions. The program can be found athttp://icalp05.di.fct.unl.pt/.

J K, with ‘Synchronization Problems in Eulerian Graphs’, presented
an excellent invited lecture on synchronization problems in Euler graphs, the
Černy and road colouring conjectures, and on lengths of shortest synchroniz-
ing words. Interesting and good talks gave P F on quaternionic and
Lie algebras (‘Let us see what fun we had’), A E-N on decomposition
of rings, reminding‘Remember ! If you have finite state automata then we can
tell you how to understand them exactly’with an unreadable footnote, and L
P́, as at AFL’05 on automata theory in practice. J-É P introduced
ESF and AMA, the project sponsoring the workshop.

The proceedings, edited by the last 4 organizers, have been published as a re-
port of theEuropean Science Foundation. Except for the invited talk they contain
all contributions, and in addition another one by T S on ‘Interval
Rank of Monotonic Automata’.

WSA’05 was an interesting and well organized workshop.

234 234

234 234

226

R 

Natural Processes and Models of Computation
June 16–18, 2005, Bologna, Italy

Elena Calude

The Workshop “Natural Processes and Models of Computation", organised by
Rossella Lupacchini, Giorgio Sandri and Guglielmo Tamburrini, and the Depart-
ment of Philosophy of the University of Bologna was held in beautiful Bolgna
from June 16 to 18, 2005.

A city of north-central Italy at the foot of the Apennines, Bologna was origi-
nally an Etruscan town and became a Roman colony in the second century B.C.
Its famed university, the Europe’s oldest, was founded in 1088. The “Scuola Su-
periore de Studi Umanistici” of Umberto Eco hosted the workshop. The original
fresco in the main lecture room represents the coronation of Charles V (1500-
1558) at Bologna Basilica di San Petronio (1530) as Holy Roman emperor, the
last imperial crowning by a pope.

The multidisciplinary workshop brought together people working in computer
science, physics, philosophy, and the cognitive neurosciences with the aim of ex-
ploring and comparing computational paradigms inspired by nature.

235 235

235 235

The Bulletin of the EATCS

227

We now give short description of the contributions presented to the workshop.
In the first session J. Gruska gave a comprehensive overview of frontiers, bounds,
driving forces and paradigms of information processing by nature. The talk was
followed by M. Frixione (computationalism through levels), D. Mundici (an in-
spiring talk about mathematics, classical physics and computation), and C. Tof-
falori (the cost of computing). The second session included talks by C. Calude
(computing at the speed of light), M. Rasetti (topological quantum computation),
R. Giuntini (a very interesting completeness theorem in quantum computation),
and A. Marzuoli (analog and discrete computing machines from quantum angu-
lar momenta). The third session started with W. Sieg’s interesting proposal for
an axiomatic treatment of computability bounds, D. Silva Graça’s overview of
theories of analog computation, and continued with A. Treves (frontal latching
networks) and G. Trautteur (analog computation and digital virtuality). The last
session included B. MacLennnan’s overview of natural computation, E. Burattini
(autonomous robotic systems) and G. Tamburrini (machine experiments and the
theoretical modelling of adaptive behaviours).

The workshop ended with a panel discussion on the future of natural com-
puting moderated by C. Calude. The discussion started with a record of David
Hilbert’s speechNaturerkennen und Logik(given on 8 September 1930 in Königs-
berg) which ended with the famous words (in English translation):

For us there is noignorabimus, and in my opinion none whatever in
natural science. In opposition to the foolishignorabimusI offer our
answer:We must know, we will know.

A central part of the discussion was based around the presentation by G. Rozen-
berg of a comprehensive “programme” for the future of natural computing. The
main points of discussion were: What is natural computing? Is computing the new
science for this century? Is mathematics becoming more experimental? Limits:
Church-Turing thesis, van Leeuwen-Wiedermann extended thesis, Sieg’s axioms,
Is super-Turing computing a myth?

A selection of the best papers presented at the workshop will appear in a spe-
cial issue of theJournal of Natural Computing.

More workshop pictures (including snapshots of the fresco appearing on the
walls of the lecture room) and drawings by Marcello Frixione are posted at

www.massey.ac.nz/~ecalude/BolognaImages/DigitalBologna
www.massey.ac.nz/~ecalude/BolognaImages/ArtistBologna

The workshop was very well organised, stimulating, and inspiring: a most
enjoyable experience.

236 236

236 236

228

Pictures from DNA 11 (by N. Santean)

James Gimzewski Eric Klavins Eshel Ben-Jacob

Mark Daley Dipankar Sen Erik Winfree

Perh Harbury Junghuei Chen Ned Seeman

237 237

237 237

The Bulletin of the EATCS

229

Niles Pierce Hirotaka Nakagawa Yasubumi Sakakibara

John Reif Oscar Ibarra Robert Barish

Chengde Mao Byoung-Tak Zhang Masami Hagiya

238 238

238 238

BEATCS no 87 REPORTS FROM CONFERENCES

230

G. Rozenberg, L. Adleman, and L. Kari Elizabeth Goode at the Poster Session

Vladimir and Yurii Rogozin L. Adleman and J. Reif

Grzegorz Rozenberg E. Klavins and C. Zandron

at the Iroquois Village

more pictures at http://www.csd.uwo.ca/∼nic/dna11

239 239

239 239

A 
PD T

240 240

240 240

241 241

241 241

233

Abstract of PhD Thesis
Author: Violetta Lonati
Title: Pattern statistics in rational models

Language: English
Supervisor: Alberto Bertoni and Massimiliano Goldwurm
Institute: Università degli Studi di Milano, Italy

Date: 7 March 2005

Abstract

The thesis focuses on the frequency of occurrences of a repeated pattern in a
random sequence of letters. If we assume to know the probabilistic model (and its
parameters) that generates the text, the central question is:how many occurrences
of a given pattern shall we expect in such a random sequence?Below, we shall
refer to this question as thefrequency problem.

Among the early motivations for the study of this problem, one should mention
code synchronization and approximated pattern matching. However, possible ap-
plications are in molecular biology. Nowadays, biologists have large sets of DNA
sequences from many different organisms and they need quantitative tools and
statistical methods to help them in analyzing sequences. Identifying words that
show relevant deviations between their observed frequency and their frequency
predicted by a given model could be a useful way to extract information from
DNA sequences.

The frequency problem can be studied under different assumptions concern-
ing the source that generates the text, or the pattern to search for through the
text. In this work we study pattern occurrences in a new framework, introducing
a stochastic model defined via rational formal series in non-commuting variables
a,b and non-negative coefficients (or, equivalently, by weighted automata). More
precisely, for any integern we define a probability space of all words in{a,b}n

such that the probability associated with any word is proportional to its coeffi-
cient in the series. Therational symbol frequencyproblem is then taken in exam:
intuitively this concerns the study of the sequence of random variables{Yn}n rep-
resenting the number of occurrences of the symbola in words of lengthn chosen
at random in{a,b}∗, according to the probability distribution given by the rational
model.

The thesis shows how the rational model can be viewed as a proper extension
of the Markovian model usually considered in the literature. Indeed, the question

242 242

242 242

BEATCS no 87 ABSTRACTS OF PHD THESES

234

of studying the number of occurrences of a regular pattern in a text generated by
a Markovian source can always be translated into the rational symbol frequency
problem for a suitable rational series over two non-commuting variables, while
the converse does not hold in general.

The main contributions included in the thesis are estimating the moments of
the random variableYn and determining local and central limit distributions of the
sequence{Yn}n asn tends to infinity.

First, the transition matrix associated with the series defining the model is as-
sumed to be primitive. In this case the mean and the variance ofYn turn out to be
asymptotically linear and precise expressions for the constants appearing in their
asymptotic formulas are given. Moreover, a central limit theorem holds and a con-
dition is provided that guarantees the existence of a Gaussian local limit theorem;
to state this condition, a notion of symbol periodicity for weighted automata is in-
troduced, in analogy with the classical periodicity theory of Perron–Frobenius for
non-negative matrices. As an application of the previous analysis, one obtains an
asymptotic estimation of the growth of the coefficients for a subclass of rational
formal series in two commuting variables.

These results are then extended dropping the primitive hypothesis usually as-
sumed in the literature. First, bicomponent models (defined by weighted automa-
ton with two strongly connected components) are studied, obtaining in many cases
limit distributions quite different from the Gaussian one. Finally, to deal with ar-
bitrary non-primitive models, a general approach is presented. It is based on the
decomposition of the weighted automaton defining the model into strongly con-
nected components, in order to detect the elements that mainly determine the limit
distribution. In the most relevant cases the limit distribution is explicitely deter-
mined: it is characterized by a unimodal density function defined by polynomials
over adjacent intervals.

Author’s address Violetta Lonati
Dipartimento di Scienze dell’Informazione
Università degli Studi di Milano
Via Comelico, 39
20135 Milano - Italy
Email: lonati@dsi.unimi.it
URL: http://homes.dsi.unimi.it/~lonati

243 243

243 243

235

Abstract of PhD Thesis
Author: Saeed Salehi
Title: Varieties of Tree Languages

Language: English
Supervisor: Magnus Steinby

Zoltán Ésik (Reviewer)
Wolfgang Thomas(Reviewer)
Thomas Wilke (Opponent)

Institute: University of Turku, and
Turku Centre for Computer Science

Date: 12 August 2005

Abstract

Trees are among the most fundamental and ubiquitous structures in mathematics.
Tree languages and automata on trees have been studied extensively since the
1960s from both a purely mathematical and application point of view. When
trees are defined as terms, universal algebra becomes directly applicable to tree
automata and, on the other hand, the theory of tree automata suggests new notions
and problems to universal algebra.

Different syntactic invariants have been proposed as bases for classifications of
regular tree languages: syntactic algebras (Steinby 1979, 1992; Almeida 1990),
syntactic monoids and syntactic semigroups (Thomas 1983; Nivat and Podelski
1989), tree algebras (Wilke 1996) and syntactic theories (Ésik 1999). However,
so far variety theorems comparable with Eilenberg’s classical theorems for regular
string languages were known for syntactic algebras and syntactic theories only. In
this thesis we consider several aspects of varieties of tree languages and settle
some open questions concerning the various formalisms.

In Chapter 2 we extend the variety theorem for general recognizable subsets
of free algebras (Steinby 1979) to the many-sorted case. In Chapter 3 we formu-
late Pin’s (1996) theory of positive varieties for tree languages and prove a variety
theorem that establishes a correspondence between positive varieties of tree lan-
guages and varieties of finite ordered algebras.

It has been known already for quite a long time that not all varieties of tree
languages can be defined by syntactic monoids or syntactic semigroups, and the
question about the exact defining power of these syntactic invariants has been
raised by several authors. In Chapter 4 we answer this question by characterizing

244 244

244 244

BEATCS no 87 ABSTRACTS OF PHD THESES

236

the varieties of tree languages that correspond to some variety of finite monoids or
semigroups. In Chapter 5 we characterize families of tree languages definable by
ordered monoids and study some special instances of the above mentioned variety
theorems.

Chapter 6 is devoted to Wilke’s tree algebras. We introduce a convergent term
rewriting system that yields an efficient method to decide the word problem of
tree algebras. As a special case of the many-sorted theory developed in Chapter
2 we obtain a variety theorem for families of tree languages defined by tree alge-
bras. Moreover, we prove that, for any sufficiently rich alphabet, all congruence-
preserving functions of the tree term algebra are obtained as compositions of the
basic tree-constructing operations.

(A Brief) Table of Contents

2 Many-sorted variety theorem . 9
2.1 Many-sorted algebras . 10
2.2 Syntactic congruences and algebras . 16
2.3 The variety theorem .21

3 Positive varieties of tree languages .29
3.1 Ordered algebras . 30
3.2 Positive variety theorem . 35
3.3 Generalized positive variety theorem . 40

4 Definability by monoids . 47
4.1 Algebras definable by translation monoids . 49
4.2 Tree languages definable by monoids . 52
4.3 Definability by semigroups . 59

5 Definability by ordered monoids . 65
5.1 Ordered algebras vs. ordered monoids . 65
5.2 Tree languages definable by ordered monoids 69
5.3 Examples of varieties . 76

6 Tree algebras . 87
6.1 Binary trees and tree algebras . 88
6.2 Varieties of binary tree languages . 94
6.3 Some algebraic properties of tree algebras . 100

Epilogue . 107

Author’s address Saeed Salehi
Turku Centre for Computer Science
DataCity, Lemminkaisenk. 14 A
FI – 20520 TURKU
Finland

email: saeed@cs.utu.fi
URL: http://staff.cs.utu.fi/staff/saeed/pht.html

245 245

245 245

237

Abstract of PhD Thesis
Author: Jan Streǰcek
Title: Linear Temporal Logic: Expressiveness and Model Checking

Language: English
Supervisor: Mojmír Křetínský
Institute: Masaryk University in Brno, Czech Republic

Date: 25 February 2005

Abstract

Model checking of finite-state systems with specifications given as formulae of
Linear Temporal Logic (LTL) is one of the most common verification problems.
Like other verification problems, LTL model checking suffers from state explo-
sion. Techniques tackling state explosion usually employ some specific property
of the LTL fragment they are designed for. For example, a popular method called
partial order reduction is based on the fact that specifications given by LTL formu-
lae without the ‘next’ operator do not distinguish between the stutter equivalent
behaviours of a system.

We study the properties of LTL fragments that are related to model check-
ing. In particular, we are interested in the properties that can potentially lead
to new techniques suppressing the state explosion problem. At the same time we
study expressiveness and decidability of LTL fragments, and complexity of model
checking problem for the fragments.

Besides a broad unifying overview of hitherto known results, this thesis
presents some original results about LTL fragments with temporal operators ‘next’
and ‘until’, where the nesting depths of one or both operators are bounded. More
precisely, we extend the above-mentioned stuttering principle to these fragments
and describe a new concept of characteristic patterns. In both cases we indicate
that our results can improve existing model checking techniques. Furthermore,
we develop the established fact that LTL is expressively equivalent to alternating
1-weak Büchi automata (A1W automata). Specifically, we identify the classes
of A1W automata that are expressively equivalent to LTL fragments of the until-
release hierarchy and LTL fragments using only future temporal operators with or
without bounded nesting depths.

This thesis also contains a collection of open questions and topics for future
work.

246 246

246 246

BEATCS no 87 ABSTRACTS OF PHD THESES

238

(Abridged) Table of Contents

1 Introduction . 1

2 Preliminaries . 9

3 Expressiveness .41
3.1 Complete LTL . 42
3.2 Simple fragments . 46
3.3 Nesting fragments . 54
3.4 Other fragments . 58
3.5 Succinctness . 64

4 Complexity issues .69
4.1 Satisfiability and model checking . 70
4.2 Model checking a path . 75

5 Stuttering principles . 77
5.1 A general stuttering theorem . 79
5.2 Stuttering as a sufficient condition . 89
5.3 Answers to Questions 1, 2, and 3 . 94
5.4 Application in model checking . 97

6 Characteristic patterns . 101
6.1 Definitions and basic theorems . 104
6.2 Applications in model checking . 110

7 Deeper connections to alternating automata . 119
7.1 Equivalence of LTL and A1W automata .120
7.2 Improving A1W→LTL translation .122
7.3 Defining LTL fragments via A1W automata 129

8 Conclusions . 137

Author’s correspondence address

Jan Streǰcek
Faculty of Informatics, Masaryk University
Botanická 68a
60200 - Brno
Czech Republic
email:strejcek@fi.muni.cz
url: http://www.fi.muni.cz/~xstrejc

247 247

247 247

239

Abstract of PhD Thesis
Author: Stijn Vansummeren
Title: Well-Definedness, Semantic Type-Checking,

and Type Inference for Database Query Languages
Language: English

Supervisor: Jan Van den Bussche
Institute: University of Hasselt, Belgium

Date: 20 May 2005

Abstract

The operations of a general-purpose programming language such as C or Java are
only defined on certain kinds of inputs. For example, ifa is an array, then the
array indexationa[i] is only defined ifi lies within the boundaries of the array. If,
during the execution of a program, an operation is supplied with the wrong kind
of input, then the output of the program is undefined. Indeed, the program may
exit with a runtime error or, worse yet, it may compute the wrong output.

To detect such programming errors as early as possible, it is hence natural to
ask whether we can solve thewell-definedness problem: given an expression and
an input type, decide whether the semantics of the expression is defined for all
inputs adhering to the input type. Unfortunately, this problem is undecidable for
any computationally complete programming language, by Rice’s Theorem.

Most programming languages therefore provide astatic type systemto detect
programming errors. These systems ensure “type safety” in the sense that every
expression that passes the type system’s tests is guaranteed to be well-defined.
Due to the undecidability of the well-definedness problem, these systems are nec-
essarily incomplete, i.e., there are expressions that are well-defined, but do not
type-check. Such expressions are problematic from a programmer’s point of view,
as he must rewrite his code in order to get it to type-check. As such, a major quest
in the theory of programming languages consists of finding type systems for which
the set of well-defined but ill-typed expressions is as small as possible.

Although the Holy Grail in this quest (i.e., a type system that is both sound
and complete) can never be found for general-purpose programming languages,
this does not mean it cannot be found for smaller, specific-purpose programming
languages. The most prominent examples of the latter aredatabase query lan-
guagessuch as SQL, OQL, and XQuery. Expressions in all these languages can
be undefined. As query languages do not have full computational power, Rice’s

248 248

248 248

BEATCS no 87 ABSTRACTS OF PHD THESES

240

theorem does not apply and it is hence worthwhile to investigate if we can’t de-
cide the well-definedness problem for them1. If so, then we obtain in essence a
type system that is both sound and complete. In this dissertation we therefore
study the well-definedness problem for database query languages. We start our
study with well-definedness for the Nested Relational Calculus (NRC for short), a
well-known query language for the complex object data model. The NRC is an ex-
tension of the relational algebra (which serves as the data processing core of SQL)
and can itself be viewed as a data processing core of OQL. Furthermore, the NRC
inspired the design of various semi-structured languages such as UnQL, StruQL,
and Quilt, on which XQuery is based. As such, our study of well-definedness for
the NRC serves as a good starting point for the study of well-definedness in SQL,
OQL, and XQuery.

Certain features of the latter two languages are not captured by the standard
set-based NRC however. Indeed, OQL operates on bags and lists in addition to
sets, while XQuery operates on lists. Both languages have object identity and
the ability to create new objects. We therefore continue our study by identify-
ing broad classes of first-order, object-creating query languages operating on list-
based data for which the well-definedness problem is (un)decidable. Specifically,
we identify properties of basic operations in such languages that can make the
well-definedness problem undecidable and give corresponding restrictions that
are sufficient to ensure decidability. The obtained results can be transfered to a
bag-based data model, and are directly applicable to OQL and XQuery.

A problem related to well-definedness is thesemantic type-checking problem:
decide, given an input type, an expression and an output type, whether the expres-
sion only produces outputs in the output type on inputs in the input type. This
problem is useful in a “producer-consumer” setting where a producer generates
data, which is processed by a consumer. In order to ensure good operation by
the consumer, the producer is expected to only produce data adhering to a cer-
tain type. Unfortunately, the semantic type-checking problem is also undecidable
for any computationally complete programming language, by Rice’s theorem. In
practice however, the producer will often consist of a query against a database. It
is therefore interesting to see if we can’t solve the semantic type-checking prob-
lem for the query languages mentioned above. We study this problem for the
NRC. For XQuery and other XML-related languages, the problem has already
been studied extensively.

Concretely, our study shows that both well-definedness and semantic type-
checking remain undecidable for query languages that are powerful enough to

1XQuery is in fact a full-fledged general-purpose programming language. Most XQuery pro-
grams are of the restricted form “for-let-where-return” however, which we regard as the true query
language part of XQuery.

249 249

249 249

The Bulletin of the EATCS

241

simulate the relational algebra. It follows that a sound and complete type system
for SQL, OQL, or XQuery does not exist (although we identify several useful
fragments for which such a system does exist). Query languages that want to
verify the absence of certain programming errors statically hence have to do so
by means of a traditional, incomplete type system. In the second part of this
dissertation we therefore study classical type system problems from the theory of
programming languages in the context of database query languages.

We first study the complexity of thetypability problemfor the relational al-
gebra: decide, given a relational algebra expressione, whether there exists an
assignment of types to the relation variables ine such thate type-checks in the
classical type system of the relational algebra. Checking typability of relational
algebra expressions is the analog in the relational algebra of static type-checking
in implicitly typed programming languages, such as ML. It is therefore interesting
to see what its complexity is. It is known for instance that typability is P-complete
for the simply typed lambda calculus and E-complete for ML. Van den
Bussche and Waller have shown that typability for the relational algebra is in NP.
The precise complexity remained open, however. In this dissertation, we show
that the problem is NP-hard, even in various restricted settings.

Next, we turn our attention to the NNRC, a named version of the Nested Re-
lational Calculus. The basic operators of the NNRC are polymorphic. We can
inspect theA attribute of any record, as long as it has an attributeA. We can take
the cartesian product of any two records whose attribute sets are disjoint. We can
take the union of any two sets of the same type. Similar typing conditions can
be formulated for the other operators of the NNRC. When combining operators
into expressions, these typing conditions become more evolved. A natural ques-
tion thus arises: given an NNRC expressione, under which assignments of free
variables ine to types ise well-typed? And what is the resulting output type of
e under these assignments? In particular, can we give an explicit description of
the typically infinite collection of thesetypings? This is nothing but the NNRC
version of the classicaltype inferenceproblem, an extensively studied topic in the
theory of programming languages. We propose an explicit description of the set
of all possible typings of an NNRC expressione by means of a conjunctive logi-
cal formulaφe, which is interpreted in the universe of all possible types. We show
thatφe is efficiently computable frome and that the satisfiability problem of such
conjunctive formulas belongs to NP. Consequently, typability for the NNRC is
also in NP. Since the NNRC is an extension of the relational algebra, for which
typability is already NP-complete, this thus shows that typability for the NNRC is
not more difficult than for the special case of the relational algebra.

Author’s correspondence address:Stijn Vansummeren, University of Hasselt, Department WNI,

Agoralaan Gebouw D, B-3590 Diepenbeek, Belgium.stijn.vansummeren@uhasselt.be

250 250

250 250

251 251

251 251

E u r o p e a n

A s s o c i a t i o n f o r

T h e o r e t i c a l

C om p u t e r

S c i e n c e

EA
T

C
S

E A T C S

252 252

252 252

BEATCS no 87 EATCS LEAFLET

244

EATCS

HISTORY AND ORGANIZATION

EATCS is an international organization founded in 1972. Its aim is to facilitate the exchange of
ideas and results among theoretical computer scientists as well as to stimulate cooperation between
the theoretical and the practical community in computer science.

Its activities are coordinated by the Council of EATCS, which elects a President, Vice Presidents,
a Treasurer and a Secretary. Policy guidelines are determined by the Council and the General
Assembly of EATCS. This assembly is scheduled to take place during the annualInternational
Colloquium onAutomata,Languages andProgramming (ICALP), the conference of EATCS.

MAJOR ACTIVITIES OF EATCS

- Organization of ICALP;

- Publication of the “Bulletin of the EATCS;”

- Publication of the “EATCS Monographs” and “EATCS Texts;”

- Publication of the journal “Theoretical Computer Science.”

Other activities of EATCS include the sponsorship or the cooperation in the organization of various
more specialized meetings in theoretical computer science. Among such meetings are: TAPSOFT
(Conference on Theory and Practice of Software Development), STACS (Symposium on Theo-
retical Aspects of Computer Science), MFCS (Mathematical Foundations of Computer Science),
LICS (Logic in Computer Science), ESA (European Symposium on Algorithms), Conference on
Structure in Complexity Theory, SPAA (Symposium on Parallel Algorithms and Architectures),
Workshop on Graph Theoretic Concepts in Computer Science, International Conference on Ap-
plication and Theory of Petri Nets, International Conference on Database Theory, Workshop on
Graph Grammars and their Applications in Computer Science.

Benefits offered by EATCS include:

- Subscription to the “Bulletin of the EATCS;”

- Reduced registration fees at various conferences;

- Reciprocity agreements with other organizations;

- 25% discount when purchasing ICALP proceedings;

- 25% discount in purchasing books from “EATCS Monographs” and “EATCS Texts;”

- Discount (about 70%) per individual annual subscription to “Theoretical Computer Science;”

- Discount (about 70%) per individual annual subscription to “Fundamenta Informaticae.”

(1) THE ICALP CONFERENCE

ICALP is an international conference covering all aspects of theoretical computer science and now
customarily taking place during the second or third week of July.

Typical topics discussed during recent ICALP conferences are: computability, automata theory,
formal language theory, analysis of algorithms, computational complexity, mathematical aspects
of programming language definition, logic and semantics of programming languages, founda-
tions of logic programming, theorem proving, software specification, computational geometry,
data types and data structures, theory of data bases and knowledge based systems, cryptography,
VLSI structures, parallel and distributed computing, models of concurrency and robotics.

253 253

253 253

The Bulletin of the EATCS

245

S  ICALP :

- Paris, France 1972 - Warwick, Great Britain 1990
- Saarbrücken, Germany 1974 - Madrid, Spain 1991
- Edinburgh, Great Britain 1976 - Wien, Austria 1992
- Turku, Finland 1977 - Lund, Sweden 1993
- Udine, Italy 1978 - Jerusalem, Israel 1994
- Graz, Austria 1979 - Szeged, Hungary 1995
- Noordwijkerhout, The Netherlands 1980 - Paderborn, Germany 1996
- Haifa, Israel 1981 - Bologne, Italy 1997
- Aarhus, Denmark 1982 - Aalborg, Denmark 1998
- Barcelona, Spain 1983 - Prague, Czech Republic 1999
- Antwerp, Belgium 1984 - Genève, Switzerland 2000
- Nafplion, Greece 1985 - Heraklion, Greece 2001
- Rennes, France 1986 - Malaga, Spain 2002
- Karlsruhe, Germany 1987 - Eindhoven, The Netherlands 2003
- Tampere, Finland 1988 - Turku, Finland 2004
- Stresa, Italy 1989 - Lisabon, Portugal 2005

- Venezia, Italy 2006

(2) THE BULLETIN OF THE EATCS

Three issues of the Bulletin are published annually, in February, June and October respectively.
The Bulletin is a medium forrapid publication and wide distribution of material such as:

- EATCS matters;
- Technical contributions;
- Columns;
- Surveys and tutorials;
- Reports on conferences;

- Information about the current ICALP;
- Reports on computer science departments and institutes;
- Open problems and solutions;
- Abstracts of Ph.D.Theses;
- Entertainments and pictures related to computer science.

Contributions to any of the above areas are solicited, in electronic form only according to for-
mats, deadlines and submissions procedures illustrated athttp://www.eatcs.org/bulletin.
Questions and proposals can be addressed to the Editor by email atbulletin@eatcs.org.

(3) EATCS MONOGRAPHS AND TEXTS

This is a series of monographs published by Springer-Verlag and launched during ICALP 1984;
more than 50 volumes appears. The series includes monographs in all areas of theoretical com-
puter science, such as the areas considered for ICALPs. Books published in this series present
original research or material of interest to the research community and graduate students. Each
volume is normally a uniform monograph rather than a compendium of articles. The series also
contains high-level presentations of special topics. Nevertheless, as research and teaching usually
go hand in hand, these volumes may still be useful as textbooks, too. Texts published in this series
are intended mostly for the graduate level. Typically, an undergraduate background in computer
science is assumed. However, the background required may vary from topic to topic, and some
books may be self-contained. The texts cover both modern and classical areas with an innovative
approach that may give them additional value as monographs. Most books in this series will have
examples and exercises. Updated information about the series can be obtained from the publisher.

254 254

254 254

BEATCS no 87 EATCS LEAFLET

246

The editors of the series are W. Brauer (Munich), G. Rozenberg (Leiden), and A. Salomaa (Turku).
Potential authors should contact one of the editors. The advisory board consists of G. Ausiello
(Rome), M. Broy (Munich), C.S. Calude (Auckland), A. Condon (Vancouver), D. Harel (Rehovot),
J. Hartmanis (Cornell), T. Henzinger (Lausanne), N. Jones (Copenhagen), T. Leighton (MIT),
M. Nivat (Paris), C. Papadimitriou (Athens and San Diego), and D. Scott (Pittsburgh).

EATCS Monographs and Texts is a very important EATCS activity and its success depends largely
on our members. If you are a potential author or know one please contact one of the editors.

EATCS members can purchase books from the series with 25% discount. Order should be sent to:
Prof.Dr. G. Rozenberg, LIACS, University of Leiden,
P.O. Box 9512, 2300 RA Leiden, The Netherlands

who acknowledges EATCS membership and forwards the order to Springer-Verlag.

(4) THEORETICAL COMPUTER SCIENCE

The journalTheoretical Computer Science, founded in 1975, is published by Elsevier Science
Publishers, Amsterdam, currently in 20 volumes (40 issues) a year. Its contents are mathematical
and abstract in spirit, but it derives its motivation from practical and everyday computation. Its aim
is to understand the nature of computation and, as a consequence of this understanding, provide
more efficient methodologies.

All kinds of papers, introducing or studying mathematical, logical and formal concepts and meth-
ods are welcome, provided that their motivation is clearly drawn from the field of computing.

Papers published inTCSare grouped in three sections according to their nature. One section, “Al-
gorithms, automata, complexity and games,” is devoted to the study of algorithms and their com-
plexity using analytical, combinatorial or probabilistic methods. It includes the fields of abstract
complexity (i.e., all the results about the hierarchies that can be defined using Turing machines), of
automata and language theory (including automata on infinite words and infinitary languages), of
geometrical (graphic) applications and of system performance using statistical models. A subsec-
tion is the Mathematical Games Section, which is devoted to the mathematical and computational
analysis of games. The second section, “Logic, semantics and theory of programming,” is devoted
to formal methods to check properties of programs or implement formally described languages;
it contains all papers dealing with semantics of sequential and parallel programming languages.
All formal methods treating these problems are published in this section, including rewriting tech-
niques, abstract data types, automatic theorem proving, calculi such as SCP or CCS, Petri nets,
new logic calculi and developments in categorical methods. The newly introduced third section is
devoted to theoretical aspects of “Natural Computing.”

The Editors-in-Chief of “Theoretical Computer Science” are:
G. Ausiello, Università di Roma ‘La Sapienza’, Dip. Inform. e Sistemistica,

via Salaria 113, 00198 Roma, Italy;

D. Sannella, University of Edinburgh, Lab. for Foundations of Computer Science,
Division of Informatics, King’s Building, Mayfield Road, Edinburgh, EH9 3JZ, UK

Prof.Dr. G. Rozenberg, LIACS, University of Leiden,
P.O. Box 9512, 2300 RA Leiden, The Netherlands

M.W. Mislove, Tulane University, Dept. of Mathematics, New Orleans, LA 70118, USA.

255 255

255 255

The Bulletin of the EATCS

247

ADDITIONAL INFORMATION

For further information please visithttp://www.eatcs.org, or contact the Secretary of EATCS:
Prof. Dr. Branislav Rovan, Department of Computer Science, Comenius University,
SK-84248 Bratislava, Slovakia, Email: secretary@eatcs.org

EATCS MEMBERSHIP

DUES

The dues aree30 for a period of one year. A new membership starts upon registration of the
payment. Memberships can always be prolonged for one or more years.

In order to encourage double registration, we are offering a discount for SIGACT members, who
can join EATCS fore25 per year. Additionale25 fee is required for ensuring theair mail
delivery of the EATCS Bulletin outside Europe.

HOW TO JOIN EATCS

You are strongly encouraged to join (or prolong your membership) directly from the EATCS web-
sitewww.eatcs.org, where you will find an online registration form and the possibility of secure
online payment. Alternatively, a subscription form can be downloaded fromwww.eatcs.org to
be filled and sent together with the annual dues (or a multiple thereof, if membership for multiple
years is required) to theTreasurer of EATCS:

Prof. Dr. Dirk Janssens, University of Antwerp, Dept. of Math. and Computer Science
Middelheimlaan 1, B-2020 Antwerpen, Belgium
Email: treasurer@eatcs.org, Tel: +32 3 2653904, Fax: +32 3 2653777

The dues can be paid (in order of preference) by VISA or EUROCARD/MASTERCARD credit
card, by cheques, or convertible currency cash. Transfers of larger amounts may be made via the
following bank account. Please, adde5 per transfer to cover bank charges, and send the necessary
information (reason for the payment, name and address) to the treasurer.

Fortis Bank, Bist 156, B-2610 Wilrijk, Belgium
Account number: 220–0596350–30–01130
IBAN code: BE 15 2200 5963 5030, SWIFT code: GEBABE BB 18A

256 256

256 256

	EATCS Bulletin, Number 87, October 2005, viii+248 pp
	Table of Contents
	EATCS Matters
	Letter from the President
	Letter from the Bulletin Editor
	Report on the EATCS General Assembly 2005
	EATCS Award 2005
	Software Science: From Virtual to Reality, by Robin Milner
	EATCS Award 2006 - Call for Nominations
	Gödel Prize 2006 - Call for Nominations

	Foreign Chapters
	The Japanese Chapter, by Kazuhisa Makino

	Institutional Sponsors
	IPA - Institute for Programming Research and Algorithmics

	EATCS News
	News from Australia, by Colin J. Fidge
	News from India, by Madhavan Mukund
	News from Ireland, by Anthony K. Seda
	News from New Zealand, by Cristian. S. Calude
	Interview with Academician Solomon Marcus, by Cristian. S. Calude

	The EATCS Columns
	The Algorithmics Column, by Josep Días
	Some New Techniques in Design and Analysis of Exact (Exponential) Algorithms, by Fedor V. Fomin, Fabrizio Grandoni, Dieter Kratsch

	The Computational Complexity Column, by Jacobo Torán
	Lower Bounds On Quantum Querycomplexity, by Peter Høyer, Robert Špalek

	The Concurrency Column, by Luca Aceto
	Recursion vs Replication in Process Calculi: Expressiveness, by Catuscia Palamidessi, Frank D. Valencia

	The Formal Specification Column, by Hartmut Ehrig
	Augur—A Tool for the Analysis of Graphtransformation Systems, by Barbara König, Vitali Kozioura
	Integration of the Generic Component Concepts for System Modeling with Adhesive HLR Systems, by Julia Padberg

	The Logic in Computer Science Column, by Yuri Gurevich
	First-Order Topological Properties, by Jan Van den Bussche

	The Natural Computing Column, by Grzegorz Rozenberg
	Development of a Bacteria Computer: From in silico Finite Automata to in vitro and in vivo, by Yasubumi Sakakibara

	Technical Contributions
	A Note about Mergible States on Large NFA, by Pedro García, Manuel Vázquez de Parga
	On Decision Problems for Timed Automata, by Olivier Finkel
	The Language of Primitive Words is Not Regular: Two Simple Proofs, by Pál Dömösi, Géza Horváth

	Puzzle Corner, by Laurent Rosaz
	Reports from Conferences
	ICALP 2005/PPDP 2005, by Manfred Kudlek
	APC25, by Luca Aceto
	CPM 2005, by Shiri Dori
	WG 2005, by Hans L. Bodlaender
	AFL 2005, by Manfred Kudlek
	WSA 2005, by Manfred Kudlek
	Natural Processes and Models of Computation, by Elena Calude
	DNA 11, by N. Santean

	Abstracts of PhD Theses
	Pattern Statistics in Rational Models, by Violetta Lonati
	Varieties of Tree Languages, by Saeed Salehi
	Linear Temporal Logic: Expressiveness and Model Checking, by Jan Strejcek
	Well-Definedness, Semantic Type-Checking,and Type Inference for Database Query Languages, by Stijn Vansummeren

	EATCS Leaflet
	Pictures
	Natural Processes and Models of Computation
	DNA 11
	James Gimzewski
	Eric Klavins
	Eshel Ben-Jacob
	Mark Daley
	Dipankar Sen
	Erik Winfree
	Perh Harbury
	Junghuei Chen
	Ned Seeman
	Niles Pierce
	Hirotaka Nakagawa
	Yasubumi Sakakibara
	John Reif
	Oscar Ibarra
	Robert Barish
	Chengde Mao
	Byoung-Tak Zhang
	Masami Hagiya
	Grzegorz Rozenberg, Len Adleman, Lila Kari
	Elizabeth Goode
	Vladimir Rogojin, Yurii Rogozhin
	Len Adleman, John Reif
	Grzegorz Rozenberg
	Eric Klavins, Claudio Zandron

