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Abstract. The Hierarchical Dirichlet Process (HDP) is a Bayesian non-
parametric prior for grouped data, such as collections of documents,
where each group is a mixture of a set of shared mixture densities, or
topics, where the number of topics is not fixed, but grows with data
size. The Nested Dirichlet Process (NDP) builds on the HDP to cluster
the documents, but allowing them to choose only from a set of specific
topic mixtures. In many applications, such a set of topic mixtures may
be identified with the set of entities for the collection. However, in many
applications, multiple entities are associated with documents, and often
the set of entities may also not be known completely in advance. In this
paper, we address this problem using a nested HDP (nHDP), where the
base distribution of an outer HDP is itself an HDP. The inner HDP cre-
ates a countably infinite set of topic mixtures and associates them with
entities, while the outer HDP associates documents with these entities
or topic mixtures. Making use of a nested Chinese Restaurant Franchise
(nCRF) representation for the nested HDP, we propose a collapsed Gibbs
sampling based inference algorithm for the model. Because of couplings
between two HDP levels, scaling up is naturally a challenge for the in-
ference algorithm. We propose an inference algorithm by extending the
direct sampling scheme of the HDP to two levels. In our experiments on
two real world research corpora, we show that, even when large fractions
of author entities are hidden, the nHDP is able to generalize signifi-
cantly better than existing models. More importantly, we are able to
detect missing authors at a reasonable level of accuracy.

1 Introduction

Dirichlet Process mixture models [1] allow for nonparametric or infinite mixture
modeling, where the number of densities or mixture components is not fixed
ahead of time, but grows (slowly) with the number of data items. They do so
by using as a prior the Dirichlet Process (DP), which is a distribution over
distributions, and has the additional property that draws from it are discrete
(w.p. 1) with infinite support [1, 6]. However, many applications require joint
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analysis of groups of data, such as a collection of text documents, where the
mixture components, or topics (as they are called for text data), are shared
across the documents. This calls for a coupling of multiple DPs, one for each
document, where the base distribution is discrete, and shared. The hierarchical
Dirichlet Process (HDP) [16] does so by placing a DP prior on a shared base
distribution, so that the model now has two levels of DPs. The HDP has since
been used extensively as a prior for non-parametric modeling of text collections.
The popular LDA model [3] may be considered as a parametric restriction of the
HDP mixture model.

The HDP mixture model (and LDA) belongs to the family of admixture mod-
els [5], where each composite data item or group gets assigned to a mixture over
the mixture components or topics. While this adds more flexibility to the groups
of data items, the ability to cluster groups is lost, since each group now has a
distinct mixture of topics associated with it. This additional capability is desired
in many applications, such as analysis of patient profiles in hospitals [13], where
the hospitals need to be clustered in addition to shared grouping of patients
in individual hospitals. Alternatively, imagine a corpus containing descriptions
related to entities, such as a shared set of researchers who have authored a large
body of scientific literature, or a shared set of personalities discussed across news
articles, such that each entity can be represented as a mixture of topics. Here,
topic mixtures, corresponding to entities, are required to be shared across data
groups or documents, in addition to the topics themselves. This can be captured
using the nested DP (nDP) [13], which has a DP corresponding to each group,
which are coupled through the same base distribution, which is a DP itself, un-
like being DP distributed, as in the HDP. This results in a distribution over
distributions over distributions, unlike the HDP and the DP, which are distri-
butions over distributions. The nDP can be imagined as first creating a discrete
set of mixtures over topics, each mixture representing an entity, and then choos-
ing exactly one of these entities for each document. In this sense, the nDP is a
mixture of admixtures.

One major shortcoming of the nDP for entity analysis is the restrictive as-
sumption of a single entity being associated with a document. In research papers,
multiple authors are associated with any document, and any news article typi-
cally discusses multiple people, organizations etc. This requires each document
to have a distribution over entities. In other words, we need a model that is an
admixture of admixtures. The Author-Topic Model (ATM) [14], which models
authors associated with documents, belongs to this class, but is restrictive in
that it requires the authors to be observed for documents, and also assumes the
number of topics to be known.

In this paper, we address the problem of nonparametric modeling of entities
and topics, where the number of topics is not known in advance, and additionally
the set of entities for each document is either partly or completely unknown. For
this, we propose the nested HDP (nHDP), where the base distribution of an HDP
is itself an HDP. This belongs to the same class as the nDP, since it specifies
a distribution over distributions (entities) over distributions (topics). However,
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unlike the nDP, it first creates a discrete set of entities, and models each group
as a mixture over these entities. To the best of our knowledge, ours is the first
entity-topic model that is nonparametric in both entities and topics. The Author
Topic Model falls out as a parametric version of this model, when the entity set
is observed for each document, and the number of topics is fixed.

For inference using the nHDP, we propose the nested CRF (nCRF), which
extends the Chinese Restaurant Franchise (CRF) analogy of the HDP to two
levels by integrating out the two levels of HDPs. However, due to strong cou-
pling between the CRF layers, inference using the nCRF poses computational
challenges. We use a direct sampling scheme, based on that for the HDP, where
the entity and topic indexes are directly sampled, based on the counts of ta-
ble assignments and stick-breaking weights at the two levels. Using experiments
over publication datasets involving author entities from NIPS and DBLP, we
show that the nHDP generalizes better under different levels of available author
information. More interestingly, the model is able to detect authors completely
hidden in the entire corpus with reasonable accuracy.

2 Related Work

In this section, we review existing literature on Bayesian nonparametric modeling
and entity-topic analysis.

Bayesian Nonparametric Models: We review the Dirichlet Process (DP) [6],
the Hierarchical Dirichlet Process (HDP) [16] and the nested Dirichlet Process
(nDP) [13] in detail in the Sec. 3.

The MLC-HDP[17] is a 3-layer model proposed for human brain seizures
data. The 2-level truncation of the model is closely related to the HDP and the
nDP. Like the HDP, it shares mixture components across groups (documents)
and assigns individual data points to the same set of mixtures, and like the nDP
it clusters each of the groups or documents using a higher level mixture. In other
words, this is a nonparametric mixture of admixtures, while our proposed nested
HDP is a nonparametric admixture of admixtures.

The nested Chinese Restaurant Process (nCRP) [2] extends the Chinese
Restaurant Process analogy of the Dirichlet Process to an infinitely-branched
tree structure over restaurants to define a distribution over finite length paths
of trees. This can be used as a prior to learn hierarchical topics from documents,
where each topic corresponds to a node of this tree, and each document is gener-
ated by a random path over these topics. An extension to this model, also called
the nested HDP, has recently been proposed on Arvix [11]. In the spirit of the
HDP, which has a top level DP and providing base distributions for document
specific DPs, this model has a top level nCRP, which becomes the base distri-
bution for document specific nCRPs. In contrast, our model has nested HDPs,
in the sense that one HDP directly serves as the base distribution for another
HDP, like in the nested DP [13], where one DP serves as the base distribution
for another DP. This parallel with the nested DP motivates the nomenclature of
our model as the nested HDP.
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Entity-Topic Models: Next, we briefly review prior work on simultaneously
modeling of entities and topics in documents. The literature mostly contains
parametric models, where the number of topics and entities are known ahead of
time. The LDA model [3] is the most popular parametric topic model, and has a
distribution θd over T topics for each document, and the topic label zdi for each
word in the document is sampled iid from θd. The author-topic model (ATM)[14]
extends the LDA to capture known authors Ad of each document. Each author
now has his own distribution πa over topics K, and the words are generated by
first sampling one of the known authors uniformly, followed by sampling a topic
from the topic distribution of that author:

φk ∼ Dir(β), k = 1 . . . T ; πa ∼ Dir(α), a = 1 . . . A

adi ∼ πd ≡ U(Ad); zdi ∼ θadi ; wdi ∼Mult(φzdi) (1)

The Author Recipient Topic model[9] distinguishes between sender and recipient
entities and learns the topics and topic distributions of sender-recipient pairs.
Newman et. al[10] analyze entity-topic relationships from textual data contain-
ing entity words and topic words, which are pre-annotated. The Entity Topic
Model[8] proposes a generative model which is parametric in both entities and
topics and assumes observed entities for each document.

There has been very little work on nonparametric entity-topic modeling,
which would enable discovery of entities in settings where entities are partially
or completely unobserved in documents. The Author Disambiguation Model[4]
is a nonparametric model for the author entities along with topics. Primarily
focusing on author disambiguation from noisy mentions of author names in doc-
uments, this model treats entities and topics symmetrically, generating entity-
topic pairs from a DP prior. Contrary to this approach, our model treats the
entity as a distribution over topics, thus explicitly modeling the fact that authors
of documents have preferences over specific topics.

3 Background

Consider a setting where observations are organized in groups. Let xji denote
the ith observation in jth group. For a corpus of documents, xji is the i

th word
occurrence in the jth document. In the context of this paper, we will use group
synonymously with document, data item with word in a document. We assume
that each xji is independently drawn from a mixture model and has a mixture
component parameterized by a factor, say θji, representing a topic, associated
with it. For each group j, let the associated factors θj = (θj1, θj2, . . .) have a
prior distribution Gj . Finally, let F (θji) denote the distribution of xji given
factor θji. Therefore, the generative model is given by

θji|Gj ∼ Gj ; xji|θji ∼ F (θji), ∀j, i (2)

The central question in analyzing a corpus of documents is the parametrization
of the Gj distributions — what parameters to share and what priors to place
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on them. We start with the Dirichlet Process that considers each of the Gj
distributions in isolation, then the Hierarchical Dirichlet Process that ensures
sharing of atoms among the differentGjs, and finally the nested Dirichlet Process
that additionally clusters the groups by ensuring that all the Gjs are not distinct.

Dirichlet Process: Let (Θ, B) be a measurable space. A Dirichlet Process
(DP) [6, 1] is a measure over measures G on that space. Let G0 be a finite
measure on the space. Let α0 be a positive real number. We say that G is DP
distributed with concentration parameter α and base distribution G0, written
G ∼DP(α0, G0), if for any finite measurable partition (A1, . . . , Ar) of Θ, we have

(G(A1), . . . G(Ar)) ∼ Dir(α0G0(A1), . . . , α0G0(Ar)).

The stick-breaking representation provides a constructive definition for sam-
ples drawn from a DP. It can be shown [15] that draw G from DP (α0, G0) can
be written as

φk
iid
∼ G0, k = 1 . . .∞; wi ∼ Beta(1, α0); βi = wi

∏i−1
j=1(1− wj)

G =
∑∞
k=1 βkδφk

, (3)

where the atoms φk are drawn independently from G0 and the corresponding
weights {βk} follow a stick breaking construction. This is also called the GEM
distribution: (βk)

∞
k=1 ∼ GEM(α0). The stick breaking construction shows that

draws from the DP are necessarily discrete, with infinite support, and the DP
therefore is suitable as a prior distribution on mixture components for ‘infinite’
mixture models. Subsequently, {θji} are drawn from each Gj . When drawing of
{θji} is followed by draws {xji} according to Eqn. 2, the model is known as the
Dirichlet Process mixture model [6].

Another commonly used perspective of the DP is the Chinese Restaurant

Process (CRP) [12], which shows that DP tends to clusters the observations. Let
{θi} denote the sequence of draws from G, and let {φk} be the atoms of G. The
CRP considers the predictive distribution of the ith draw θi given the first i− 1
draws θ1 . . . θi−1 after integrating out G:

θi|θ1, . . . , θi−1, α0, G0 ∼

K
∑

k=1

mk

i− 1 + α0
δφk

+
α0

i− 1 + α0
G0

wheremk =
∑i−1
i′=1 δ(θi′ , φk). The above conditional may be understood in terms

of the following restaurant analogy. Consider an initially empty ‘restaurant’ that
can accommodate an infinite number of ‘tables’. The ith ‘customer’ entering the
restaurant chooses a table θi for himself, conditioned on the seating arrangement
of all previous customers. He chooses the k-th table with probability proportional
to mk, the number of people already seated at the table, and with probability
proportional to α0, he chooses a new (currently unoccupied) table. Whenever a
new table is chosen, a new ‘dish’ φk is drawn (φk ∼ G0) and associated with
the table. The CRP readily lends itself to sampling-based inference strategies
for the DP.
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Hierarchical Dirichlet Process: Now reconsider our grouped data setting.
If each Gj is drawn independently from a DP, then w.p. 1 the atoms {φjk}

∞
k=1

for each Gj are distinct. This would mean that there is no shared topic across
documents, which is undesirable. The Hierarchical Dirichlet Process (HDP) [16]
addresses this problem by modeling the base distribution G0 of the DP prior in
turn as DP distributed. Since draws from a DP are discrete, this ensures that the
same atoms {φk} are shared across all the Gjs. Specifically, given a distribution
H on the space (Θ, B) and positive real numbers (αj)

M
j=1 and γ, we denote as

HDP(α, γ,H) the following generative process:

G0|γ,H ∼ DP (γ,H)

Gj |αj , G0 ∼ DP (αj , G0) ∀j. (4)

When this is followed by generation of {θji} and {xji} as in Eqn. 2, we get the
HDP mixture model.

Using the stick-breaking construction, the global measure G0 distributed as
Dirichlet process can be expressed as G0 =

∑∞
k=1 βkδφk

, where the topics φk are
drawn from H independently (φk ∼ H) and {βk} ∼ GEM(γ) represent ‘global’
popularities of these topics. Since G0 has as its support the topics {φk}, each
group-specific distribution Gj necessarily has support at these topics, and can
be written as follows:

Gj =
∞
∑

k=1

πjkδφk
; (πjk)

∞
k=1 ∼ DP(αj ,β) (5)

where πj = (πjk)
∞
k=1 denotes the topic popularities for the jth group.

Analogous to the CRP for the DP, the Chinese Restaurant Franchise provides
an interpretation of predictive distribution for the next draw from an HDP after
integrating out the Gjs and G0. Let {θji} denote the sequence of draws from
each Gj , {ψjt} the sequence of draws from G0, and {φk} the sequence of K
draws from H. Then the conditional distribution of θji given θj1, . . . , θj,i−1 and
G0, after integrating out Gj is as follows:

θji|θj1, . . . , θj,i−1, α0, G0 ∼

mj·
∑

t=1

njt·
i− 1 + α0

δψjt
+

α0

i− 1 + α0
G0 (6)

where njtk =
∑i−1
i′=1 δ(θji′ , ψjt)δ(ψjt, φk), mjk =

∑

t δ(ψjt, φk) and dots indicate
marginal counts. As G0 is also distributed according to a Dirichlet Process, we
can integrate it out similarly to get the conditional distribution of ψjt:

ψjt|ψ11, ψ12, . . . , ψ21, . . . ,ψjt−1, γ,H ∼

K
∑

k=1

m·k

m·· + γ
δφk

+
γ

m·· + γ
H (7)

These equations may be interpreted using a two-level restaurant analogy. Con-
sider a set of restaurants, one corresponding to each group. Customers entering
each of the restaurants select a table θji according a group specific CRP (Eqn
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6). The restaurants share a common menu of dishes {φk}. Dishes are assigned
to the tables of each restaurant according to another CRP (Eqn 7). Let tji be
the (table) index of the element of {ψjt} associated with θji, and let kjt be the
(dish) index of the element of {φk} associated with ψjt. Then the two conditional
distributions above can also be written in terms of the indexes {tji} and {kjt}
instead of referring to the distributions directly. If we draw ψjt by choosing a
summation term, we set ψjt = φk and let kjt = k for the chosen k. If the second
term is chosen, we increment K by 1 and draw φK ∼ H and set ψjt = φK and
kjt = K. This CRF analogy leads to efficient Gibbs sampling-based inference
strategies for the HDP mixture model [16].

Nested Dirichlet Process: In other applications of grouped data, we may
additionally be interested in clustering the data groups themselves. For example,
when analyzing patient records in hospitals, we may want to cluster the hospitals
as well in terms of the profiles of patients coming there. The HDP cannot do this,
since each group specific mixture Gj is distinct. This problem is addressed by the
nested Dirichlet Process [13], which first defines a set {G′

k}
∞
k=1 of distributions

over an infinite support:

G′
k =

∞
∑

l=1

wlkδθ′
lk
, θ′lk ∼ H, {wlk}

∞
l=1 ∼ GEM(γ) (8)

and then draws the group specific distributions Gj from a mixture over these:

Gj ∼ G0 ≡

∞
∑

k=1

πkδG′

k
, {πk} ∼ GEM(α)

We denote the generation process as {Gj} ∼ nDP (α, β,H). The process en-
sures non-zero probability of different groups selecting the same G′

k, leading to
clustering of the groups. Using Eqn. 3, the draws {Gj} can be characterized as:

Gj ∼ G0, G0 ∼ DP (α,DP (γ,H)) (9)

where the base distribution of the outer DP is in turn another DP, unlike the
HDP where it is DP distributed. Thus the nDP can be viewed as a distribution
on the space of distributions on distributions.

Given this characterization of the nDP, it appears to be useful for restricted
entity-topic analysis, where we additionally want to label each document with a
single entity from a countable set, with each entity associated with a distribution
over topics. However, note that the support {θ′lk} of each G′

k in Eqn 8 is distinct,
which implies that different entities do not share any topics. Further, we would
like to associate a distribution over entities for each document. This makes the
nDP unsuitable even for such restricted entity-topic analysis.

4 Nonparametric Entity-Topic Analysis

We now present our nested Hierarchical Dirichlet Process (nHDP) model for
nonparametric entity-topic analysis. We first present the model where each group
or document is associated with a single entity, then extend it for multiple entities.
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Single-Entity Documents: Recall that the nDP is unsuitable for entity-topic
analysis, since the entity distributions do not share topic atoms. This can be
modified by first creating a set of entity distributions {Gk′}

∞
k′=1 such that they

share atoms. One way to do this is to follow the HDP construction:

Gk′ ∼ HDP ({αk′}, γ,H) (10)

This can be followed by drawing each group specific distribution from a mixture
over the Gk′s:

G′
j ∼ G′

0 ≡
∞
∑

k′=1

β′
k′δGk′

, β′ ∼ GEM(γ′) (11)

Using Eqn. 3, we observe that G′
0 ∼ DP (γ′, HDP ( {αk′}, γ,H)). Observe the

relationship with the nDP (Eqn. 9). Like the nDP, this also defines a distribu-
tion over the space of distributions on distributions. But, instead of a DP base
distribution for the outer DP, we have achieved sharing of atoms using a HDP
base distribution. We will write G′

j ∼ DP-HDP(γ′, {αk′}, γ,H).

Sampling G′
j may be imagined as choosing the entity for the jth document.

As before, G′
j can now be used as prior for sampling topics {θji} for individual

words in document j, followed by sampling of the words themselves, using Eqn
2. We will call this the DP-HDP mixture model.

Nested HDP for Multi-Entity Documents: The DP-HDP model above
associates a single distribution over topics G′

j with the jth document, and the
topic θji for each word xji in the document is drawn from G′

j . In the context
of entity-topic analysis, this means that a single entity is associated with a
document, and words are drawn from the preferred topics of this entity. However,
many applications, such as analyzing entities in news articles and authors from
scientific literature, require associating multiple entities with each document,
and each word in the document is drawn from a preferred topic of one of these
entities. In this section, we extend the earlier model for multi-entity documents.

As before, we first create a set of distributions {Gk′}
∞
k′=1 over the same set

of (topic) distributions {φk}
∞
k=1 (φk ∼ H) by drawing independently from an

HDP, and creating a global mixture over them:

Gk′ ∼ HDP ({αk′}, γ,H); β′ ∼ GEM(γ′); G′
0 ≡

∞
∑

k′=1

β′
k′δGk′

This may be interpreted as creating a countable set of entities by defining topic
preferences (distributions over topics) for each of them, and then defining a
‘global popularity’ of the entities. Earlier, for single entity documents, the only
entity was sampled from this global popularity. Now, we define a document-
specific local popularity for entities, derived from this global popularity:

G′
j ≡

∞
∑

k′=1

π′
jk′δGk′

, {π′
jk′} ∼ DP (α′

j , β
′) (12)
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Now, sampling each factor θji in document j is preceded by choosing an entity
θ′ji ∼ G′

j by sampling according to local entity popularity. Note that P (θ′ji =
Gk′) = π′

jk′ .
Using the stick breaking definition of the HDP in Eqn. 5, we can see that

G′
j is drawn from a HDP. The base distribution of that HDP has to be the

distribution from which the atoms {Gk′} are drawn, which is again an HDP.
Therefore, we can write:

θ′ji ∼ G′
j ∼ HDP({α′

j}, γ
′,HDP({αk′}, γ,H)) (13)

We refer to the two relevant HDPs as the inner and outer HDPs. Observing the
parallel with the nDP definition in Eqn. 9, we call this the nested HDP (nHDP),
and write θ′ji ∼ nHDP ({α′

j}, γ
′, {αk′}, γ,H). Similar to the nDP, and the DP-

HDP (Eqn. 11), this again defines a distribution over the space of distributions
over distributions. The complete nHDPmixture model is defined by subsequently
sampling θji ∼ θ′ji, followed by xji ∼ F (θji).

An alternative characterization of the nHDP mixture model is using the topic
index zji and entity index z′ji corresponding to xji:

β ∼ GEM(γ); πk′ ∼ DP (α, β); φk ∼ H, k, k′ = 1 . . .∞

β′ ∼ GEM(γ′) ;π′
j ∼ DP (α, β′), j = 1 . . .M

z′ji ∼ π′
j ; zji ∼ πz′

ji
; xji ∼ F (φzji), i = 1 . . . nj (14)

This may be understood as first creating entity-specific distributions πk′ over
topics using global topic popularities β, followed by creation of document-specific
distributions π′

j over entities using global entity popularities β′. Using these

parameters, the content of the jth document is generated by sampling repeatedly
in iid fashion an entity index z′ji using π

′
j , a topic index zji using πz′

ji
and finally

a word using F (φzji).
Observe the connection with the ATM in Eqn. 1. The main difference is the

the set of entities and topics is infinite. Additionally, each document now has a
distinct non-uniform distribution π′

j over entities.
Also, observe that we have preserved the HDP notation to the extent possi-

ble, to facilitate understanding. To distinguish between variables corresponding
to the two HDPs in the model, we use dashes (′) as superscripts on symbols
corresponding to the outer HDP. Going forward, we follow the same convention
for naming variables in the nested CRF.

Nested Chinese Restaurant Franchise: In this section, we derive the pre-
dictive distribution for the next draw θ′ji from the nHDP given previous draws,
after integrating out {G′

j} and G′
0, and then the predictive distribution for the

draw θji after integrating out {θ′ji} and G0. We also provide an interpretation
for these using two nested CRFs, corresponding to the inner and outer HDPs.
These will be useful for the inference algorithm that we describe in Section 5.

Let {θ′ji} denote the sequence of draws from G′
j , and {ψ′

jt′}t′=1 denote the
sequence of draws from G′

0. Then the conditional distribution of θ′ji given all
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previous draws after integrating out G′
j looks as follows:

θ′ji|θ
′
j1:i−1, α

′
j , G

′
0 ∼

m′

j·
∑

t′=1

n′jt′·
i− 1 + α′

j

δψ′

jt′
+

α′
j

i− 1 + α′
j

G′
0

(15)

where n′jt′k′ =
∑

i′ δ(θ
′
ji′ , ψ

′
jt′)δ(ψ

′
jt′ , Gk′), m

′
jk′ =

∑

t′ δ(ψ
′
jt′ , Gk′). Next, we

integrate out G′
0, which is also distributed according to Dirichlet process:

ψ′
jt′ |ψ

′
11,ψ

′
12, . . . , ψ

′
21, . . . , ψ

′
j,t′−1, γ

′,HDP(α, γ,H) ∼

K′

∑

k′=1

m′
·j

m′
·· + γ′

δGk′
+

γ′

m′
·· + γ′

HDP(α, γ,H)
(16)

Observe that each θ′ji variable gets assigned to one of the Gk′ variables. Let
{θji} denote the sequence of draws from respective {θ′ji} (i.e. from the corre-
sponding Gk′), {ψk′t} the sequence of draws from G0, and {φk}

∞
k=1 the sequence

of draws from H. Let θk′:ji denote the set of θ variables already drawn from Gk′

before sampling θji, i.e. θk′:ji ≡ {θj′i′ : θ
′
j′i′ = G′

k, ∀i′, j′ ≤ j, and i′ < i, j′ =
j}. Then, the conditional distribution of θji given θk′:ji and G0, after integrating
out Gk′ (corresponding to θ′ji) is as follows:

θji|θk′:ji, α0, G0 ∼

mk′
·

∑

t=1

nk′t·
i− 1 + α0

δψk′t
+

α0

nk′·· + α0
G0 (17)

where nk′tk =
∑

i δ(θk′i,ψk′t
)δ(ψk′t, φk), mk′k =

∑

t δ(ψk′t, φk) and dots indicate
marginal counts. As G0 is also distributed according to a Dirichlet Process, we
can integrate it out similarly and write the conditional distribution of ψk′t as
follows:

ψk′t|ψ11, ψ12, . . . , ψ21, . . . ,ψk′t−1, γ,H ∼

K
∑

k=1

m·k

m·· + γ
δφk

+
γ

m·· + γ
H (18)

Note that both conditional distributions for θ′ji and θji are similar to that for
CRF (Eqns. 6 and 7). We interpret these two distributions as a nested Chinese

Restaurant Franchise, involving one inner CRF and one outer CRF.
Consider a set of outer restaurants, one corresponding to each group. Cus-

tomers entering each of these restaurants select a table θ′ji according a group
specific CRP (Eqn 15). The restaurants share a common set of inner restaurants
{Gk′}. Inner restaurants are assigned to the tables of each outer restaurant ac-
cording to another CRP (Eqn 16). Next, the customers go to the inner restaurant
assigned to them (by some outer restaurant) and select a table θji according to
the inner restaurant specific CRP (Eqn 17). These inner restaurants share a
common menu of dishes {φk}. Dishes are assigned to the tables of each inner
restaurant according to another CRP (Eqn 18).

Let t′ji be the (outer table) index of the ψ′
jt′ associated with θ′ji, and let k′jt

be the (inner restaurant) index of the Gk′ associated with ψ′
jt′ . Let tji be the
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(inner table) index of the ψk′t associated with θji, and let kk′t be the (dish) index
of the φk associated with ψk′t. Then the two conditional distributions above can
also be written in terms of the indexes {t′ji}, {k

′
jt′}, {tji} and {kk′t} instead of

referring to the distributions directly. For the jth outer restaurant and its ith

customer, we draw θ′ji using Eqn. 15. If the first summation is chosen, we set
θ′ji = ψ′

jt′ and let t′ji = t′ for the chosen t′. If the second term is chosen, then we
increment m′

j· by one, draw ψ′
jm′

j·
∼ G′

0 using (Eqn 16) and set θ′ji = ψ′
jm′

j·
and

t′ji = m′
j·. If we draw ψ′

jt′ via choosing a summation term, we set ψ′
jt′ = Gk′ and

let k′jt′ = k′ for the chosen k′. If the second term is chosen, then we increment
the current distinct entity count M by one, draw GM ∼ HDP(α, γ,H) and set
ψ′
jt′ = GM and k′jt′ =M . Next, we similarly draw samples of θji for each j and

i using Eqn. 17. If new sample from G0 is needed, we use Eqn. 18 to obtain a
new sample ψk′t.

5 Inference for Nested HDP

We use Gibbs sampling for approximate inference, as exact inference is in-
tractable for this problem. The conditional distributions for the nCRF scheme
lend themselves to an inference algorithm where we sample t′ji, tji, k

′
jt′ and kk′t.

The conditionals for these variables are similar to those in equations 15, 17, 18
and 16 respectively. However, in such an approach, there exists a tight coupling
between the variables t′ji, tji and k′jt′ , which would call for computationally
expensive joint sampling of variables.

Instead, we adopt a technique similar to the direct sampling scheme in
HDP[16], where variables G0 and G′

0 are explicitly sampled instead of being
integrated out, by sampling the stick breaking weights β and β′ respectively.
Further, we directly sample zji (the topic) and z

′
ji (the author) for each word in

the jth document avoiding explicit table assignments to the t′ji and tji variables.
However, in order to sample β and β′, the table information is maintained in the
form of the number of tables in each outer and inner restaurant, m′

jk′ and mk′k

respectively. Thus the latent variables that need to be sampled in our Gibbs
sampling scheme are zji, z

′
ji, β, β

′, mjk′ and mk′k.

We introduce the following notation for the rest of this section. Let x = {xji :
all j, i}, x−ji = {xj′i′ : j

′ 6= j, i′ 6= i}, m = {mk′k : all k′, k}, m′ = {m′
jk′ : all

j, k′}, z = {zji : all j, i}, z′ = {z′ji : all j, i}, z−ji = {zj′i′ : j′ 6= j, i′ 6= i},

z′−ji = {z′j′i′ : j
′ 6= j, i′ 6= i}, βnew =

∑∞
k=K+1 βk and β′

new =
∑∞
k′=K′+1 β

′
k′

Sampling zji: The conditional distribution for topic index zji is

p(zji = z|z−ji, z
′
−ji, z

′
ji = z′,m,m′, β, β′,x) ∝ p(zji = z|z−ji, z

′
ji = z′)p(xji|zji = z,x−ji)

For existing topics, p(zji = z|z−ji, z
′
ji = z′) can be split into two terms, one

from picking any of the existing tables from entity (inner restaurant) z′ with
topic z and the other from creating a new table for entity z′ and assigning the
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topic z to it. For a new topic, a new table is always created for entity z′. Hence,

p(zji = z|z−ji, z
′
ji = z′) ∝

{

nk′.k+αβk

nk′.+α
Existing z

αβnew

nk′..+α
New topic z

(19)

The other term p(xji|zji = z,x−ji) is the conditional density of xji under
topic z given all data items except xji. Assuming each topic is sampled from a V
dimensional symmetric Dirichlet prior over the vocabulary with parameter η, i.e
φk ∼ Dir(η), the above probability can be simplified to the following expression,
by integrating out φ:

p(xji = w|zji = z,x−ji) ∝
nzw + η

nz.+ V η

where nzw is the number of occurrences of topic z with word w in the vocabulary.
Sampling z′ji: The conditional distribution for the entity index z′ji is

p(z′ji = z′|z′−ji, z−ji, zji = z,m,m′, β, β′,x) ∝ p(z′ji = z|z′−ji)p(zji = z|z−ji, z
′
ji = z′)

Again, p(zji = z|z−ji, z
′
ji = z′) can be split into two terms, one from picking

an existing outer table with entity z′ and the other from creating a new outer
table and assigning the entity z′ to it. Further, creation of a new entity always
involves the creation of a new outer table. Hence,

p(z′ji = z′|z′−ji) ∝







n′

j.k′+α
′β′

k′

n′

j..
+α′

Existing z′

α′β′

new

n′

j..
+α′

New z′

p(zji = z|z−ji, z
′
ji = z′) follows from Eqn. 19.

Sampling β and β′: The posterior of G0, conditioned on samples ψk′t from
it, is also distributed as a DP due to Dirichlet-Multinomial conjugacy, and the
stick breaking weights of G0 can be sampled as follows: (β1, β2 . . . βK , βnew) ∼
Dir(m.1,m.2 . . .m.K , γ) Similarly, the stick breaking weights β′ can be sampled
from the posterior distribution of G′

0 conditioned on samples from G′
0 in the

form of m′
jk′ as follows: (β

′
1, β

′
2 . . . β

′
K , β

′
new) ∼ Dir(m′

.1,m
′
.2 . . .m

′
.K′ , γ′)

Sampling m and m′: mk′k is the number of inner tables generated as nk′.k
samples are drawn from G′

k corresponding to a particular topic k. This is the
number of partitions generated as samples are drawn from a Dirichlet Process
with concentration parameter αβk and is distributed according to a closed form
expression [1]. We adopt a different method [7] for sampling mk′k by drawing a
total of nk′.k samples with topic k, and incrementing the count mk′k whenever
a new inner table is created with topic assignment k. Similarly, m′

jk′ is sampled
by drawing a total of n′j.k′ samples with entity k’ and incrementing the count
m′
jk′ whenever a new outer table is created with entity assignment k′.
Sampling Concentration parameters: We place a vague gamma prior on

the concentration parameters α, γ, α′, γ′ with hyper parameters (αa, αb), (γa, γb),
(α′
a, α

′
b) and (γ′a, γ

′
b) respectively. We use Gibbs sampling scheme for sampling

the concentration parameters using the technique outlined in HDP[16].
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We use the conditional distributions above to perform inference under three
different settings. In the “no observed entities” setting, the conditional distri-
butions above are repeatedly sampled from until convergence. For initialization,
we first initialize the topic variables zji using an online scheme, and then initial-
ize the entities z′ji using the topics. In the “completely observed entities”

setting, the set of entities Aj is given for every document j. Since no other
entities are deemed possible for the jth document, p(z′ji = z′|z′−ji, z−ji, zji =
z,m,m′, β, β′,x) is set to 0 for new entities and for all z′ /∈ Aj . In the “par-

tially observed entities” setting, a partial list of known entities Aj is available
for document j, but other entities are also considered possible. We perform an
initialization step, similar to that in the completely observed setting, using the
known entities Aj . No new authors are added in this initial step. During later
iterations, we allow all assignments z′ji = z — one of the known entities from
Aj , entities of other documents j′, and new entities. However, we introduce a
bias towards the known authors z′ ∈ Aj using an additional small positive term
to their probability mass.

6 Experiments

In this section, we experimentally evaluate the proposed nHDP model for the
task of modeling author entities who have collaboratively written research pa-
pers, and compare its performance against available baselines. Specifically, we
evaluate two different aspects: (1) how well the model is able to learn from the
training samples and fit held-out data, first (1a) when all the authors are ob-
served in training and test documents, and secondly (1b) when some or all of
the authors are unobserved in training and test documents, (2) how accurately
the model discovers hidden authors, who are not mentioned at all in the corpus.

We consider the following models for the experiments: (i) The author-topic
model (ATM) (Eqn. 1) where the number of topics is pre-specified, and all au-
thors are observed for all documents. This is used as a baseline for (1a) above.
(ii) The Hierarchical Dirichlet Process (HDP) (Eqn. 4) using the direct as-
signment inference scheme for fair comparison. We use our own implementation
for this. Recall that the HDP infers the number of topics, and does not use
author information. (iii) nHDP with completely observed entities (nHDP-co),
which assumes complete entity information to be available for all documents,
but learns topics in a nonparametric fashion. This can be imagined as an im-
provement over ATM where the number of topics does not need to be specified.
(iv) nHDP with partially observed entities (nHDP-po), which makes use of
available entity information, but admits the possibility of entities being hidden
globally from the corpus, or locally from individual documents. (v) nHDP with
no observed entities (nHDP-no), which does not make use of any entity infor-
mation and assumes all entities to be globally hidden in the corpus. For task
(1a) above, the applicable models are the ATM, HDP (which ignores the entity
information) and nHDP-co. For task (1b), the ATM does not apply. We evaluate
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Table 1. Perplexity of ATM, HDP and nHDP-co for NIPS

Model ATM HDP nHDP-co

Perplexity 2783 1775 1247

HDP, nHDP-po and nHDP-no. It is important to point out that there are no
available baselines for task (2) above.

We use the following publicly available publication datasets for our exper-
imental analysis. The NIPS dataset3 is a collection of papers from Neural
Information Processing Systems (NIPS) conference proceedings (volume 0-12).
This collection contains 1,740 documents contributed by a total of 2,037 authors,
with total 2,301,375 word tokens resulting in a vocabulary of 13,649 words. A
subset of theDBLP Abstracts dataset4 containing 12,000 documents by 15,252
authors collected from 20 conferences records on the Digital Bibliography and
Library Project (DBLP). Each document is represented as a bag of words present
in abstract and title of the corresponding paper, resulting in a vocabulary size
of 11,771 words.

1. Generalization Ability: We now come to our first experiment, where we
evaluate the ability of the models, whose parameters are learnt from a training
set, to predict words in new unseen documents in a held-out test set. We evaluate
performance of a model M on a test collection D using the standard notion of
perplexity [3]: exp(−

∑

d∈D p(wd)|M).

In experiment (1a), all authors are observed in training and test documents.
To favor the ATM, which cannot handle new authors in test document, we create
test-train splits ensuring that each author in the test collection occurs in at least
one training document.

Perplexity results are shown in Table 1. Recall that HDP and nHDP find the
best number of topics, while for ATM we have recorded its best performance
across different value of K. The results show that while knowledge of authors is
useful, the ability of non-parametric topic models to infer the number of topics
clearly leads to better generalization.

Next, in experiment (1b), we first create training-test distributions with rea-
sonable author overlap by letting each author vote with probability 0.7 whether
to send a document to train or test, and majority decision is taken for each
document. Next, authors are partially hidden from both the test and the train
documents as follows. We iterate over the global list of authors and remove each
author from all training and test documents with probability pg. We then iterate
over each training and test document, and remove each remaining author of that
document with probability pl. We experiment with different values of pg and pl
to simulate different extents of missing information on authors.

The results are shown in Table 2. We can see that when more information
is available about the authors, the ability to fit held-out data improves. More

3 http://www.arbylon.net/resources.html
4 http://www.cs.uiuc.edu/ hbdeng/data/kdd2011.htm
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Table 2. Perplexity for HDP and nHDP with varying percentage of hidden authors

Model HDP nHDP-no nHDP-po nHDP-po nHDP-po nHDP-co

pg,pl 1,1 1,1 0.6,0.6 0.4,0.4 0.2,0.2 0,0
Perplexity NIPS 2572 1882 1434 1266 1109 987
Perplexity DBLP 1027 997 935 869 676 394

interestingly, even when no / very little author information is available, just the
assumption about the existence of authors, or a discrete set of topic mixtures,
leads to better generalization ability, as can be seen from the relative performance
of HDP and nHDP-no.

2. Discovering Missing Authors: Beyond data fitting, the most significant
ability of the nHDP mixture model is to discover entities which are relevant for
documents in the corpus, but are never mentioned. We perform a case study
with the top 6 most prolific authors in NIPS, by removing them completely
from the corpus, and then checking the ability of the model to discover them in
a completely unsupervised fashion. While it is possible to define as a classification
problem the task of detecting of locally missing authors in individual documents
when the author is observed in other documents, we reiterate that there is no
existing baseline when an author is globally hidden.

We evaluate the accuracy of discovering hidden author as follows. For each
hidden author h ∈ {1 . . . H}, we create am-dimensional vector ch, wherem is the
corpus size, with ch[j] indicating his authorship in the jth document. We explored
two possibilities for this ‘true’ indicator vector: (a) binary indicators using the
gold-standard author names for documents, and (b) the number of words written
by that author in the document according to nHDP with completely observed
authors (nHDP-co). Similarly, we create an m-dimensional vector for each new
author n ∈ {1 . . . N} discovered by the nHDP-po, with cn[j] indicating his contri-
bution (no. of authored words) in the jth document. We now check how well the
vectors {cn} correspond to the ‘true’ vectors {ch}. This is done by defining two
variables Cn and Ch, taking values 1 . . . H and 1 . . . N respectively, and defining
a joint distribution over them as P (h, n) = 1

Z sim(ch, cn), where Z is a normal-
ization constant. For sim(ch, cn), we use cosine similarity between normalized

versions of ch and cn. Mutual information I(Ch, Cn) =
∑

h,n p(h, n) log
p(h,n)
p(h)p(n)

measures the information that Ch and Cy share. We used its normalized variant

NMI(Ch, Cn) =
I(Ch,Cn)

|H(Ch)+H(Cn)|/2
(H(X) indicating entropy of X) which takes

values between 0 and 1, higher values indicating more shared information.

First, we note that the best NMI achievable for this task, by replacing the
true vectors {ch} for the discovered vectors {cn}, is 0.86 for case (a) and 0.98
for case (b) above. In comparison, using nHDP-po, we achieve NMI scores of
0.59 for case (a) and 0.72 for case (b). This indicates that the actual author
distributions that the model discovers not only help in fitting the data, but also
have reasonable correspondence with the true hidden authors. We believe that
this is a promising initial step in addressing this difficult problem.
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7 Conclusions

In this paper, we have addressed the problem of entity-topic analysis from doc-
ument corpora, where the set of document entities are either completely or par-
tially hidden. For such problems, we have proposed as a prior distribution the
nested Hierarchical Dirichlet Process, which consists of two levels of Hierarchi-
cal Dirichlet Processes, where one is the base distribution of the other. Using a
direct sampling scheme for inference, we have shown that the nHDP is able to
generalize better than existing models under varying available knowledge about
authors in research publications, and is additionally able to discover completely
hidden authors in the corpus.
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