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Abstract—Recently, the unified inverse depth parametrization 

has shown to be a good option for challenging monocular SLAM 
problem, in a scheme of EKF for the estimation of the stochastic 
map and camera pose. In the original approach, features are 
initialized in the first frame observed (undelayed initialization), 
this aspect has advantages but also some problems. In this paper 
a delayed feature initialization is proposed for adding new 
features to the stochastic map. The results show that delayed 
initialization can improve some aspects without losing the 
performance and unified aspect of the original method, when 
initial reference points are used in order to fix a metric scale in 
the map.  
 

Index Terms—Features, Initialization, Monocular, SLAM.  
 

I. INTRODUCTION 
n recent works, Montiel [1] and Eade [5] have shown that 
the use of an inverse depth parametrization for monocular 

SLAM can improve the linearity of the measurement equation 
even for small changes in the camera position yielding small 
changes in the parallax angle, this fact allows a Gaussian 
distribution to cover uncertainty in depth which spans a depth 
range from nearby to infinity.  

In the unified inverse depth method presented by Montiel 
[1], transition from partially to fully initialized features need 
not to be explicitly tackled, making it suitable for direct use in 
EKF framework for sparse mapping. In this approach the 
features are initialized in the first frame observed (undelayed 
initialization) with an initial fixed depth and uncertainty, 
determined heuristically to cover ranges from nearby to 
infinity, so distant points can be coded. Due to the clarity and 
scalability of this method, this approach is a good option for 
monocular-SLAM implementation. 

Particularly, this work is motivated by the problems of 
vision-based robot map building and localization, therefore, if 
monocular SLAM wants to be applied in this context, 
retrieving the metric scale of the world is very important. The 
experiments with the unified inverse depth method show that, 
when initial reference points are used for establishing a metric 
scale in the map, the initial features depths have to be tuned, 
otherwise, is likely that new features added to the map never 

converges respect to the metric reference. On the other hand, 
initializing features distant to the optical camera center can 
increase the possibility that features depth become negative 
after a Kalman update step.  

 
 

Initializing features in the first observed frame (undelayed 
initialization) avoids the use of pre-initialized features in the 
state and allows the use of all the information available in the 
feature since it is detected, on the other hand, when features 
are detected in the image with a saliency operator in order to 
be automatically added to the map, usually the weak long-term 
image features are added to the map. Therefore it is difficult to 
match them in subsequent frames. When a minimum number 
of active image features want to be maintained, it could 
happen that unnecessary initializations are realized. Every 
new feature initialization introduces biases to the system [8]. 

The aforementioned issues suggested for new features, 
initial inverse depth and their associated initial uncertainty, 
could be treated before being added to the system state instead 
of using a fixed initial depth and uncertainty. At the same time 
features can be tested prior to be added to map in order to 
prune weak long-term features.  

II. RELATED WORK 
In [2] a multi-hypothesis method based on a particle filter to 

represent the initial depth of a feature is proposed. This work 
gives good results. However its application in large 
environments is not straightforward, as it would require a 
huge number of particles. In [4] is proposed a delayed multi-
hypothesis method based in a sum of Gaussian mixture for 
depth estimation, but it uses odometry as an additional sensor. 
The work in [5] is based in the FastSLAM algorithm, where 
the pose of the robot is represented by particles and a set of 
Kalman filters refine the estimation of the features, this 
approach is unable to code distant points.  

In the work presented in this paper, a delayed feature 
initialization is proposed for adding new features to the 
stochastic map in a context for monocular SLAM using 
inverse depth parametrization. The experimental results show 
that delayed initialization can improve some aspects without 
losing the performance and unified aspect of the original 
(undelayed) method presented by Montiel [1], where initial 
reference points are used in order to fix a metric scale in the 
map.  
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III. INVERSE DEPTH MONOCULAR SLAM 

A. Camera motion model 
A free camera moving in any direction in is 

considered. The camera state xv is defined by: 
)3(3 SO×ℜ

[ TWWWCWC
v vqrx ω= ]                       (1) 

Where rWC= [x,y,z] represents the camera optical center 
position, qWC=[q0,q1,q2,q3] represents the camera orientation 
by a quaternion, vW=[vx,vy,vz] and ωW=[ωx,ωy,ωz] denote linear 
and angular velocities respectively.  

At every step it is assumed an unknown linear and angular 
acceleration with zero mean and known covariance Gaussian 
processes, aW and αW, producing an impulse of linear and 
angular velocity such as: 
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The camera motion prediction model is: 
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An Extended Kalman Filter propagates the camera pose and 
velocity estimates, as well as feature estimates. 

B. Features definition and measurement 
The complete state that includes the features y is made of: 

1 2, , ,...vx x y y y
ΤΤ Τ Τ Τ⎡= ⎣ ⎤⎦                          (4) 

where a feature y represents a scene 3D point i defined by 
the 6-dimension state vector: 
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which models the 3D point located at: 

(1 ,
i

i i
i

i

x
y m
z

)iθ φ
ρ

⎡ ⎤
⎢ ⎥ +⎢ ⎥
⎢ ⎥⎣ ⎦

                          (6) 

where xi,yi,zi are the camera optical center coordinates when 
the feature was first observed; and θi , iφ represent azimuth and 
elevation (respect to the world reference W) for the directional 
vector ( ,i im )θ φ . The point depth di along the ray is coded by 
its inverse ρi=1/di. 

The different locations of the camera, along with the 
location of the already mapped features, are used to predict 
the feature position hi. The observation of a point yi from a 
camera location defines a ray expressed in the camera frame 
as hC=[hx,hy,hz]: 
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hC is observed by the camera through its projection in the 
image. The projection is modeled using a full perspective 
wide angle camera. First the projection is modeled in the 

normalized retina: 
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The camera calibration model is applied to produce the 
pixel coordinates for the predicted point: 
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where u0,v0 is the camera center in pixels, f is the focal 
length and dx, and dy the pixel size. Finally, a radial distortion 
model is applied [7]. 
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where ( ) (2
0r u u v v= − + − 2

0

+

, and K1 is the distortion 
coefficient. 

Features search is constrained to elliptical regions around 
the predicted hi. The elliptical regions are defined by the 
innovation covariance matrix 1i i k i  where Hi 
is the Jacobian of the sensor model with respect to the state, 
Pk+1 is the prior state covariance, and measurements z   
assumed corrupted by zero mean Gaussian noise with 
covariance R. 
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IV. DELAYED FEATURE INITIALIZATION 

A. Candidate points  
In our work we consider a minimum number of features yi 

to be predicted appearing in the image, otherwise new features 
have to be added to the map. In this latter case, new points are 
detected in the image with a saliency operator. Specifically, 
we use Harris corner detector, although more robust detectors 
can be used. If the data association problem want to be 
addressed in a more robust way, features descriptors could be 
used, in previous work [9,10] we treat this problem. Only 
areas in the image free of previously detected points or 
features already mapped are consider for detecting new points, 
we call these points in the image that do not have to be added 
to the map as candidate points, λ. 

When a point is first detected by the saliency operator in a 
frame k, the candidate point is conformed by: 

0 1 2 30 1 2 3
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1( , , , , , , , , , , , , , , , )x y z q q q q

i x y z q q q q u vλ σ σ σ σ σ σ σ=         (11) 
The values x1, y1, z1 represent the camera optical center 

position, 
1 1 1, ,x y zσ σ σ their associated variances taken from the 

state covariance matrix Pk. 
0 1 20 1 2 3

1 1 1 1 1 1 1 1, , , , , , ,q q q qq q q q
3

σ σ σ σ  is the 
quaternion representing the current camera orientation and its 
associated variances taken from the state covariance matrix Pk, 
and u1, v1 is the current pixel coordinates for the point λi. 

In subsequent frames λi is tracked, but practically some λi 
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points can not be tracked. This process is used for pruning 
weakest image features. For tracking purposes any method 
can be used. The tracking for every candidate point λi is 
realized until is pruned or initialized in the system. In practice 
for every frame, some new candidate points λi could be 
detected, others points could be pruned and others could be 
considered to be added to the map. In our experiments an 
average of 5 to 15 points λi are maintained at every step. 

B. Adding features to the state 
As the camera freely moves through its environment, the 

translation produces parallax in features. Parallax is really the 
key that allows to estimating features depth. In the case of 
indoor sequences, centimeters are enough to produce parallax, 
on the other hand, the more distant the features, the more the 
camera have to be translated to produce parallax. 

 
Figure 1. Feature parametrization and initialization 
. 

In our approach we want dynamically to estimate an initial 
depth and its associated uncertainty for the features added to 
the map. For near features, a small translation is enough to 
reproduce some parallax. We use a minimum parallax 
threshold αmin for considering a candidate point λi to be added 
to the map as a feature yi. On the other hand distant features 
will not produce parallax but are useful to estimate the camera 
orientation, and therefore it is advantageous to include some 
distant features in the map with big depth uncertainty. Then, a 
minimum base-line camera translation |b|min is also considered 
for adding a candidate point yi to the map. Figure 2 shows a 
simulation for decrementing uncertainty in feature depth 
estimation respect with the increase of parallax angle. It can 
be observed that a few parallax degrees are enough for 
reducing significantly the depth uncertainty. In the 
experiments αmin =3 is used. The minimum base-line bmin was 
heuristically established to be the base-line necessary to 
produce a parallax α ≈ 6º in the initial reference points. For 
example if the camera initial position is in average one meter 
away from the initial reference points then bmin = 8cm. 

 
Figure 2. Estimate simulation of uncertainty feature depth σp for parallax 
angle α from 0.1º to 10º. An increment in the uncertainty σθ of the 
measurement angle θ is considered as the parallax grows. Note that a few 
degrees parallax is enough to reduce the uncertainty in the estimation.  
 

So far, the uncertainty of the measurements is not 
considered, and the parallax α is estimated using i) the base-
line b, ii) λi using its associated data 

0 1 2 3
1 1 1 1 1 1 1 1 1( , , , , , , , , )x y z q q q q u v , and iii) the current state 

0 1 2 3( , , , , , , , , )k k k k k k k k kx y z q q q q u v . 
The parallax angle for a λi can be estimated (Fig 1): 

( )α π β γ= − +                             (12) 
The angle β is determined by the directional projection ray 

vector h1 and the vector b1 defining the base-line b in the 
direction of the camera trajectory by: 
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where the directional projection ray vector h1 expressed in 
the absolute frame, is computed from the camera position and 
the coordinates of the observed point when it was first 
observed, using the data stored in λi 

1
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with 1( WC
WCR q being the rotation matrix depending on the 

stored camera orientation quaternion 
1 1 1 1 1q q  and 

1 1 1
is the directional vector in the camera frame using 

equation 7. b1 is the vector representing the camera base-line b 
between the camera optical center position x1, y1, z1 where the 
point was first observed and the current optical center xk, yk, 
zk. 
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The angle γ is determined in a similar way as β but using 

the directional projection ray vector h2 and the vector b2 
defining the base-line in the opposite direction of the camera 
trajectory by: 
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The directional projection ray vector h2 expressed in the 
absolute frame, is computed in a similar way as (14) but using 
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current camera position xv and points coordinates u,v. b2 is 
equal to b1 but pointing to the opposite direction: 
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The base-line b is the module of b2 or b1 : 
2b b=                                           (19) 

If α > αmin or b>bmin then λi is initialized as a new feature map: 
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where the three first elements are obtained directly from the 
current camera optical center position: 
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The angles can be derived as: 
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where 
2 2 2 2[ , , ]x y zh h h h=  is obtained from equation 17. Finally 

the inverse depth ρi is derived from the sine law 
sin

sini b
αρ

β
=

∗                                    (23) 

C. Updating the covariance matrix 
The covariance for  , , , ,i i i i ix y z θ φ  and 

iρ is derived from the 
error diagonal covariance matrix jR  measurement and the 
state covariance matrix estimate Pk. 
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Rj is conformed with the image measurement error variance 
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The state covariance matrix after initialization is: 
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where I is the identity matrix with the same dimension of 
Pk.  are the derivatives of yi with respect to the state xv 
and  the derivatives of yi with respect to measurement 
equations depending on Rj. The Jacobian calculation is 
complicated but a tractable matter of differentiation; we do not 
present the results here. 
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V. EXPERIMENTAL RESULTS  
Real image sequences of 320 × 240 pixels acquired with a 

monochrome IEEE1394 web-cam camera at 30 fps was used 
for test the performance of the method. The experiments were 
developed in MatLab. The part of code related with section 2 
was based in the code provided by the author of [1].  

The initial reference consists in three spatial points forming 
a triangle of known dimensions, (see Figure 3 and 4). Prior to 
start the first Kalman step, these three points are selected on 
the image, then their 3D position respect to the camera are 
calculated using an optimization technique, and finally 
included in the system state with zero uncertainty. 

Several image sequences moving the camera through 
different trajectories were recorded following a predefined 
path. The undelayed and delayed initialization has been 
compared. The trajectories were designed in order that if a 
feature is left behind by the movement of the camera, this 
feature will not appear in image again in subsequent frames. 

The original method have a drawback when a initial metric 
reference is used; if the features are initialized with an initial 
distance close to the optical center with respect to the distance 
to the reference points, the features never converge respect to 
the reference, and even the Kalman Filter never converges to 
an unscaled trajectory.  

Figure 3 illustrates the initialization of the first features 
after the three reference points are introduced in the system 
for the undelayed and delayed method. The graphics in the 
center show the undelayed method for an initial feature depth 
of 50cm, in frame 2 (central upper), it is possible to observe 
that reference points are located approximate 80 cm from the 
initial camera position and the first observed points are 
immediately initialized. However at frame 320 (central lower) 
the mapped features never converge respect to the metric 
reference. Camera trajectory either converge, note the 4 points 
corresponding to the printer located besides the initial three 
point reference. On the other hand when we use an initial 
depth equal to 60 cm, (right upper and lower graphics) the 
map and camera trajectory converge reasonably. 

In delayed approach (left graphics) the first feature is added 
to the map until frame 125, in this case with a huge initial 
uncertainty (upper left graphic). However at frame 320 (lower 
left graphic) the map and trajectory converges. Note that the 
first added feature was initialized very near to its final 
position, and its uncertainty was minimized.  

The condition for detecting new points with the Harris 
corner detector for both methods is applied if the number of 
actives features in image goes below 30, in this case the 
detector is applied over the free features image regions. 

Figure 4 shows the results for three different sequences. 
Real final camera position and trajectory was manually added 
to the graphics (in black) to make easier the comparison, the 
initial and final frames are illustrated in the center for each 
sequence.  
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Figure 3. Delayed and undelayed methods, using three point reference to establish metric scale. The features positions are represented by green solid circles and 
their uncertainty by red ellipses. The camera position is represented by a blue solid circle and its orientation by a blue line emerging from the camera position. 
The camera trajectory is indicated with the blue path from the initial (x=0 z=0) to the final camera position.  For simplicity all the maps are viewed in x-z axes. 

 
Figure 4. Camera trajectory and map for three sequences. Undelayed method (upper graphics) and delayed method (lower graphics). The first sequence 
corresponds to 760 frames of a house livingroom and it is the same sequence used in the previous experiment. The second sequence corresponds to 480 frames 
taken in a laboratory. Note that a PC monitor was used as initial metric reference. The third 360-frame sequence was taken following a simple linear path, but in a 
more occluded terrace building environment, with very near and very distant features. 
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Sequence Method σ x,y,z Nf %c Nfc E Nf<0 
1 Undelayed 4 47 42 114 5.7 0 
  Delayed 4.1 35 27 110 1.44 0 
2 Undelayed 2.1 46 76 36 11.2 0 
  Delayed 2.4 28 82 45 9.12 0 
3 Undelayed 1.4 34 44 45 17 2 

  Delayed 2.5 27 55 58 19 1 
Table 1.  The results at the end of the three sequences: (σ x,y,z): Summed standard deviation for the x,y,z, position of the camera. (Nf):Total number of features 
added to the system. (%c): Percentage of features that present convergence. (Nfc): The average number of frames needed for the convergence of the features. 
(E): The metric error distance in cm from the real to final estimated trajectory. (Nf<0) Number of negative inverse depth estimated at the final of the trajectory.  
 

 
Table 1 shows the results for each sequence for the next 

aspects. In our experiments we consider that a feature 
converges when its depth uncertainty σ represents less than 
5% of its depth, in this way we consider a convergence 
measurement proportional to the distance. The depth of a near 
feature should be estimated in a more accurate manner than a 
distant feature. 

VI. CONCLUSIONS 
In this work a method for delayed features initialization for 

inverse depth parametrization in monocular SLAM is 
presented. The experimental results show that this method can 
be a good choice when using monocular SLAM.  

The method seems to be more robust respect to the 
undelayed method, when initial metric reference points are 
used for scaling the map.  

In our experiments the resulting camera trajectory estimate 
using the delayed method was similar to the estimate by the 
undelayed method. In aspects relating with features depth 
convergence the results were similar for both methods. Since 
the delayed method is more restrictive for adding new 
features, a reduced percentaje of new features are added to the 
map (20-40%) respect to the undelayed method, without 
losing the quality of the map. This aspect is desirable, because 
bigger environments can be mapped with the same number of 
features. On the other hand is clear that an additional 
computational cost is added in the delayed method, since the 
candidate points have to be tested in order to be added to the 
map. The Jacobian to estimate the new covariance matrix is 
more complex respect to one used in the undelayed method. 
On the other hand is known that Kalman filter computation 
cost scales poorly with the size of the state, and the saving 
computational cost using 20-40% of the total amount of 
features can be higher than the computational cost added in 
the delayed method. 
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