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Abstract— This paper describes a vision and 3D laser based
registration approach which utilizes visual features to identify
correspondences. Visual features are obtained from the imagesof
a standard color camera and the depth of these features is deter-
mined by interpolating between the scanning points of a 3D laser
range scanner, taking into consideration the visual information in
the neighbourhood of the respective visual feature. The 3D laser
scanner is also used to determine a position covariance estimate
of the visual feature. To exploit these covariance estimates, an
ICP algorithm based on the Mahalanobis distance is applied.
Initial experimental results are presented in a real world indoor
laboratory environment.

Index Terms— Registration, Vision

I. I NTRODUCTION

Registration or scan-matching is a popular approach to
obtain robot relative pose estimates, it is also a very core part
of most Simultaneous Localization and Mapping (SLAM) al-
gorithms. Most work that have been published in the past con-
sider 2D-motion in an indoor environment, however, nowadays
more attention is directed towards complete 6DOF methods.

Since vision is particularly suited to solve the correspon-
dence problem (data association), vision-based systems have
been applied as an extension to laser scanning based SLAM
approaches for detecting loop closing. The principle has for
example been applied to SLAM systems based on a 2D laser
scanner [8] and a 3D laser scanner [12]. When using methods
which rely on a weaker correspondence, i.e. point to point
distance like in standard ICP [4, 5], a good initial estimate
is very important to the robustness of the system. By instead
using the strong correspondences visual features can provide,
a good initial estimate is not necessary [12].

In addition, the cost of adding a camera is comparably small
compared to the cost of a 3D laser scanner. It is further known
that vision-based approaches can work in highly cluttered
environments where pure laser range scanner based methods
fail [14].

This paper presents a registration method which relies on
a standard color camera together with a 2D laser scanner
mounted on a pan / tilt unit. The method utilizes the strong
visual correspondences obtained from the camera which are
incorporated with depth information from the 3D laser scanner.

The reminder of this paper is organized as follows. First re-
lated work is presented in Section II followed by a description
of the suggested method Section III and experimental setup
(Section IV). Section V shows preliminary results and finally
conclusions and future work are discussed (Section VI).

II. RELATED WORK

The most similar approach to the registraion method sug-
gested in thie paper is the visual loop closing approach by

Newman et. al. [12]. The main difference is that we use solely
the visual features for registration and not as an initial estimate
for a laser based registration method.

Since this work incorporates both visual and 3D laser in-
formation there is some overlap in the proposed method com-
pared to approaches using only vision or 3D laser scanner. For
example, Lowe’s scale invariant feature transform (SIFT) has
been used widely in ’pure’ vision based solutions [16, 3]. ICP
is commonly utilized in 3D laser based registration [13, 17].
Regitration using visual features directly together with an
estimate of the corresponding position and position covariance
has not been addressed so far to our knowledge.

III. M ETHOD

The suggested approach is based on extracting visual fea-
tures from the image and then using the laser scanner to obtain
a position estimate and a position covariance of the visual
features. In our current implementation we use the popular
SIFT features developed by Lowe [9]. The position covariance
for visual features is obtained by using the surrounding laser
based range values. I.e. if the detected feature is located on
a poster (planar surface), the feature position covariancewill
be smaller compared to a feature extracted from a branch, for
example.

As stated in the previous section, most current approaches
to scan registration depends on reasonably accurate initial
pose estimates. In our case, the correspondences are solely
determined from the visual features and not by their spatial
distance only. As a result, no initial pose estimate is required.
This makes the method suitable for conditions in which initial
pose estimates are not available.

Shortly the registration procedure can be described as fol-
lows: first, SIFT features are computed in the planar images
recorded with the current scan dataSc and compared to the
SIFT features found in the images belonging to previous scan
Sp. Next, the depth values are estimated for all matching
feature pairs inSp and Sc, using the closest projected 3D
laser point as described in Section III-B. Pairs of 3D points
corresponding to matching features are then used together
with the feature position covariance to obtain the relativepose
estimate (see Section III-E).

In a related approach Newman et. al. [12] used SIFT
features to detect loop closure events in a 3D SLAM approach.
In contrast to their method where SIFT features are used to
obtain an initial pose estimate (by determining the essential
matrix between two images) and the full point cloud is
considered afterwards, registration in our approach is carried
out using only 3D points that are associated with matching
visual features. By restricting scan matching to 3D points
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that were found to correspond by their visual appearance, we
believe that the robustness against changes in the environment
is improved and more accurate registration can be obtained.
We provide evidence for this statement and are currently
validating this belief in a thorough ground truth evaluation
using a large set of 3D scans.

A. Detecting Visual Correspondences

Given two imagesIa andIb, we extract local visual features
using the SIFT algorithm [9] resulting in two sets of features
Fa andFb, corresponding to the two images. Each featurefi =
{[X,Y ]i,Hi} in a feature setF = {fi} comprises the position
[X,Y ]i in pixel coordinates and a histogramHi containing the
SIFT descriptor.

The feature matching algorithm calculates the Euclidean
distance between each feature in imageIa and all the features
in imageIb. A potential match is found if the smallest distance
is less than 60% of the second smallest distance. This criterion
was found empirically and was also used in [7], for example.
It reduces the risk of falsely declaring correspondence between
SIFT features by excluding cases where a false correspondence
is caused by the existence of several almost equally well
matching alternatives. In addition, no feature is allowed to be
matched against more than one other feature. If more than one
candidate for matching is found, the feature with the highest
similarity among the candidate matches is selected.

The feature matching step results in a set of feature pairs
Pa,b, with a total numberMa,b = |Pa,b| of matched pairs.

B. Obtaining the Visual Feature Depth

To obtain the depth estimater∗i for SIFT featurefi the
Nearest Range Reading (NR) method [1] is applied.

Image data consist of a set of image pixelsPj =
(Xj , Yj , Cj), whereXj , Yj are the pixel coordinates andCj =
(C1

j , C2
j , C3

j ) is a three-channel colour value. By projecting
a 3D laser reading pointpi = [x, y, z] with the rangeri,
onto the image plane, a projected laser range reading point
Ri = (Xi, Yi, ri, (C

1
i , C2

i , C3
i )) is obtained, which associates

a range valueri with the coordinates and the colour of an
image pixel.

The interpolation problem can now be stated for a given
pixel Pj and a set of projected laser range readingsR = Ri,
as to estimate the interpolated range readingr∗j as accurately
as possible.

The visual featurefi is located in the image at position
[X,Y ]. The depth estimater∗i is assigned to the laser range
readingri corresponding to the projected laser range reading
Ri which is closest (regarding pixel distance) to[X,Y ].

Note that there are more accurate methods which also incor-
porates visual information in the interpolation [1], however by
utilizing the covariance of each visual feature point the depth
error will have less impact in ambiguous cases.

C. Rigid Iterative Closest Point

The iterative closest points (ICP) algorithm [4, 5], finds the
rigid body transformation between two scenes by minimizing

the following constraint

J(R, t) =

N∑

i=1

||yi − Rxi − t||2, (1)

wherexi and yi are the corresponding (closest) points from
the different scenes. The selection of the corresponding pairs
is done, in the standard version of ICP, by using a distance
metric to search for the closest point. This search is the most
time consuming part of the ICP algorithm. To decrease the
search time a common approach is to create a kd-tree. Original
ICP and other least squares methods assume identical and
independent Gaussian noise.

To obtain the rigid transformation that minimizes the above
equation, there exists various closed-form solutions. In our
approach we have adopted the singular value decomposition
method proposed by Arun et al. [2].

In our approach, the correspondences are detected using
visual features, i.e. an exhaustive search for closest points is
not required. In addition, since our method relies on a vision
based approach the assumption of identical and independent
noise of the feature point is a problematic approximation as
discussed below.

D. Rigid Generalized Total Least Squares ICP

Generalized Total Least Square ICP (GTLS-ICP) has been
proposed by San-Jose et. al. [15] as an extension of ICP.
This method is similar to standard ICP but also incorporatesa
covariance matrix for each point. Instead of minimizing Eq.1,
GTLS-ICP utilizes the following function:

J(R, t) =

N∑

i=1

(qi − yi)
T C−1

qi
(qi − yi)+

N∑

i=1

(yi − qi)
T C−1

yi
(yi − qi),

(2)

whereqi = Rxi + t. The covariance matrixCqi
is obtained

by rotating the eigen vectors of the covariance matrixCxi

with the rotation matrixR. However, there is no closed-
form solution to minimize this function and the method
instead iteratively estimates the rigid body transformation R

and t. In our implementation we first use the standard ICP
method (previous Section) and after convergence then applya
conjugate gradient method to minimize Eq. 2.

To obtain a covariance for each visual feature point, the
closest projected laser pointp0 relative to the visual feature in
the image plane, see Section III-B are used together withM

surrounding laser points. The covarianceC is calculated as

C =
1

M

M∑

i=0

(pi − µ)2, (3)

where µ = 1

M+1

∑M

i=0
pi. In our experimental evaluation

M = 8, see Fig. 1.
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Fig. 1. Laser points used to estimate the covariance. The green cross (×)
represents a visual feature. Circles represent range readings, where filled red
dot represent range readings used to obtain the covariance estimate. The
central dot represents the laser point to determine the depthof the visual
feature. The horisontal lines represent the 2D laser reading and the vertical
lines the tilt movement of the wrist.

E. Rigid Trimmed Extension

Since visual features are used to establish corresponding
scan points, no further means of data association, (such as
searching for closest data points in ICP) is necessary. Although
the SIFT features were found to be very discriminative (see
for example [11]), there is of course still a risk that some of
the correspondences are not correct. To further decrease the
possibility of erroneous point associations, only a set fraction
of the correspondences with the smallest spatial distance
between corresponding points is used for registration. This, in
addition, also removes points with the correct correspondances
but with non-consistent depth estimate. In the experiments
presented in this paper the fraction was set to 70%. Be-
cause the fraction of data points that is used to estimate
the relative pose[R, t]t between two scans depends on the
previous estimate[R, t]t−1 (since the relative pose estimate
affects the spatial distance between corresponding points),
the minimization needs to be applied in an iterative manner.
Thus relative pose updates are calculated repeatedly with the
minimization using the previous estimate[R, t]t−1 as input
to the next iteration step until a stopping criterion is met.
To obtain an inital pose estimate the 70% fraction of the
pairs was randomly selected in the first iteration. However
any initial pose estimate can be used. The suggested approach
is similar to the RANSAC algorithm [6] applied directly in
3D (not using planar 2D image coordiantes), where the new
model is determined directly with the closed form solution.
One difference is that the suggested approach do not requirea
threshold value to determine inliers. As the stopping criterion
in the experiments in this paper we used that if the change of
the mean squared error (MSE) of the spatial distance between
the corresponding points compared to the previous iteration
was less than10−6 m2.

Note that the spatial distance between corresponding points
is used even if the covariance based ICP method is used to
select the 70% fraction of the corresponding points. Otherwise
points with high covariance, which have a small impact in
Eq. 2 will more likely be selected in the trimmed version. By
using a selection criterion based on the spatial distance we

Fig. 2. Our mobile robot platform “Tjorven” equipped with thesensors used
in this paper: the SICK LMS 200 laser range scanner and a colour CCD
camera both mounted on an Amtec pan tilt unit. The close-up showsthe
displacement between the camera and the laser which causes parallax errors.

want to avoid a loss of performance, which was more notable
in the cases where many (> 30) matches were available.

IV. EXPERIMENTAL SETUP

A. Hardware

For the experiments presented in this paper we used the
ActivMedia P3-AT robot “Tjorven” shown in Fig. 2, equipped
with a 2D laser ranger scanner (SICK LMS 200) and a 1-
MegaPixel (1280x960) colour CCD camera. The CCD camera
and the laser scanner are both mounted on a pan-tilt unit from
Amtec with a displacement between the optical axes of approx.
0.2 m. The angular resolution of the laser scanner was set to
0.25 degrees.

B. Data Collection

For each pose, 3D range and image data are collected as
follows. First, three sweeps are carried out with the laser scan-
ner at -60, 0 and 60 degrees relative to the robot orientation
(horizontally). During each of these sweeps, the tilt of the
laser scanner is continuously shifted from -40 degrees (looking
up) to 30 degrees (looking down). After the three range scan
sweeps, seven camera images are recorded at -90, -60, -30,
0, 30, 60, and 90 degrees relative to the robot orientation
(horizontally) and at a fixed tilt angle of -5 degrees (looking
up). The full data set acquired at a single scan pose is shown
on Fig. 3.

C. Calibration

In our setup the displacement between the laser scanner and
the camera is fixed. Thus it is necessary to determine 6 external
calibration parameters (3 for rotation and 3 for translation)
once. This is done by simultaneously optimizing the calibra-
tion parameters for several calibration scans. The method we
use requires a special calibration board, see Fig. 4, which is
also used to determine the internal calibration parametersof
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Fig. 3. Full data set acquired for a single scan pose comprising three sweeps
with the laser scanner fused with colour information from seven camera
images.

Fig. 4. Calibration board used to determine the calibration parameters of the
camera, with a chess board texture and reflective tape (gray border) to locate
the board using remission / intensity values from the laser scanner.

the camera. The calibration board is pasted with reflective
tape at its borders enabling to use the reflective (remission)
values from the laser scanner to automatically estimate the3D
position of the chess board corners detected in the image. The
external parameters for the camera are obtained by minimizing
the sum of squared distances (SSD) between the chess board
corners found in the image and the 3D position of the chess
board corners derived from the laser range readings.

D. Experiment

To evaluate the registration, a data set consisting of 22
scan poses, i.e. from 66 laser scanner sweeps and 154 camera
images as described in Section IV-B was collected in an indoor
lab environment. The first scan pose and the last scan pose
were collected at a similar position. An example of registration
result can be seen in Fig. 5.

The performance metric of the registration method is the
translation and angular distance between the estimated pose
from the registration method compared to the ground truth.
Since the first and the last scan pose were taken at a similar
position, the ground truth was determined by matching the
first scan pose with the last scan pose using the trimmed
ICP version using all available corresponding visual feature
points. The estimated position was calculated by sequentially
registeing all 22 scan poses, which means that only one small

failure in one of the registrations will heavily influence the
final pose estimate.

To better evaluate the registration method, the number of
corresponding matchesN that was used in the registration
was also investigated together with the number of required
iterations.

V. RESULTS

Table I, II show the euclidean pose errord (in meters) to-
gether with the sum of the rotational errorα (in radians). Since
corresponding matches were done randomly, each sequential
registration was repeated 5 times. These initial results show
that GTLS-ICP works better when there are few corresponding
matches and when the number of available matches increases
the two methods show more similar results. The increased
error with higher number of corresponding pointsN is likely
to be caused by the random selection of points.

Table III shows the number of iterations required for con-
vergence for the trimmed closed form ICP version. Note that
in GTLS-ICP a conjugate gradient minimization method is
applied.

TABLE I

REGISTRATION RESULTSN = [10, 15, 20], GIVEN IN METERS AND

RADIANS USING THE TRIMMED REGISTRATION VERSIONS

Tr. ICP Tr. GTLS − ICP

N 10 15 20 10 15 20

d 1.14 0.76 0.30 0.84 0.70 0.24

σd 0.54 0.83 0.11 0.33 0.85 0.14

α 0.30 0.17 0.05 0.25 0.18 0.06

σα 0.18 0.24 0.02 0.11 0.22 0.04

TABLE II

REGISTRATION RESULTSN = [30, 40, 60], GIVEN IN METERS AND

RADIANS USING THE TRIMMED REGISTRATION VERSIONS.

Tr. ICP Tr. GTLS − ICP

N 30 40 60 30 40 60

d 0.09 0.14 0.13 0.11 0.19 0.15

σd 0.05 0.07 0.03 0.08 0.10 0.06

α 0.04 0.03 0.03 0.04 0.04 0.03

σα 0.02 0.01 0.01 0.01 0.02 0.02

TABLE III

NUMBER OF ITERATIONS REQUIRED FOR CONVERGENCE USING THE

TRIMMED VERSION OF THE CLOSED FORMICP METHOD

N 10 15 20 30 40 60

#iter 4.46 4.95 5.20 5.00 6.00 5.97

σiter 0.68 0.86 0.93 1.87 1.07 1.07

VI. CONCLUSIONS ANDFUTURE WORK

In this paper we have suggested a vision based registration
method that uses visual features to handle the correspondence
problem. The method integrates both vision and a 3D laser
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Fig. 5. A registration result generated by sequential registration of 22 scan poses. The visualized data consists of 3× 22 registered scans and the corresponding
colours from 7× 22 camera images.
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scanner and does not rely on any initial estimate. The 3D laser
scanner is used to obtain a depth estimate and a covariance
estimate of the extracted visual feature which is incorporated
in the registration. An initial experiment has been conducted
to verify the approach.

Our ongoing work includes a more thoroughly evaluation of
the method and to test the method on more challenging data
sets. Also to do a performance comparison with other “plain”
laser based registration technique, such as ICP or iterative 3D-
NDT [10].
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