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Abstract— This paper describes a vision and 3D laser based Newman et. al. [12]. The main difference is that we use solely
registration approach which utilizes visual features to identify the visual features for registration and not as an inititineste
correspondences. Visual features are obtained from the images for a laser based registration method.

a standard color camera and the depth of these features is deter Sj thi Ki tes both Vi | and 3D | .
mined by interpolating between the scanning points of a 3D laser 'nc_e IS Wo_r Incorporates - oth visual an aser In-
range scanner, taking into consideration the visual information in formation there is some overlap in the proposed method com-
the neighbourhood of the respective visual feature. The 3D lase pared to approaches using only vision or 3D laser scanner. Fo
scanner is also used to determine a position covariance estimateexample, Lowe’s scale invariant feature transform (SIFa3 h

of the wsyal feature. To exploit these covariance es_tlmates_, anpean used widely in "pure’ vision based solutions [16, 3PIC
ICP algorithm based on the Mahalanobis distance is applied. . \v utilized in 3D | based istrati 13 17
Initial experimental results are presented in a real world indoor IS C‘?m”f'on Yy u_ lze ’ In aser a;e registration [ 21 ]
laboratory environment. Regitration using visual features directly together with a
estimate of the corresponding position and position cavae

Index Terms— Registration, Vision
9 has not been addressed so far to our knowledge.

I. INTRODUCTION

Registration or scan-matching is a popular approach to
obtain robot relative pose estimates, it is also a very care p The suggested approach is based on extracting visual fea-
of most Simultaneous Localization and Mapping (SLAM) altures from the image and then using the laser scanner tanobtai
gorithms. Most work that have been published in the past ca-position estimate and a position covariance of the visual
sider 2D-motion in an indoor environment, however, nowadajeatures. In our current implementation we use the popular
more attention is directed towards complete 6DOF methodSIFT features developed by Lowe [9]. The position covaranc

Since vision is particularly suited to solve the correspotfier visual features is obtained by using the surroundingrlas
dence problem (data association), vision-based systemes hiased range values. l.e. if the detected feature is located o
been applied as an extension to laser scanning based SLANoster (planar surface), the feature position covariavitte
approaches for detecting loop closing. The principle has fbe smaller compared to a feature extracted from a branch, for
example been applied to SLAM systems based on a 2D laggample.
scanner [8] and a 3D laser scanner [12]. When using methods\s stated in the previous section, most current approaches
which rely on a weaker correspondence, i.e. point to poitd scan registration depends on reasonably accuratel initia
distance like in standard ICP [4, 5], a good initial estimatgose estimates. In our case, the correspondences are solely
is very important to the robustness of the system. By insteddtermined from the visual features and not by their spatial
using the strong correspondences visual features canderovidistance only. As a result, no initial pose estimate is neqli
a good initial estimate is not necessary [12]. This makes the method suitable for conditions in which ahiti

In addition, the cost of adding a camera is comparably smalbse estimates are not available.
compared to the cost of a 3D laser scanner. It is further knownshortly the registration procedure can be described as fol-
that vision-based approaches can work in highly cluttereglys: first, SIFT features are computed in the planar images
environments where pure laser range scanner based methedsrded with the current scan dafa and compared to the
fail [14]. SIFT features found in the images belonging to previous scan

This paper presents a registration method which relies g)). Next, the depth values are estimated for all matching
a standard color camera together with a 2D laser scanfgiture pairs inS, and S, using the closest projected 3D
mounted on a pan / tilt unit. The method utilizes the strongser point as described in Section I1I-B. Pairs of 3D points
visual correspondences obtained from the camera which gtgresponding to matching features are then used together
incorporated with depth information from the 3D laser s&nn with the feature position covariance to obtain the relativee

The reminder of this paper is organized as follows. First restimate (see Section IlI-E).
lated work is presented in Section Il followed by a descoipti  |n a related approach Newman et. al. [12] used SIFT
of the suggested method Section Il and experimental setgtures to detect loop closure events in a 3D SLAM approach.
(Section IV). Section V shows preliminary results and fipallin contrast to their method where SIFT features are used to
conclusions and future work are discussed (Section VI).  obtain an initial pose estimate (by determining the esaknti

matrix between two images) and the full point cloud is
Il. RELATED WORK considered afterwards, registration in our approach idezhr

The most similar approach to the registraion method sugut using only 3D points that are associated with matching

gested in thie paper is the visual loop closing approach kisual features. By restricting scan matching to 3D points

I11. METHOD



that were found to correspond by their visual appearance, the following constraint
believe that the robustness against changes in the envémmnm
is improved and more accurate registration can be obtained.
We provide evidence for this statement and are currently
validating this belief in a thorough ground truth evaluatio
using a large set of 3D scans. where z; andy; are the corresponding (closest) points from
the different scenes. The selection of the correspondiimg pa
is done, in the standard version of ICP, by using a distance
, i i metric to search for the closest point. This search is thet mos
Given two imaged, andI,, we extract local visual 1‘eaturestirne consuming part of the ICP algorithm. To decrease the
using the SIFT algorit_hm [°] resulting in two sets of featuresearch time a common approach is to create a kd-tree. Origina
F, andFy, corresponding to the two images. Each fealire  cp ang other least squares methods assume identical and
{[X, Y]?’ HZ:} in afeafture sel’ = {fi_} comprises thg posmon independent Gaussian noise.
[X, Y]; in pixel coordinates and a histograffy containing the To obtain the rigid transformation that minimizes the above

SIFT descriptor. equation, there exists various closed-form solutions. un o

di 1;he fegtlire matchnr:gg a{gorlt.hm c;alculgteﬁ t:}hef El:d'de proach we have adopted the singular value decomposition
istance between each feature in imdgend all the features | .\ - proposed by Arun et al. [2].

in imagel,. A potential match is found if the smallest distance .
. ) S In our approach, the correspondences are detected using
is less than 60% of the second smallest distance. Thisioriter . . : .
- . visual features, i.e. an exhaustive search for closesttg@@n
was found empirically and was also used in [7], for example. . o . ; "
X : not required. In addition, since our method relies on a wisio
It reduces the risk of falsely declaring correspondencedent . . . ;
i based approach the assumption of identical and independent
SIFT features by excluding cases where a false correspoaden : o . Lo
; . npise of the feature point is a problematic approximation as
is caused by the existence of several almost equally we
. i n . Iscussed below.
matching alternatives. In addition, no feature is allowedé
matched against more than one other feature. If more than one
cgn@dgte for matching is _found, the feat.ure with the h|ghe,§' Rigid Generalized Total Least Squares ICP
similarity among the candidate matches is selected. _
The feature matching step results in a set of feature pairsGeneralized Total Least Square ICP (GTLS-ICP) has been

P, with a total numbed\/,, ;, = |P, ;| of matched pairs. proposed by San-Jose et. al. [15] as an extension of ICP.
This method is similar to standard ICP but also incorporates

covariance matrix for each point. Instead of minimizing Eg.
GTLS-ICP utilizes the following function:

N
J(R,t) =Y [lyi — Ra; — ¢, 1)
1=1

A. Detecting Visual Correspondences

B. Obtaining the Visual Feature Depth

To obtain the depth estimate® for SIFT feature f; the
Nearest Range Reading (NR) method [1] is applied.

Image data consist of a set of image pixely =
(X;,Y;,C;), whereX;,Y; are the pixel coordinates ard =
(Cj,C3,C?) is a three-channel colour value. By projecting
a 3D laser reading poinp; = [z,y,z| with the ranger;,
onto the image plane, a projected laser range reading point
R; = (X;,Y;,m, (CH C?,C?)) is obtained, which associates
a range valuer; with the coordinates and the colour of an whereg; = Rz; 4+ t. The covariance matrig’,, is obtained
image pixel. by rotating the eigen vectors of the covariance matrix

The interpolation problem can now be stated for a givamith the rotation matrixR. However, there is no closed-
pixel P; and a set of projected laser range readiRgs- R;, form solution to minimize this function and the method
as to estimate the interpolated range readings accurately instead iteratively estimates the rigid body transforomafR
as possible. and t. In our implementation we first use the standard ICP

The visual featuref; is located in the image at positionmethod (previous Section) and after convergence then apply
[X,Y]. The depth estimate; is assigned to the laser rangeonjugate gradient method to minimize Eq. 2.
readingr; corresponding to the projected laser range readingTo obtain a covariance for each visual feature point, the
R; which is closest (regarding pixel distance)[f, Y]. closest projected laser poipg relative to the visual feature in

Note that there are more accurate methods which also incthre image plane, see Section IlI-B are used together with
porates visual information in the interpolation [1], howeby surrounding laser points. The covarian€es calculated as
utilizing the covariance of each visual feature point thptte
error will have less impact in ambiguous cases. 1 M
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C. Rigid lterative Closest Point

The iterative closest points (ICP) algorithm [4, 5], finde thwhere ;. = ﬁZﬁopi. In our experimental evaluation
rigid body transformation between two scenes by minimizingy/ = 8, see Fig. 1.
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Fig. 1. Laser points used to estimate the covariance. Thengnesss )

represents a visual feature. Circles represent rangengsdivhere filled red
dot represent range readings used to obtain the covarisstoeage. The
central dot represents the laser point to determine the defpthe visual
feature. The horisontal lines represent the 2D laser rgadim the vertical
lines the tilt movement of the wrist.

Fig. 2. Our mobile robot platform “Tjorven” equipped with teensors used
in this paper: the SICK LMS 200 laser range scanner and a cd@iD
camera both mounted on an Amtec pan tilt unit. The close-up shbess
E. Rigid Trimmed Extension displacement between the camera and the laser which causdisoparrors.

Since visual features are used to establish corresponding

scan points, no further means of data association, (suchyg@t to avoid a loss of performance, which was more notable

searching for closest data points in ICP) is necessaryoAth in the cases where many- (30) matches were available.
the SIFT features were found to be very discriminative (see

for example [11]), there is of course still a risk that some of
the correspondences are not correct. To further decrease th
possibility of erroneous point associations, only a settiom A Hardware
of the correspondences with the smallest spatial distancd=or the experiments presented in this paper we used the
between corresponding points is used for registrations,Tihi ActivMedia P3-AT robot “Tjorven” shown in Fig. 2, equipped
addition, also removes points with the correct correspooes. With a 2D laser ranger scanner (SICK LMS 200) and a 1-
but with non-consistent depth estimate. In the experimern#ggaPixel (1280x960) colour CCD camera. The CCD camera
presented in this paper the fraction was set to 70%. BaAad the laser scanner are both mounted on a pan-tilt unit from
cause the fraction of data points that is used to estimaétec with a displacement between the optical axes of approx
the relative posdR, t]; between two scans depends on th€.2 m. The angular resolution of the laser scanner was set to
previous estimatdR, t]; _; (since the relative pose estimated.25 degrees.

affects the spatial distance between corresponding peints

the minimization needs to be applied in an iterative manngy. pata Collection

Thus relative pose updates are calculated repeatedly gth t

minimization using the previous estimal, t] as inout For each pose, 3D range and image data are collected as
. 9 P . e, t)e—1 as np ollows. First, three sweeps are carried out with the lasans
to the next iteration step until a stopping criterion is me

. - ) . ier at -60, 0 and 60 degrees relative to the robot orientation

0 1

To obtain an inital pose estimate the 70% fraction of thgworizontally). During each of these sweeps, the tilt of the
a

pairs was randomly selected in the first iteration. Howev lser scanner is continuously shifted from -40 degreesifigo
any initial pose estimate can be used. The suggested approa .
is similar to the RANSAC algorithm [6] applied directly inug) to 30 degrees (looking down). After the three range scan

3D (not using planar 2D im rdiant where th nsweeps, seven camera images are recorded at -90, -60, -30,
( 0l USINg planar = age coordia es), where € %Q’SO, 60, and 90 degrees relative to the robot orientation
model is determined directly with the closed form solutio

One difference is that the suggested approach do not requirr@mlzonta”y) and at a flxe_d tilt angle_ of -5 degrees (I_ocgjqn
N . 2 7Up). The full data set acquired at a single scan pose is shown
threshold value to determine inliers. As the stopping ddte or} Fig. 3

! . 3.

in the experiments in this paper we used that if the change

the mean squared error (MSE) of the spatial distance between

the corresponding points compared to the previous iteratie- Calibration

was less thari0—% m?2. In our setup the displacement between the laser scanner and
Note that the spatial distance between correspondinggoitiie camera is fixed. Thus it is necessary to determine 6 ettern

is used even if the covariance based ICP method is usedctdibration parameters (3 for rotation and 3 for transkgtio

select the 70% fraction of the corresponding points. Otissw once. This is done by simultaneously optimizing the catibra

points with high covariance, which have a small impact ition parameters for several calibration scans. The methed w

Eqg. 2 will more likely be selected in the trimmed version. Byise requires a special calibration board, see Fig. 4, wisich i

using a selection criterion based on the spatial distance also used to determine the internal calibration parameters

IV. EXPERIMENTAL SETUP



failure in one of the registrations will heavily influenceeth
final pose estimate.

To better evaluate the registration method, the number of
corresponding matched/ that was used in the registration
was also investigated together with the number of required
iterations.

V. RESULTS

Table I, 1l show the euclidean pose ermbi(in meters) to-
gether with the sum of the rotational erwiin radians). Since
corresponding matches were done randomly, each sequential
registration was repeated 5 times. These initial resultsvsh
that GTLS-ICP works better when there are few corresponding
matches and when the number of available matches increases
the two methods show more similar results. The increased
error with higher number of corresponding poisis likely
to be caused by the random selection of points.

Table Il shows the number of iterations required for con-
vergence for the trimmed closed form ICP version. Note that
in GTLS-ICP a conjugate gradient minimization method is
applied.

Fig. 3. Full data set acquired for a single scan pose compribiree sweeps
with the laser scanner fused with colour information fromesecamera
images.

TABLE |
REGISTRATION RESULTSA = [10, 15,20], GIVEN IN METERS AND
RADIANS USING THE TRIMMED REGISTRATION VERSIONS

Tr. ICP Tr. GTLS — ICP
N 10 15 20 10 15 20
Fig. 4. Calibration board used to determine the calibrat@arameters of the d | 1.14 076 030/ 0.84 070 024
camera, with a chess board texture and reflective tape (gragi)do locate
the board using remission / intensity values from the lasanrser. og | 054 083 011 033 08 014
« | 030 017 0.05/ 0.25 0.18 0.06
o | 018 0.24 0.02] 0.11 0.22 0.04
the camera. The calibration board is pasted with reflective
tape at its borders enabling to use the reflective (remision TABLE Il

values from the laser scanner to automatically estimat8ithe
position of the chess board corners detected in the image. Th
external parameters for the camera are obtained by mimimizi

REGISTRATION RESULTSN = [30, 40, 60], GIVEN IN METERS AND
RADIANS USING THE TRIMMED REGISTRATION VERSIONS

the sum of squared distances (SSD) between the chess board Tr ICP Tr GTLS — ICP

corners found in the image and the 3D position of the chess N 30 40 60| 30 40 60

board corners derived from the laser range readings. 7 | 009 o014 o013l 011 019 o015
o4 | 005 007 0.03] 008 010 0.06

D. Experiment a | 0.04 003 003/ 0.04 0.04 0.03
oo | 002 001 0.01] 001 002 002

To evaluate the registration, a data set consisting of 22
scan poses, i.e. from 66 laser scanner sweeps and 154 camera
images as described in Section 1V-B was collected in an indoo TABLE 11l

lab environment. The first scan pose and the last scan pOS®UMBER OF ITERATIONS REQUIRED FOR CONVERGENCE USING THE
were collected at a similar position. An example of regisira
result can be seen in Fig. 5.

TRIMMED VERSION OF THE CLOSED FORMCP METHOD

The performance metric of the registration method is the N 00 15 20 30 40 60
translation and angular distance between the estimateel pos #iter | 446 495 520 500 600 597
from the registration method compared to the ground truth. oiter | 068 086 093 187 107 1.07

Since the first and the last scan pose were taken at a similar
position, the ground truth was determined by matching the
first scan pose with the last scan pose using the trimmed
ICP version using all available corresponding visual featu In this paper we have suggested a vision based registration
points. The estimated position was calculated by sequbntiamethod that uses visual features to handle the correspoaden
registeing all 22 scan poses, which means that only one snmaibblem. The method integrates both vision and a 3D laser

VI. CONCLUSIONS ANDFUTURE WORK
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Fig. 5. A registration result generated by sequential tegfion of 22 scan poses. The visualized data consistsx0P2 registered scans and the corresponding
colours from 7x 22 camera images.



scanner and does not rely on any initial estimate. The 3D lase
scanner is used to obtain a depth estimate and a covariance
estimate of the extracted visual feature which is incorfeata

in the registration. An initial experiment has been conddct

to verify the approach.

Our ongoing work includes a more thoroughly evaluation of
the method and to test the method on more challenging data
sets. Also to do a performance comparison with other “plain”
laser based registration technique, such as ICP or iteraby
NDT [10].
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