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This paper addresses the laborious task of specifying parameters within a given model of student learning.  For 

example, should the model treat the probability of forgetting a skill as a theory-determined constant?  As a 
single empirical parameter to fit to data? As a separate parameter for each student, or for each skill?  We 

propose a generic framework to represent and mechanize this decision process as a heuristic search through a 

space of alternative parameterizations.  Even partial automation of this search could ease researchers’ burden of 
developing models by hand.  To test the framework’s generality, we apply it to two modeling formalisms – a 

dynamic Bayes net and learning decomposition – and compare how well they model the growth of children’s 

oral reading fluency.   
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1. INTRODUCTION  

This paper addresses the problem of defining parameters, more precisely how specific to 

make them. For example, the parameters in a knowledge tracing model are the 

probabilities of already knowing a skill, learning it from a practice opportunity, guessing 

an answer without knowing the skill, or answering incorrectly despite knowing the skill.  

But how specifically should these parameters be defined?  Should we use a different 

parameter for every skill?  For every student?  For every <student, skill> pair?  The last 

option would generate too many parameters to fit from the available data.  Corbett et al. 

[Corbett and Anderson, 1995] decided to make the knowledge parameters (probabilities 

of knowing already or learning) skill-specific, and the performance parameters 

(probabilities of guessing or slipping) student-specific.  They judged that the knowledge 

probabilities vary more by skill than by student, whereas the performance probabilities 

vary more by student than by skill. 

Such decisions – how specific to make a given parameter in order to predict unseen 

data – are the focus of this paper. This subtle but crucial modeling decision is typically 

made by hand, often by trial and error. The researcher explores various alternatives, 

trading off theoretical plausibility, computational tractability, model fit, statistical 

reliability, interpretability, and informativeness with respect to the research questions of 

interest. This problem falls in the domain of model selection but differs from prior work 

on selecting structure [e.g., Madigan and Raftery, 1994] or variables [e.g., Negrin et al., 

2010] in that we focus on selecting a specific parameterization of the given variables.  

 We propose a generic framework to represent and mechanize this process.  To test its 

generality, we apply it to two types of student learning models (dynamic Bayes nets and 

learning decomposition), which we train and test on children’s oral reading fluency data. 
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2. A HEURISTIC SEARCH SPACE OF MODEL PARAMETERIZATIONS 

The title of this paper refers to model development as a search for subscripts because 

subscripts indicate the specificity of the parameters they index.  To formalize this search 

space, we represent each state in the space as a vector with an element for each parameter 

in the model.  For example, consider a dynamic Bayes net model of Knowledge Tracing 

(KT), with probabilities for guess, slip, forget, learn, and already know.  We represent a 

parameterization of this model as a vector of 5 elements, each of which specifies how the 

corresponding parameter is subscripted.  For readability, we write the value of each 

element as a phrase describing how the parameter is indexed, e.g. ‘by student’, ‘by skill’, 

‘by student level’. 

Formally, we define a parameterization of a model with m parameters p1, p2, …, pm 

as a vector of m split functions (F1, F2,…, Fm), each of which specifies how to index the 

corresponding parameter over a set of size N, which we call the size of the split.  For 

example, to fit the guess, slip, and learn parameters of a KT model separately for each 

student, we use the ‘by student’ function to split them into separate parameters guessj, 

slipj, and learnj for each student j, so its size is the number of students.  Likewise, to fit 

the already know parameter separately to the data for each skill, we use the ‘by skill’ 

function to split it into separate already knowi parameters for each skill i, so its size is the 

number of skills. 

To set a parameter to a single value for all of the data, we use a function named “by 

NULL” to leave the parameter as is, with no subscripts or splits.  We may estimate its 

empirical value by fitting the data, or supply a theoretical constant.  For example, for a 

KT model, we apply the “by NULL” function to the forget parameter, and set its value to 

zero based on the theoretical assumption of no forgetting. 

We define the size of a parameterization as the summed sizes of its split functions.  

Intuitively, this quantity is simply the total number of subscripted parameters.  The 

example parameterization above indexes three parameters by student and one by skill, so 

its size is 3 * # students + 1 * # skills. 

Given m parameters p1, p2, …, pm and a set F of split functions, the cross product F
m
 

generates a search space of |F|
m

 possible model parameterizations to consider.  One 

simple but inefficient search strategy is brute force, searching for the best model over all 

expressible splits.  Alternatively, one heuristic strategy is to search the space of 

parameterizations in order of increasing size, fitting the resulting parameterized model to 

the data, computing some measure of its (complexity penalized) model fit, and halting 

when we reach a local maximum.  Note that the size of the parameterization is a crude 

measure of model complexity. 

3. TWO DIFFERENT MODEL FORMALISMS  

Dynamic Bayes nets (DBNs) provide a powerful way to infer a student’s changing 

knowledge over time from observed student behavior.  We extended a previous DBN 

model of children’s fluency growth [Beck et al., 2008] by adding an observable 

“Distributed Practice” node whose value is 1 for the student’s first encounter of the day 

for a given word and 0 otherwise.  The resulting model (shown in Fig. 1) has 17 

parameters, too many to list here.  For example, the parameter “learn | distributed 

practice, help” models the probability P(Kn = true | Kn-1 = false, Dn-1 = true, Hn-1 = true).  

We used BNT-SM [Chang et al., 2006] to express different parameterizations of the 

model and fit them to data. 



Fig. 1. Architecture of a Bayes Net Model of Children’s Growth in Oral Reading 

Fluency 

Learning decomposition (LD) estimates the relative impact on performance of different 

types of practice, such as wide vs. repeated reading and distributed vs. massed practice 

[Beck, 2006]. Using this approach, we developed the following model to predict a child’s 

latency prior to reading a word aloud in text: 

* ( * * * * )
* _ *

b h m HM h HD m NHM NHD
latency E L word length A e

Here E represents minimum latency, L scales latency as a linear function of word length, 

A reflects the latency at the first encounter of a word, and b represents the learning rate. 

The coefficient h represents the impact of a tutor-assisted encounter relative to an 

unassisted encounter.  The coefficient m represents the impact of a massed encounter (i.e. 

of a word seen earlier that day) relative to a distributed encounter (i.e. of a word seen for 

the first time that day).  The variable HM counts the number of assisted, massed 

encounters; HD counts assisted, distributed encounters; NHM counts unassisted, massed 

encounters; and NHD counts unassisted, distributed encounters.  To fit different 

parameterizations of this model to data, we used MATLAB’s (Ver. 7.6.0.324) non-linear 

regression function. 

4. EVALUATION 

4.1 Data 

The oral reading fluency data for this paper comes from a random sample of 40 children, 

stratified by gender and reading level, from the students who used Project LISTEN’s 

Reading Tutor [Mostow and Aist, 2001] during the 2005-2006 school year, with a 

median usage of 5.7 hours.  In total they attempted to read 5,078 distinct word types 

ranging in difficulty level from grades 1 to 11.  The data includes each student’s unique 

user id, gender, reading level (from grade K to 6), and performance on each word 

encounter, which we define as fluent if accepted by the Reading Tutor as read correctly 

without help or hesitation. 

To partition the data into training and test sets, we ordered the distinct word types 

encountered by each student by the number of encounters.  We assigned all the student’s 

encounters of odd-numbered word types to the training set, and all encounters of even-

numbered word types to the test set, so as to be able to train and test models on all of a 

student’s encounters of a given word. 

 Given the information in the data set, one set of possible splits is {‘by student’, ‘by 

student level’, ‘by gender’, ‘by word’, ‘by word level’, ‘by student and word level’, ‘by 



 

student level and word’, ‘by student level and word level’, ‘by gender and word’, ‘by 

gender and word level’}.  We omitted the split ‘by student and word’ because we had no 

overlap in <student, word> pairs between training and test sets. 

4.2 Results 

Table I compares different parameterizations of DBN and LD models, ordered by size. 

The DBN models treat fluency as a binary variable, so we show the percentage accuracy 

of their predictions, both overall and within-class; the test data is unbalanced, with 72% 

of it in the positive (fluent) class.  The LD models predict real-valued latencies, so we use 

Root Mean Squared Error (RMSE) to measure their accuracy.  Since the models make 

different types of predictions, their accuracies are not comparable.  Given the maximized 

value L of the likelihood function for the estimated model, the number k of parameters 

and the number n of data points in the training set, we compute AIC (Akaike Information 

Criterion) as .  We estimate BIC (Bayesian Information Criterion) 

as .  

DBN and LD models use different likelihood functions.  The likelihood function for 

DBN models is a probability, so their AIC and BIC scores are positive. In contrast, the 

likelihood function for a linear regression is a product of Gaussian probability density 

functions, so AIC and BIC scores for LD models can be positive or negative. 

Table 1.  Accuracy and complexity of DBN and LD models on unseen test data for 

children’s oral reading fluency.  The best value(s) in each column are underlined.

Model:  

split by… 

DBN LD 

Size Acc 

(%) 

Acc 

on + 

Acc 

on  - 

AIC BIC Size RMSE 

(sec) 

AIC BIC 

NULL 17 72.5 99.7 2.4 504084 504243 6 0.22 -9056 -9000 

gender 34 72.5 99.7 2.4 504060 504377 12 0.22 -9269 -9157 

student 

level 

136 72.5 99.7 2.4 897462 898733 42 0.23 46 427 

word level 170 72.5 99.7 2.5 474230 475818 48 0.35 -10201 -9755 

gender, 

word level 

323 72.5 99.7 2.5 474182 477200 96 0.32 -36957 -36048 

student 680 72.6 98.1 7.1 497074 503427 210 0.21 -22483 -20546 

student 

level, word 

level 

1054 72.5 98.1 6.5 470057 479905 318 0.28 25977 28692 

student, 

word level 

4573 71.8 94.1 14.2 473541 516270 1512 0.18 -144840 -130160 

word 5848 72.4 96.0 1.2 495727 550370 1518 0.20 -9136 4715 

gender, 

word 

11271 72.5 93.7 15.2 550977 847543 2856 0.18 -32541 -5762 

 student 

level, word 

31739 71.8 98.1 6.5 512257 617572 3588 0.21 15354 45053 

Which models are best?  None of the DBN models substantially beats the majority 

class accuracy of 72%.  The five simplest models have almost perfect recall (accuracy on 

positive examples), but very low accuracy on negative examples.  Note that AIC and BIC 

do not vary smoothly with the size of the parameterization.  For example, splitting by 

student level has size 136 and gives the worst AIC and BIC scores, while word level has 

size 170 but yields the best BIC score and a near-best AIC score. 

The ‘by student and word level’ LD model has the lowest AIC and BIC scores.  This 

fact suggests that students at the same estimated student level differ enough to model 



individually, possibly due to inaccurate estimates.  In contrast, word level apparently 

captures adequate information about word difficulty. 

This model also achieves the best accuracy on unseen test data (RMSE = 0.18 sec).  

However, the second best accuracy is achieved by ‘by word’ model, which has some of 

the worst AIC and BIC scores even though its size is not enormously larger (1518 vs. 

1512).  This disparity implies that AIC and BIC can be poor predictors of performance on 

unseen data. One problem we faced that due to splitting when the dataset size was very 

small (e.g. less than 4 data points) we failed to fit the LD model. We excluded these 

datasets and the size of parameterization became smaller than it should be in some of the 

models.  

Although the DBN and LD models have different formalisms and outputs, they are 

not directly comparable, we can still compare their performance profiles over the same 

space of parameterizations.  In particular, is the same parameterization best for both 

models?  No.  For the LD models, the ‘by student, word level’ parameterization achieves 

by far the best AIC and BIC scores.  For the DBN models, this parameterization achieves 

close to the best AIC score, which is for the ‘by student level and word level’ model, but 

so do the ‘by word level’ and ‘by gender and word level’ models.  Moreover, its BIC 

score is mediocre. 

5. CONCLUSION 

This paper defines the problem of parameterization selection and formalizes it in terms of 

a space of parameterizations induced by split functions.  It proposes a simple strategy to 

search this space in order of size, hill-climbing on complexity-penalized model fit.  We 

implemented a prototype of this strategy restricted by using the same split function for 

every parameter to accommodate a limitation of BNT-SM.  We demonstrated its 

generality by applying it to both DBN and LD models and evaluating the resulting 

parameterizations on the same data set. 

Future work includes expanding the search space to relax the restriction in the 

implementation, and devising search heuristics to go beyond size and complexity-

penalized model fit and address additional criteria discussed in the Introduction.  This 

work will succeed if it helps clarify, accelerate, or automate the discovery of good models. 
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