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Spectral Clustering is a graph theoretic technique for metric modification such that it gives a much more global
notion of similarity between data points as compared to other clustering methods such as k-means. It thus
represents data in such a way that it is easier to find meaningful clusters on this new representation. It is
especially useful in complex datasets where traditional clustering methods would fail to find groupings. In
previous work we have shown the utility of using k-means clustering for exploiting structure in the data to
affect a significant improvement in prediction accuracy on educational datasets. In this work we show that by
using Spectral Clustering we are able to further improve the student performance prediction. We evaluate an
educational data mining prediction task: predicting student state test scores from features derived from a tutor
and also present some preliminary results on some other EDM tasks using spectral clustering.
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1. INTRODUCTION

The highly inter-disciplinary field of Educational Data Mining (EDM) has resulted from
a fusion of many different areas, some of which include Machine Learning, Cognitive
Science and Psychometrics. The main task in EDM is to construct computational models
and tools to mine data that originated in an educational setting. With rapidly increasing
data repositories from different educational contexts (paper tests, e-learning, Intelligent
Tutoring Systems etc.), good practices in EDM can potentially answer important research
questions about student learning. This goal of EDM is proving instrumental in combining
the knowledge derived from the data to combine with theories from cognitive psychology
to formulate the best learning settings and methodologies.

Within data mining, clustering is perhaps one of the most important tools for both
exploratory and confirmatory analysis. It is a technique to discern meaningful patterns in
unlabeled data by grouping together data points that are “similar”. In EDM, clustering
has been used in a variety of contexts: Ritter e al. In an already influential work
essentially used the implicit information compression (albeit lossy) handed by clustering
to reduce the Knowledge Tracing parameter space [Ritter 09] without compromising the
performance of the system. Dominguez et al. used clustering as a tool to generate
individualized hints for students [Dominguez 10]. In another interesting work, Shih et al.
employed clustering for unsupervised discovery of student learning tactics [Shih 10].
Clustering has also been used for curriculum planning [Maull 10], for estimating skill set
profiles [Nugent 10] amongst numerous other tasks. However, interestingly most of these
works employ k-means clustering, expectation maximization based clustering or
subspace clustering. This paper aims to introduce to the field of EDM the utility handed
by spectral clustering over other clustering algorithms, which is also an easy to
implement algorithm with numerous toolboxes available as well [Chen 10].
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To understand the weakness of methods such as k-means, a useful way of looking at
clustering is the following: Consider a set of K distributions, D = {D1, D2 ... Dk} such
that each of these distributions has an associated weight, the collection of which is given

by {wn,un ... 1wk} such thatz_wi = 1. Suppose a dataset is generated by sampling
k3

these K distributions, such that a point in this dataset might be picked from distribution
D; with probability w;. The objective of clustering methods is to identify these K
distributions given a dataset. Methods such as k-means and Expectation Maximization
(EM) are based on estimating explicit models of the data. While k-means finds the
clusters by assuming that the set of distributions D that generated the data was a set of
spherical Gaussians, EM algorithms in general learn a mixture of Gaussians with
arbitrary shapes. More formally, k-means finds the clusters by minimizing the distortion
function:

Je.p) = ZHTW — He |
i=1 (M

Where (i is the cluster centroid to which a point x has been assigned. In spite of the
great popularity of the k-means algorithm very few theoretical guarantees on its
performance are known [Dasgupta 99]. In practice however, k-means performs well on
data that at least approximately follows its assumption of being generated by a mixture of
well-separated spherical Gaussians [Chaudhuri 09]. This, coupled with its simplicity
makes it a handy tool for a data-miner. However, k-means performs poorly when these
assumptions of data generation are not met, which is usually the case in real world
datasets. Fig. 1 illustrates this problem by a toy synthetic dataset.
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Fig 1: Results of using k-means on synthetic datasets. k-means is unable to identify clusters when the data is
distributed in concentric groups (left), while it clearly finds the clusters in well separated and tight spherical
Gaussians (right). The clusters identified are indicated by different colors. Both sets have 600 points.

Spectral Clustering makes no such assumptions for data generation. It instead finds
groupings by analyzing the top eigenvectors of the affinity matrix and hence usually
returns better results.

The rest of the paper is organized as follows: The next section discusses Spectral
Clustering, giving a tutorial overview of the same. Section 3 uses the spectral clustering
method to improve the prediction of post-test scores employing student features from an
Intelligent tutor using a bootstrap aggregating method developed by the authors [Trivedi,
Pardos 11] [Trivedi, Pardos 11]. Section 4 is a discussion of results and future work.

2. SPECTRAL CLUSTERING

One of the most important developments in Machine Learning in the past decade has
been the use of spectral methods in clustering. They have created a new wave of
excitement to understand the problem of clustering and the notion of similarity between
points better and formulate it precisely. One major reason for this excitement is that



spectral clustering is based on solid graph theoretic principles. Given its strengths, it
would be highly beneficial to the EDM community if it is used more widely in the same.

The broad idea of clustering is essentially to group points that are “similar” in one
cluster and points that are “dissimilar” into different clusters. The notion of similarity that
is employed in k-means is the Euclidean distance between data points and the cluster
centroids to which they are assigned to (which get updated in each iteration). In a sense,
the idea of similarity used in k-means restricts what could be known about the geometry
of the data. In k-means we work with the data directly, in spectral clustering however, we
work with a representation of the data that gives a more global (and hence better)
encoding of the similarities between points. This “similarity” in spectral clustering is
represented in the form of a graph called the similarity graph, represented by G = (V, &)
where V' is the set of vertices and £ is the set of edges. The idea is that points in the
dataset can be represented by a graph with each data point as a vertex of the graph ¢ and
the edges connecting them encoding a notion of similarity w;; > 0 between them. Two
points are connected in the graph if the similarity or weight between them is either non-
zero or above some threshold. The clustering problem can then be re-stated using
information from the similarity graph as: We want to find partitions of this graph such
that weights between points in the same group are high and those between points in
different groups are low. Before talking how we cluster using this representation, we
introduce some notation and discuss how the graph G is used to represent the dataset.

Given the similarity graph G of n data points {z1, 2 ...2,,}, there are essentially two
things about it that tell us something about the global structure of the data:

1. The degree of a vertex (a data-point in our case): The degree of a vertex tells us

the sum of weights of all the edges that originate from a vertex i to all other

vertices j. It is given by:
T
di =Y wi
=1

This definition is somewhat non-standard but more general. The standard
definition for degree of a vertex is only defined for w;; = {0,1}, and thus is
only the count of vertices a given vertices is connected to. Given this definition,
the degree matrix of the similarity graph is the diagonal matrix T with the
degrees «f; on the diagonal.

dq

(12
D=

dy
Intuitively the degree matrix of a graph tells us how many points each point is
connected to (we could connect all points, or choose to connect k-nearest
neighbors of each point) and by “how much” (hence the summation of the
weights).

2. The weighted similarity matrix or the affinity matrix of the similarity graph, I’
on the other hand is a representation of similarity between all the points. Each
element in the affinity matrix is given by w;;, which is the weight or edge
between two points ¢ and j. A common way of representing the weight is:

2
w;; = exp (LL) (2)
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Notice that w;; is simply the exponentiated Euclidean distance between two
points (points in R™) scaled by a parameter called the scaling or weighing
parameter . This parameter is to be tuned and varying it changes the weight
between points. A point to note is that if all the points are connected then all
such that ¢ # j will be non-zero values. If points are connected to only their k-
nearest neighbors and not every other point, then most of the matrix ¥ will be
populated by zeros.
The matrices IV and IJ tell us something about the global structure of the data, but we
don’t work with them directly. We instead work with the graph Laplacian matrix given
by
L=D-W

The above is the un-normalized version of the Laplacian. There are two normalized
versions that are represented as:

Lsym — D—l/‘ZVVD—l/’Z

Lyw=D'W
The first is called the symmetric Laplacian while the second is called the random-walk
Laplacian. The Laplacian in a way combines both the degree and the affinity matrix and
also has some mathematically interesting properties (such as being positive semi-definite)
that make it easier to work with [Mohar 91]. Since the Laplacian is a representation of the
similarity between the data-points, we can now work with it to find groups in the data.
Given the above background, clusters in a dataset can be found by the following method
[Ng01]:

1. For the dataset having n data points, construct the similarity graph G. The
similarity graph can be constructed in two ways: by connecting each data point
to the other n — 1 data points or by connecting each data point to its k-nearest
neighbors. A rough estimate of a good value of the number of nearest neighbors
is log(n). The similarity between the points is given by equation 2. This will
give the matrix I1".

2. Given the similarity graph, construct the degree matrix D).

Using D and W find Lgym.

4. Let K be the number of clusters to be found. Compute the first A eigenvectors
ofL 5. Sort the eigenvectors according to their eigenvalues.

5. If uy, us...ug are the top eigenvectors of Lym, then construct a matrix U such
that U = {u1, 1y ... ux }. Normalize rows of matrix [~ to be of unit length.

6. Treat the rows in the normalized matrix U as points in a K dimensional space
and use k-means to cluster these.

7. Ifei,e...cx are the K clusters, Then assign a point in the original dataset s,

to cluster g if and only if the i*"
CH

It is noteworthy that we don’t cluster the original dataset directly. We first transform it to
find its top & eigenvectors. These being the most important eigenvectors of L, encode
the maximum information about it. At the same time, this reduces the dimensionality
which without throwing away much information which makes the task of clustering much
easier. To illustrate the power given by this change of representation, we demonstrate it
on a toy dataset (Fig. 2). A detailed tutorial that explains various spectral clustering

(98]

row of the normalized U is assigned to cluster



algorithms and some point of views on why it works is by Luxburg [Luxburg 07]. In the
next section we discuss a specific application of spectral clustering in EDM.
151
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Fig 2: Result of using spectral clustering on a synthetic dataset. This synthetic set has 600 points. The colors
indicate the clusters found by spectral clustering. Such groups cannot be found by k-means clustering.

3. IMPROVING PREDICTION ON STUDENT PERFORMANCE IN POST TESTS
Bayesian Knowledge Tracing [Corbett 95] has long been used to model student
knowledge in an intelligent tutoring system (ITS). This knowledge estimate is used to
calibrate the amount of training a student gets to ensure skill mastery. One of the goals of
such modeling is to ensure that students perform well on actual post tests. In fact it is
reasonable to say that perhaps one of the most important measures of success of an ITS is
how well performance on it transfers to actual post tests.

Traditionally, performance on a post-test is predicted by using practice tests. The
percentage of questions answered correctly on these practice tests give a crude estimate
of how well a student would perform on the actual post test. Improving this estimate
would be highly beneficial to both students and educators. For the improvement of such
assessment, dynamic assessment [Grigerenko 98] has been advocated as an effective
method. The big idea of dynamic assessment is that assessment is based on the amount of
help students require to get questions correct and it enables the tutor to assess as it assists.
This is a major advantage as it not only not only allows students to learn while being
assessed, but can also predict student performance on post-tests better. Traditional
testing, in which only the percentage of questions is considered is called static
assessment. The notion of dynamic assessment makes intuitive sense as it gives a finer
grained estimate of a student’s knowledge. If a student gets a question wrong, it might
not imply that the student has no knowledge pertaining to the question. The level of
knowledge that the student has might be estimated by measuring the amount of help that
the student required to get the question correct. Given the interactive nature of ITS, they
are the ideal test bed for measuring the utility of dynamic assessment.

Feng et al. [Feng 09] reported the result that data from an ITS could better predict
state test scores (MCAS or Massachusetts State Test Scores in their experiment) if it only
considered the extra measures collected in dynamic assessment as compared to the static
assessment condition. The paper had a weakness that time was never held constant. Feng
& Heffernan went one step ahead and controlled for time in following work [Feng 10].
They reported better predictions on the MCAS state test scores by the dynamic condition,
but not a statistically reliable difference. This work effectively showed that dynamic
assessment led to better predictions on the post test. This prediction was done by fitting a
linear regression model on the dynamic assessment features and making predictions on
the MCAS test scores. They concluded that while Dynamic Assessment gave good
assessment of students, the MCAS predictions made using those features were only



marginally statistically significant as compared to the static condition. Trivedi et
al.[Trivedi 11] investigated further if the dynamic assessment data could be better
utilized to increase prediction accuracy over the static condition (and hence establish the
superiority of dynamic assessment). They used a newly introduced method [Trivedi 11]
that clusters students using the k-means algorithm and uses multiple cluster models and
then ensembles the predictions made by each cluster model to achieve a reliable
improvement. Here we show that by using spectral clustering we further improve the
prediction on the MCAS post-test based on the dynamic features. The improvement
obtained by using spectral clustering is not only significant over the static condition, but
also over results obtained using k-means after K = 3 (p-value < 0.03 on a paired t-test).

3.1 Data and Methodology
The data used for this study was the same as used by Feng et al.[Feng 10] and Trivedi et
al. [Trivedi 11]. The data is from the 2004-05 school year and was collected using the
ASSISTments tutor in two schools in Massachusetts. ASSISTments [Razzaq 05] is an
ITS developed at Worcester Polytechnic Institute, MA, USA. The data is for 628 students
and the features included the various dynamic features [Feng 10]. These features were: 1)
Student’s percent correct on main problems 2) Number of problems done 3) Percent
correct on the help questions 4) Average time spent per item 5) Average number of
attempts per item 6) Average number of hints per item. The first feature was a static
feature and was used to make predictions on the static condition, while the others were
used to make predictions in the dynamic condition. The prediction made was for the
MCAS test scores that was available for the same students in the following year. A 5 fold
cross validation was done.

The methodology used for making the prediction is a new bootstrap aggregation
ensemble method [Trivedi, Pardos 11]. The procedure is summarized as follows:

1. Cluster the training data into KX clusters.

2. For each cluster train a separate linear regression model using the points from

that cluster as the training set.
3. Each such trained predictor (such as Linear Regression) represents a model of
the cluster and is hence appropriately called a cluster model.
This is represented in figure 3 below:
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Fig 3: The first step in the methodology for using clustering to bootstrap and making a prediction on the
training set. The scale of clustering can be varied to generate a number of predictions that can then be
aggregated.



This collection of cluster models that make a prediction on the entire test set is called
a prediction model (PMg , the subscript denotes the number of clusters in each Prediction
Model). Making a prediction for a test point would involve: Locating the cluster to which
the point belongs, and then using the model trained for that cluster to make the prediction
for it. However, by using the number of clusters as a free parameter we generate a set of
K prediction models (PM,, PM; ... PMy), such that each has a different number of
cluster models. And thus, we can obtain K different predictions on the test set. These
predictions are then averaged to obtain a single strong prediction.

This method can be thought of like an adaptive mixture of local experts [Jacobs,
Hinton 91] that uses clustering to bootstrap. But unlike in other bagging methods, which
select a random subset to bootstrap, this method has a specific expert for each cluster of
the data. By varying the granularity of the clustering we are able to obtain a mixture of
experts on the data at different levels each of which gives a prediction on the test set
which are then averaged to get one prediction.

3.2 Results Using Spectral Clustering

The results of clustering the data using both kmeans and spectral clustering are
represented in figure 4 below. Since the data is high dimensional and the actual partitions
cannot be pictured, this visualization is done by doing a multi-dimensional scaling on the
dataset to three dimensions with each cluster identified by a different color. This
visualization is for K = 5.
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Fig 4: The images on the left column are for k-means and those on the right are for spectral clustering. The top
row represents the plot of the ASSISTment data scaled down by multi-dimensional scaling to three dimensions
and the clusters identified by both k-means and spectral clustering. The rows below are simply different planar
views of the plot in row 1.

The spectral clustering ensemble results are not only significant over the static condition
(K =1 in figure 6) but also are significant for the kmeans generated ensemble beyond K
=3 with p < 0.03 in each case on a paired t-test.
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Fig 5: The plots of the 5 fold cross validated errors by the various prediction models and ensembles (from 1 to
K = 7) for both kmeans and spectral clustering. The K ensemble prediction is the average of predictions
returned by prediction models from 1 to K.

4. CONCLUSION, DISCUSSION AND FUTURE WORK

The methodology described in the paper was employed on some other EDM tasks as
well, such as making an in-tutor prediction on the KDD Cup 2010 dataset and on the
Performance Factor Analysis (PFA) task [Gong 10]. Preliminary results (summarized for
PFA below) have indicated an improvement in the prediction accuracies.

Table 1: Preliminary work on Performance Factor Analysis

Spectral K=1 K=2 K=3 K=4 K=5
Ensemble

AUC 0.5861 0.6153 0.6252 0.6291 0.6307




The results indicate an improvement over the base condition as more prediction
models are averaged. But this result is not cross-validated and is a work in progress. Also,
given the prohibitive size of the dataset, spectral clustering was not used for all the rows
in the training set, but a random subset of them was used. This was done to save time,
however this is the reason the detailed results are not reported in this work. Also, more
work needs to be done to use spectral clustering methods more efficiently for massive
datasets such as the KDD cup dataset.

A deeper way of looking at clustering is essentially as a scheme for lossy data
compression. Improvement in prediction accuracy using spectral clustering over k-means
indicates that spectral clustering is a better information compression method than k-
means and hence tells something deeper about the structure of the data that k-means
misses. This would mean an interesting application to reduce the knowledge tracing
space like by Ritter et al [Ritter 2009] and see how it compares with performance
returned by k-means clustering.

The objective of this work was to introduce to the domain of EDM the great utility of
using spectral clustering. We used spectral clustering to enhance the performance of a
new ensemble method proposed in an earlier work by the authors. While the objective
was to introduce the use of spectral clustering, a very significant result of the work is
proving the efficacy of Dynamic Assessment as compared to static assessment. These
results show that an ITS that can assess as it assists offers a significant advantage to
students and teachers. This is important because it can not only save time that is wasted
on assessment for instruction, but it can also be a better predictor of their performance in
post-tests.

The results for the task of predicting the post test scores have been very encouraging;
however there are some areas that need further work and could improve prediction
accuracy further. One such area of possible improvement is allowing for fuzzy clustering.
To make a prediction, the cluster closest to a test a point was identified and then the
expert for that cluster was used to make a prediction on it. In many real world examples,
membership of a data point to a particular cluster is a tricky question to answer. A more
realistic view is to allow for fuzzy clustering. That is, given a test point, we determine its
probability of occurring in each of the clusters. Then, we can obtain predictions by the
cluster model /expert for each of the clusters and obtain one prediction for one test point
that is a weighted average of the predictions returned by each cluster model (earlier a
prediction was made on the test point by only one cluster model), with the weights being
the probability that the point lies in that cluster. While fuzzy counterparts to the k-means
algorithm such as fuzzy c-means are well known, the idea of doing fuzzy spectral
clustering is something to be explored. Clearly, spectral clustering uses k-means at a
lower dimensional representation of the laplacian and fuzzy c-means can be used at this
level. However, the effectiveness of doing the same is not known.

Another possible area of improvement is using methods to merge clusters that are
sparsely populated [Cheng 06]. By this method we could improve both the quality of
clustering (if the task is purely unsupervised) and prediction accuracy (if the task like in
the application discussed is a prediction task).

In this work we combine predictions by averaging them. Clearly this is a sub-optimal
choice. Ideally, we would want to pick those predictions (made by prediction models)
which are good in prediction and have less correlation with each other (are diverse).
Since the method used to make the post-test predictions was an ensemble method, it can
be used to combine the predictions themselves. Preliminary work utilizing this idea of
using clustering to boot-strap the predictions returned by various prediction models has
shown promise.
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