
High Performance Compressive Sensing
Reconstruction Hardware with QRD Process

Jerome L.V.M. Stanislaus and Tinoosh Mohsenin
Dept. of Computer Science & Electrical Engineering

University of Maryland, Baltimore County

Abstract—This paper presents a high performance architecture
for the reconstruction of compressive sampled signals using
Orthogonal Matching Pursuit (OMP) algorithm. Q-R decompo-
sition (QRD) process is used for the matrix inverse core and
a new algorithm for finding fast inverse square root of a fixed
point number is also implemented to support the QRD process.
The optimized architecture takes 256-length input vector and
64 measurement data, and reconstructs a signal of sparsity 8.
The design is implemented in 65 nm CMOS which runs at
165 MHz and occupies 0.69 mm2, total reconstruction takes
13.7 μs. The implementation on Xilinx FPGA Virtex-5 takes
27.12 μs to reconstruct a 256–length signal of sparsity 8. The
same architecture for 128–length signal of sparsity 5 on Virtex–5
is 2.4 times faster than the state–of–the–art implementation.

I. Introduction

In many signal processing systems, the useful information
is far less than the sampled data and all the redundant data
are eliminated through compression. Examples include audio
signal compression such as MP3 and color image compression
such as JPEG-2000 where almost 97% of the data is thrown
away [1]. The reason behind such a high data compression
is due to the sparsity of the signal, i.e. the signal has small
number of non-zero entries. High data compression can be
achieved as long as the signal is sparse in any domain [2]. In
all these cases, the signal is captured at the Nyquist rate and
the data compression occurs later. Compressive sensing (CS) is
a technology where sampling and compression occurs together
which will enable us to sample at very low rate, sub-Nyquist
rate.

In CS, sparse signals and images can be recovered from
very few samples (sub-Nyquist rate) compared to the tradi-
tional Shannon’s celebrated sampling [1]. Magnetic Resonance
Imaging (MRI) is one of the applications of CS theory [3].
CS has two main stages - sampling and reconstruction. While
sampling is performed on the transmitter, reconstruction is
done on the receiver as shown in Fig. 1.

Consider an m-sparse signal x of dimension N × 1 and Φ is
the measurement matrix of dimension d × N, where d is the
number of measurements to be taken. Multiplying these two
vectors yields y of dimension d:

y = Φx (1)

Now y is processed to reconstruct m values which will be
the close estimate for x, denoted as x̂. Since the reconstruction
is NP-hard, efforts are made to find a close estimate of x. The

Fig. 1. Basic block diagram for compressive sensing

signal can be sparse in any domain and not necessarily in the
sampling domain. Reconstruction requires high computation
and the complexity increases with the dimension of the signal.
Also, reconstruction is an application of information theory
and the complexity increases with the accuracy and the total
measurements. There are several reconstruction algorithms
proposed in recent years and most of them are computational
intensive. Software implementation of these algorithms are
time consuming since they often require matrix multiplications
for which the processors are poor performers. The above
mentioned drawbacks create more interests in hardware imple-
mentation for real-time reconstruction for CS signals. The two
mostly used reconstruction algorithms are �1–minimization
and Orthogonal Matching Pursuit (OMP). �1–minimization
algorithm is better in terms of accuracy, but its implementation
is very complex and time consuming. OMP is less complex [4]
and it is a Greedy algorithm that finds the closely correlated
values in each iteration. The complexity of the design increases
with data length.

In this paper, we propose a high speed architecture for OMP
algorithm for 256– length input vector, and Q-R decomposition
process (QRD) [5] is used for solving least square problem.
The advantages of this approach are that the architecture is
optimized for higher set of data length and a new architecture
for finding matrix inverse using QRD process speeds up the
reconstruction. To perform QRD process, a new algorithm
for finding inverse square root has been implemented for
fixed point arithmetic, derived from [6]. The design has been
implemented on 65 nm CMOS technology whose results are
provided at the end and FPGA implementation results are also
provided to compare with the previous work.

II. Background
There are only a very few studies available for the imple-

mentation of OMP algorithm on the hardware [7][8]. Both
studies are based on FPGA implementation, where [7] uses a

Find m indices of Φ Least Square Problem

Φ
64x256

Y
64x1 (a) (b)

m values

C

Fig. 2. Basic diagram for OMP reconstruction
.
128–length vector for a sparsity of 5. The same architecture
will take a lot more time to compute 256–length vector with a
sparsity of 8 due to the path delay in finding the dot product
and also due to the division operations performed in the matrix
inverse. GPUs have a bottleneck on memory bandwidth [9].
The optimized algorithm explained in [7] will be used as a base
for this paper and the new architecture design optimizations
are discussed.

III. Proposed Architecture
OMP reconstruction can be divided into two main stages as

shown in Fig. 2 and it takes two inputs Φ and y. It should be
noted that if the signal is not sparse in the sampling domain, Φ
will be the resultant of measurement matrix multiplied by
the linear transformation matrix Ψ. For example, an image
captured in spatial domain can be brought to wavelet domain
by the linear wavelet transformation function Ψ, where the
image data becomes sparse. The proposed architecture has
been optimized for 256–length vector and a sparsity of 8.
Previous work [7] has the critical path delay due to the dot
product calculation and also due to the division operation that
resulted in the decreased maximum operating frequency. In
this proposed architecture, datapath logic is highly optimized
which nearly doubles the performance of the hardware. Since
the Cholesky decomposition method for higher vector length
is quadratically costly due to the matrix size, QRD method is
proposed for finding matrix inverse. The two blocks, as shown
in Fig. 2, operate at different clock rates that again improves
the overall performance.

A. Algorithm
Consider a signal x of sparsity m is sampled using a random

matrix Φ and y is the sampled data. We need to find m columns
of Φ which contributed to y. To start with, residual R is
initialized with y. A column of Φ is chosen for each iteration
in such a way that the column has the best correlation with
R. This correlation is subtracted from the residual R for next
iteration. After finding m columns of Φ, the original signal x̂ is
recovered by solving an over-determined least square equation.
The procedure is given below:

a. Initialize the residual R = y, the index set Φ̃ = ∅ and
the iteration counter t = 1

b. Find the index λt which is most correlated to Φ by
solving the optimization problem

λt = arg max
j=1..N

| < Rt−1, φ j > | (2)

c. Update the index set Λt and column set Φ̃

Λt = Λt−1 ∪ {λt} (3)
Φ̃ = [Φ̃ Φλt] (4)

d. Calculate the new residual according to

Rt = Rt−1 − (Φ̃t · Φ̃′t)Rt−1 (5)

e. Increment t and return to step b if t is less than m
f. Solve the least square problem to find x̂ for the indices

in Λ
x̂ = arg min

x
||Φ̃x − y|| (6)

B. Solving Optimization Problem

In this paper, the hardware has been implemented for N =
256, measurements k = 64 and a sparsity of m = 8. Each data
uses 24-bit 10.14Q (10 integer bits and 14 fractional bits) fixed
point format. It was observed that a larger number of fractional
bits do not actually influence the result and 10.14Q format
computation is comparable to the floating point simulation. To
perform the dot product, 64 multipliers are operated in parallel
and the resultants are added together. In this paper, multiply
and add is divided into 3 pipeline stages that will decrease the
delay of this block. Multipliation takes place in the first stage
of pipeline. In the second stage, 8 additions are performed in
parallel each adding 8 values. These eight results are added
to produce the final dot product in the third stage. It is fully
pipelined so that the data is pushed into the module on each
clock cycle.

Finding the maximum, as given by (2), occurs in parallel
on each cycle. Once the index which is closely correlated to
y is found, the residual is updated by subtracting it with the
correlation of the column of Φ as shown in (5). Figure 3(a)
shows the block diagram for solving the optimization problem
and is repeated to find m indices of Φ as given by (3) and (4).

C. Solving Least Square Problem

After finding m columns of Φ which are closely correlated
to y, the second stage is to solve the least square problem
given by (6). This often involves finding the inverse of an 8x8
matrix C where C = Φ̃T Φ̃. The main purpose of this is to
solve for x̂ from:

(Φ̃T Φ̃)x̂ = Φ̃T y (7)

There are numerous methods available to solve C−1 and
the method followed in [7] was Alternate Cholesky Decom-
position which decomposes C as LDLT , where L is a lower
triangular matrix and D is a diagonal matrix. Though it is
better than many other methods like Cholesky decomposition
[10], this approach can exponentially take increase the latency
with increasing dimension of C. This can be proven since the
total number of values (k) to be calculated for L increases
quadratically with the dimension (m) of C and is given by
k = m(m − 1)/2. In Q-R decomposition process [5], C is
decomposed into QU where Q is an orthogonal matrix and
U is a upper triangle matrix. Now the inverse of C is given
by,

C−1 = U−1QT (8)

Unlike calculating L in ACD, in QRD process, each column
is processed one at a time to generate Q. This proves that

Sampled Data (Y) Random Array Matrix (A)

Matrix Multiplication

Find Max

Update Residual

Residual
(R)

Calculate Q

Calculate U Invert U

Multiply &
Accumulate

Inverse Square
Root

(a) Find m indices of Φ (b) Solving Least Square Problem

QT
X

X

C=

U-1

Fig. 3. Detailed architecture diagram of OMP reconstruction algorithm. (a) This block iterates 8 times to solve the optimization problem. Operates at 85
MHz. (b) Finds inverse of a 8x8 matrix after finding 8 columns of Φ. Operates at 69 MHz.

the calculation of Q is linear with the dimension of C. U is
generated while calculating Q and is given by the pseudocode:

for i = 1 to n do

Ui, j = M
′
j ·Ci, j = 1, 2, ..., i − 1

Gi = Ci −∑i−1
k=1(Mk × Ui,k)

Ui,i = norm(Gi)
Mi = Gi/Ui,i

end for

where norm(X) =
√

X2
1 + X2

2 + .. + X2
n . A set of 8 multipli-

ers are used in parallel to perform these steps. The critical
problem in this method is to find the square root and also
the division in the final stage of each column processing.
In this proposed architecture, a pipelined fixed point inverse
square root algorithm has been implemented which takes 6
clock cycles. Since division is a more complex and time
consuming arithmetic operation than multiplication, it is clear
that this algorithm does not involve any division arithmetic as
compared to ACD [7]. Now, we have to find U−1 (denoted as
V) and since it is an upper triangular matrix, the steps to find
the inverse are given,

for i = 1 to n do

Vi,i = 1/Ui,i

for j = i + 1 to n do

Vj,i = −Vi,i ×∑ j−1
k=i (U j,k × Vk,i)

end for

end for

Since we already found 1/Ui,i through inverse square root
algorithm, the division is again eliminated here. Finding V
requires 7 multipliers in parallel and the 8 multipliers used
for finding Q is reused here. Hence the inputs are given to
the multipliers through a multiplexer and V is calculated in
parallel. It can be noted that the residual registers are not used
after the optimization problem and these registers are reused
for C and Q, thus not taking additional area. The detailed
block diagram for QRD is shown in Fig. 3(b).

D. Fast Inverse Square Root

Fast inverse square root method was developed and ap-
peared in Quake III Arena source code for a 32-bit floating
point number [6]. The original algorithm takes a 32-bit un-
signed floating point number and stores half its value. The

floating point number is right shifted by 1 and the result is
subtracted from a number 0x5f3759df [6]. This gives a close
approximation of the inverse square root. Then the Newton’s
method is used multiple times to achieve a more accurate
results. In this paper, we optimize this method to calculate
inverse square root for a 24-bit fixed point number. Here,
all the 24 bits are considered as fraction bits and the input
is left shifted (2 bits at a time) untill the first 2 MSB bits
become either 01,10 or 11, denoted as X(X24X23..X1). This is
to normalize any number to a fraction between 0.25 and 0.5.
Then the fixed point equivalent of floating point right shift is
obtained as given by (9). The results is in 2.22Q format.

Xnew =

⎧⎪⎪⎨⎪⎪⎩
00X23X22...X2 if X24 = 1
11X22X21...X1 if X24 = 0

(9)

This Xnew is subtracted from the value 0xB759DF for 24-
bit 2.22Q fixed point. This gives the first approximation (Y1)
given by,

Y1 = 0xB759DF − Xnew (10)
Yi+1 = Yi × (1.5 − (Y2

i × Xnew/2)) , i = 1, 2 (11)

Then the Newton’s method is performed for 2 iterations to
obtain an approximation of inverse square root. The final value
Y2 is left shifted (1 bit at a time) by exactly the same number
of times done for generating X. It uses a single multiplier
and is pipelined to perform one multiplication per cycle thus
producing the result in 6 clock cycles.

E. Finding The Estimated Values

The ultimate goal is to find the estimate x̂ which is given
by x̂ = (Φ̃T Φ̃)−1Φ̃T y where C = Φ̃T Φ̃ = QU. From the above
steps we will have Φ̃, Q and U−1. Instead of calculating C−1,
we will optimize the computations by first calculating Φ̃T y
and then calculating QT Φ̃T y and finally calculating:

x̂ = U−1QT Φ̃T y (12)

Bypassing the C−1 calculation and using it in the decomposed
form proved to be very efficient as opposed to the method
implemented in [7]. x̂ has 8 values, each is a 24-bit fixed
point number. These values correspond to the indices denoted
by Λ as seen in (3) while the remaining values are just zeros.

0.
83
m
m
2

0.83 mm2

Fig. 4. Post layout view of the proposed CS reconstruction hardware

Design Specifications
Technology 65 nm, 1 V
Logic utilization 90%
Total area (mm2) 0.69
Performance (MHz) 165
Reconstruction Time (μs) 13.7*

TABLE I
Implementation summary for the proposed CS reconstruction hardware.
* denotes the reconstruction for 256–length input and a sparsity of 8.

Since the residual length is 64 and each matrix has 64 values,
the above calculations are performed in just 3 clock cycles
using the parallel 64 multipliers.

IV. CMOS Implementation and Comparison

The high performance compressive sensing hardware is
implemented in 65 nm CMOS technology that operates at
1 V supply voltage. The hardware architecture was designed
in Verilog, synthesized using RTL Compiler, and placed and
routed using Cadence Encounter. Fig. 4 shows the chip layout
of the proposed hardware. Place and route results indicate that
the chip occupies a total area of 0.69 mm2 and operates at
165 MHz. The design is also sythesized for Xilinx Virtex 5
FPGA to compare with the previously published implementa-
tions. It runs at two different clocks, 85 MHz and 69 MHz for
blocks (a) and (b), respectively as in Fig. 2. For sparsity m =
8, it requires 2100 clock cycles to find 8 columns of Φ and
160 cycles for QRD block. Hence the total reconstruction time
is 27.14 μs. The real bottleneck of the algorithm is finding the
dot product of Φ and residual R that takes 256 × 8 = 2048
cycles.

The proposed architecture for 128–length vector of sparsity
5 on Xilinx FPGA Virtex-5 will take a maximum of 688 cycles
for finding 5 columns of Φ and 132 cycles for QRD process.
This gives a reconstruction time of 10 μs which is 2.4 times
[11] faster than the previous implementation specified in [7]
whose reconstruction time is 24 μs and nearly 3 times faster
in reconstructing a 128 × 128 image as compared to [12].

A reconstructed 256×256 image using the proposed method
is shown in Fig. 5. The image is divided into 256 sub-images
of dimension 16 × 16 and the reconstruction is performed
sequentially. The reconstructed image is enhanced using a 6×6
median filter.

(a) (b)

Fig. 5. (a) Original Image (b) Reconstructed Image (enhanced*) using the
proposed method, PSNR = 31.85 dB. The 256 × 256 image is divided into
sub-images of dimension 16 × 16 and iterated for 256 times. * denotes the
reconstructed image is enhanced using a 6 × 6 median filter.

V. Conclusion

This paper presents an improved architectural design and
implementation of a high performance CS reconstruction
hardware. This hardware supports vector of length 256 and
a fast Q-R decomposition process has been implemented to
find matrix inverse for higher sparsity. This is supported by
the implementation of a fully pipelined fast inverse square root
algorithm. The reconstruction time for a 256–length signal of
sparsity 8 is 13.7 μs. The same architecture implementation
on Xilinx FPGA Virtex–5 for 128–length vector takes 10 μs
which is 2.4 times faster than the state–of–the–art implemen-
tation.

References
[1] E. Candès and M. Wakin, “An introduction to compressive sampling,”

Signal Processing Magazine, IEEE, vol. 25, no. 2, pp. 21–30, Mar 2010.
[2] J.-L. Starck, F. Murtagh, and J. Fadili, Sparse Image and Signal

Processing. Cambridge University, 2010.
[3] E. Candès, “Compressive sampling,” in Proceedings of the International

Congress of the Mathematicians, 2006, pp. 1433–1452.
[4] J. Tropp and A. Gilbert, “Signal recovery from random measurements

via orthogonal matching pursuit,” IEEE Trans. on Information Theory,
vol. 53, no. 12, pp. 4655–4666, 2007.

[5] M. Karkooti, J. Cavallaro, and C. Dick, “FPGA Implementation of
Matrix Inversion Using QRD-RLS Algorithm,” Signals, Systems and
Computers, 2005. Conference Record of the Thirty-Ninth Asilomar
Conference on, pp. 1625–1629, 2006.

[6] “Fast inverse square root,” Aug. 3 2011. [Online]. Available:
http://en.wikipedia.org/wiki/Fast inverse square root

[7] A. Septimus and R. Steinberg, “Compressive sampling hardware recon-
struction,” in Circuits and Systems (ISCAS), Proceedings of 2010 IEEE
International Symposium on, 2010, pp. 3316–3319.

[8] D. Yang, H. Li, G. Peterson, and A. Fathy, “Compressed sensing
based UWB receiver: Hardware compressing and FPGA reconstruction,”
Information Sciences and Systems, 2009. CISS 2009. 43rd Annual
Conference on, pp. 198–201, 2009.

[9] M. Andrecut, “Fast GPU implementation of sparse signal recovery
from random projections,” 2008. [Online]. Available: http://www.arxiv.
org/PS cache/arxiv/pdf/0809/0809.1833v1.pdf

[10] O. Maslennikow, P. Ratuszniak, and A. Sergyienko, “Implementation
of Cholesky LLT-Decomposition Algorithm in FPGA-Based Rational
Fraction Parallel Processor,” Mixed Design of Integrated Circuits and
Systems, 2007. MIXDES ’07. 14th International Conference on, pp. 287–
292, 2007.

[11] J. Stanislaus and T. Mohsenin, “Low-complexity fpga implementation
of compressive sensing reconstruction,” SPIE Conference on Defense,
Security, and Sensing, April 2012.

[12] Y. Chen and X. Zhang, “High-speed architecture for image recon-
struction based on compressive sensing,” Acoustics Speech and Signal
Processing (ICASSP), 2010 IEEE International Conference on, pp.
1574–1577, 2010.

