SOME SUBSEQUENCES OF THE GENERALIZED FIBONACCI AND LUCAS SEQUENCES

EMRAH KILIC

ABSTRACT. We derive first-order nonlinear homogeneous recurrence relations for certain subsequences of generalized Fibonacci and Lucas sequences. We also present a polynomial representation for the terms of Lucas subsequence.

1. INTRODUCTION

Let p and q be nonzero integers such that $\Delta = p^2 - 4q \neq 0$. The generalized Fibonacci sequence $\{U_n(p,q)\}$, or briefly $\{U_n\}$, and Lucas sequence $\{V_n(p,q)\}$, or briefly $\{V_n\}$, are defined by for n > 1

$$U_n = pU_{n-1} - qU_{n-2}$$
 and $V_n = pV_{n-1} - qV_{n-2}$,

where $U_0 = 0, U_1 = 1$ and $V_0 = 2, V_1 = p$, respectively.

When p = -q = 1, $U_n = F_n$ (*nth* Fibonacci number) and $V_n = L_n$ (*nth* Lucas number).

The Binet forms of $\{U_n\}$ and $\{V_n\}$ are

$$U_n = \frac{\alpha^n - \beta^n}{\alpha - \beta}$$
 and $V_n = \alpha^n + \beta^n$,

where α and β are the roots of $x^2 - px + q = 0$.

In [5], the solution of the following first order cubic recursion was asked

$$a_{n+1} = 5a_n^3 - 3a_n, \ a_0 = 1.$$
(1.1)

Then the solution was given as $a_n = F_{3^n}$ in [7]. After this, similarly the solution of recurrence

$$P_{n+1} = 25P_n^5 - 25P_n^3 + 5P_n, \ P_0 = 1 \tag{1.2}$$

was also asked. Then the solution was given as $P_n = F_{5^n}$.

²⁰⁰⁰ Mathematics Subject Classification. 11B37, 11B39.

 $Key\ words\ and\ phrases.$ Generalized Fibonacci and Lucas sequences, subsequences, recurrence relation.

As an addendum to the solution of the problem given in [7], Klamkin asked the solutions of recurrences:

$$A_{n+1} = A_n^2 - 2, \ A_1 = 3,$$

$$B_{n+1} = B_n^4 - 4B_n^2 + 2, \ B_1 = 7,$$

$$C_{n+1} = C_n^6 - 6C_n^4 + 9C_n^2 - 2, \ C_1 = 18$$

Then the solutions of them were given as $A_n = L_{2^n}$, $B_n = L_{4^n}$ and $C_n = L_{6^n}$.

In [1], the author give a recurrence relation for the Fibonacci subsequence $\{F_{k^n}\}$ for positive odd k, which generalize (1.1) and (1.2). In [2], some generalizations of the results of [1] were obtained for the sequences $\{U_n(p, -1)\}$ and $\{V_n(p, -1)\}$.

Meanwhile Prodinger [3] proved a general expansion formula for a sum of powers of Fibonacci numbers, as considered by Melham, as well as some extensions.

In this paper, we find first-order nonlinear recurrence relation for the subsequence $\{U_{k^n}\}$ of generalized Fibonacci sequence $\{U_n\}$ for odd k, and first-order nonlinear recurrence relation for the subsequence $\{V_{k^n}\}$ of generalized Lucas sequence $\{V_n\}$ for both odd and even k. We also give a polynomial representation for the generalized Lucas number V_{k^n} in terms of generalized Fibonacci numbers U_{k^n} of degree k for even k.

2. Recurrence Relations

We find first-order nonlinear recursions for the sequences $\{U_{k^n}\}$ and $\{V_{k^n}\}$ for certain k's. We need the following result for further use.

Lemma 1. For $n, t \geq 0$,

$$i) \ U_{(2t+1)n} = U_n \sum_{k=0}^{t} \frac{2t+1}{t+k+1} \binom{t+k+1}{2k+1} \Delta^k q^{n(t-k)} U_n^{2k},$$

$$ii) \ V_{2tn} = \sum_{k=0}^{t} \frac{2t}{t+k} \binom{t+k}{2k} \Delta^k q^{n(t-k)} U_n^{2k},$$

$$iii) \ V_{(2t+1)n} = V_n \sum_{k=0}^{t} (-1)^{t+k} \frac{2t+1}{t+k+1} \binom{t+k+1}{2k+1} q^{n(t-k)} V_n^{2k},$$

$$iv) \ V_{2tn} = \sum_{i=0}^{t} (-1)^{t-i} \frac{2t}{t+i} \binom{t+i}{2i} q^{(t-i)n} V_n^{2i}.$$

 $\mathbf{2}$

Proof. In order to prove the claimed identities, it is sufficient to use the following well-known formulas (for more details, see [6]):

$$X^{m} + Y^{m} = \sum_{k=0}^{\lfloor m/2 \rfloor} (-1)^{k} \frac{m}{m-k} {m-k \choose k} (XY)^{k} (X+Y)^{m-2k}, \ m \ge 1,$$
(2.1)

and

$$\frac{X^m - Y^m}{X - Y} = \sum_{k=0}^{\lfloor (m-1)/2 \rfloor} (-1)^k \binom{m-k-1}{k} (XY)^k (X+Y)^{m-2k-1}, \ m \ge 1.$$

For example, the claim (iii) follows from by taking $X = \alpha^n$, $Y = \beta^n$ and m = 2t in (2.1). The other claims are similarly obtained.

For odd k, we give a first-order nonlinear recurrence relation for the sequence $\{U_{k^n}\}$:

Theorem 1. For odd k > 0 and $n \ge 0$,

$$U_{k^{n+1}} = \Delta^{\frac{k-1}{2}} U_{k^n}^k + \sum_{i=0}^{(k-3)/2} \frac{2k}{k+2i+1} \binom{(k+1)/2+i}{2i+1} \Delta^i q^{k^n \left(\frac{k-1}{2}-i\right)} U_{k^n}^{2i+1}.$$

Proof. From the Binet formula of $\{U_n\}$ and by the binomial theorem, we obtain

$$U_{k^{n}}^{k} = \left(\frac{\alpha^{k^{n}} - \beta^{k^{n}}}{\alpha - \beta}\right)^{k} = \frac{1}{\Delta^{k/2}} \sum_{j=0}^{k} {\binom{k}{j}} (-1)^{j} \beta^{jk^{n}} \alpha^{(k-j)k^{n}} \qquad (2.2)$$
$$= \frac{1}{\Delta^{(k-1)/2}} \left(U_{k^{n+1}} + \sum_{j=1}^{(k-1)/2} {\binom{k}{j}} \left(-q^{k^{n}}\right)^{j} U_{(k-2j)k^{n}}\right),$$

where Δ is defined as before. By (2.2), we obtain for odd k,

$$U_{k^{n+1}} = \Delta^{(k-1)/2} U_{k^n}^k - \sum_{j=1}^{(k-1)/2} {k \choose j} q^{k^n j} (-1)^j U_{(k-2j)k^n}.$$
(2.3)

By (i) in Lemma 1 and (2.3), we conclude

$$U_{k^{n+1}} = \Delta^{(k-1)/2} U_{k^{n}}^{k} \\ - \sum_{j=1}^{\frac{k-1}{2}} \sum_{i=0}^{\frac{k-1}{2}-j} (-1)^{j} {k \choose j} {(k+1)/2+i-j \choose 2i+1} \frac{k-2j}{\frac{k+1}{2}+i-j} \Delta^{i} q^{k^{n} \left(\frac{k-1}{2}-i\right)} U_{k^{n}}^{2i+1}$$

which, after reversing the summation order, can be rewritten as

$$U_{k^{n+1}} = \triangle^{(k-1)/2} U_{k^n}^k - \sum_{i=0}^{(k-1)/2} \triangle^i q^{k^n \left(\frac{k-1}{2}-i\right)} A_{i,k} U_{k^n}^{2i+1}, \qquad (2.4)$$

where

$$A_{i,k} = \sum_{j=1}^{(k-1)/2-i} (-1)^j {k \choose j} {\binom{(k+1)/2+i-j}{2i+1}} \frac{k-2j}{(k+1)/2+i-j}$$

Since $A_{(k-1)/2,k} = 0$, the equality (2.4) becomes

$$U_{k^{n+1}} = \triangle^{(k-1)/2} U_{k^n}^k - \sum_{i=0}^{(k-3)/2} \triangle^i A_{i,k} q^{k^n \left(\frac{k-1}{2} - i\right)} U_{k^n}^{2i+1}$$

From (pp. 58, [4]), it is known that for $1 \le m \le (k-3)/2$

$$\sum_{j=1}^{m} (-1)^{j} \frac{k-2j}{k-m-j} {k \choose j} {k-m-j \choose m-j} = -\frac{k}{k-m} {k-m \choose m}.$$
 (2.5)

In order to obtain $A_{i,k}$ as $\frac{2k}{k+2i+1} \binom{(k+1)/2+i}{2i+1}$, it is sufficient to replace m by (k-1)/2 - i in (2.5). Thus we obtain the claimed result. \Box

For example, when k = 7, we have that

$$U_{7^{n+1}} = \Delta^3 U_{7^n}^7 + 7\Delta^2 q^{7^n} U_{7^n}^5 + 14\Delta q^{7^n 2} U_{7^n}^3 + 7q^{7^n 3} U_{7^n}.$$

We now give a nonlinear first order recurrence relation for the sequence $\{V_{k^n}\}$ for odd k.

Theorem 2. For n > 0 and odd k > 1,

$$V_{k^{n+1}} = V_{k^n}^k - \sum_{i=0}^{\frac{k-2}{2}} \binom{(k-1)/2 + i}{2i+1} \frac{2k}{2i-k+1} \left(-1\right)^{i+\frac{k-1}{2}} q^{k^n \left(\frac{k-1}{2}-i\right)} V_{k^n}^{2i+1}.$$

Proof. It is easy to see that

$$V_{k^n}^k = \sum_{j=0}^k {k \choose j} \beta^{jk^n} \alpha^{(k-j)k^n} = V_{k^{n+1}} + \sum_{j=1}^{(k-1)/2} {k \choose j} q^{jk^n} V_{(k-2j)k^n}.$$

By (iii) in Lemma 1, we write

$$V_{k^{n+1}} = V_{k^{n}}^{k} - \sum_{j=1}^{\frac{k-1}{2}} \sum_{i=0}^{\frac{k-1}{2}-j} {k \choose j} {\binom{(k+1)/2+i-j}{2i+1}} (-1)^{\frac{k-1}{2}-j+i} \\ \times q^{k^{n} {\binom{k-1}{2}-i}} \frac{k-2j}{(k+1)/2+i-j} V_{k^{n}}^{2i+1}$$

which, by reversing the summation order, becomes

$$= V_{k^n}^k - \sum_{i=0}^{\frac{k-3}{2}} \sum_{j=1}^{\frac{k-2}{2}-i} {k \choose j} {(k+1)/2+i-j \choose 2i+1} \frac{k-2j}{(k+1)/2+i-j} \left(-1\right)^{\frac{k-1}{2}+i-j} \times q^{k^n \left(\frac{k-1}{2}-i\right)} V_{k^n}^{2i+1}.$$

For the sum

$$\sum_{j=1}^{\frac{k-1}{2}-i} (-1)^j {k \choose j} {\binom{(k+1)/2+i-j}{2i+1}} \frac{k-2j}{(k+1)/2+i-j},$$

if we take m = (k-1)/2 - i in (2.5), we obtain the claimed result. \Box

We now give a nonlinear first order recurrence relation for the sequence $\{V_{k^n}\}$ for even k.

Theorem 3. For n > 0 and even k > 1,

$$V_{k^{n+1}} = V_{k^{n+1}} = V_{k^n}^k - \sum_{i=0}^{k/2-1} (-1)^{i+\frac{k}{2}} \binom{i+k/2-1}{2i} \frac{2k}{2i-k} q^{\left(\frac{k}{2}-i\right)k^n} V_{k^n}^{2i}.$$

Proof. By the binomial theorem, we have that for even k,

$$V_{k^{n+1}} = V_{k^n}^k + {\binom{k}{k/2}} q^{\frac{k^{n+1}}{2}} - \sum_{j=1}^{\frac{\kappa}{2}} {\binom{k}{j}} q^{k^n j} V_{(k-2j)k^n}.$$

From (iv) in Lemma 1, we write

$$V_{k^{n+1}} = V_{k^n}^k - \sum_{i=0}^{\frac{k}{2}} \sum_{j=1}^{\frac{k}{2}+1-i} {\binom{k}{j}} \frac{(k-2j)}{\frac{k}{2}-j+i} {\binom{k}{2}-j+i} (-1)^{\frac{k}{2}-j-i} \times q^{\left(\frac{k}{2}-i\right)k^n} V_{k^n}^{2i}.$$

After reversing the summation order and by using (2.5), we get

$$V_{k^{n+1}} = V_{k^n}^k - \sum_{i=0}^{\frac{k}{2}-1} (-1)^{i+\frac{k}{2}} \binom{i+\frac{k}{2}-1}{2i} \frac{2k}{2i-k} q^{\left(\frac{k}{2}-i\right)k^n} V_{k^n}^{2i},$$

as claimed.

For example, when k = 6, we have that

$$V_{6^{n+1}} = V_{6^n}^6 - 6q^{6^n}V_{6^n}^4 + 9q^{6^n 2}V_{6^n}^2 - 2q^{6^n 3}.$$
 (2.6)

3. A POLYNOMIAL REPRESENTATION

We give a polynomial representation for the Lucas number V_{k^n} in terms of the generalized Fibonacci numbers U_{k^n} for even k.

Theorem 4. For even k > 0, $n \ge 0$ and

$$V_{k^{n+1}} = \sum_{i=0}^{k/2} \frac{2k}{k+2i} \binom{i+k/2}{2i} \triangle^{i} U_{k^{n}}^{2i} q^{k^{n}(k/2-i)}.$$

Proof. Consider

$$U_{k^{n}}^{k} = \frac{1}{\Delta^{k/2}} \sum_{j=0}^{k} {k \choose j} (-1)^{j} \beta^{jk^{n}} \alpha^{(k-j)k^{n}} \\ = \frac{1}{\Delta^{k/2}} \left(V_{k^{n+1}} - (-1)^{\frac{k}{2}} q^{\frac{k^{n+1}}{2}} {k \choose k/2} + \sum_{j=1}^{k/2} (-1)^{j} {k \choose j} V_{(k-2j)k^{n}} q^{jk^{n}} \right).$$

5

By (ii) in Lemma 1 and reversing the summation order of the equation above, we write

$$U_{k^n}^k = \frac{1}{\triangle^{k/2}} (V_{k^{n+1}} + (-1)^{\frac{k}{2}} q^{k^{n+1}/2} {k \choose k/2} + \sum_{j=1}^{\frac{k-2}{2}} \sum_{i=0}^{\frac{k}{2}-j} {k \choose j} \times (-1)^j \frac{k-2j}{k/2-j+i} {k/2-j+i \choose 2i} \triangle^i q^{k^n(k/2-i)} U_{k^n}^{2i}),$$

which becomes,

$$=\frac{1}{\triangle^{k/2}}\left(V_{k^{n+1}}+\sum_{i=0}^{\frac{k-2}{2}}\sum_{j=1}^{\frac{k}{2}-i}(-1)^{j}\frac{k-2j}{k/2-j+i}\binom{k}{j}\binom{k/2-j+i}{2i}q^{k^{n}(k/2-i)}\triangle^{i}U_{k^{n}}^{2i}\right).$$

If we take $m = \frac{k}{2} - i$ in (2.5) for $1 \le m \le k/2$, the last equation takes the form:

$$U_{k^n}^k = \frac{1}{\triangle^{k/2}} \left(V_{k^{n+1}} - \sum_{i=0}^{\frac{k-2}{2}} \frac{2k}{k+2i} \binom{i+k/2}{2i} \triangle^i U_{k^n}^{2i} q^{k^n(k/2-i)} \right),$$

as claimed.

When k = 6, we get

$$V_{6^{n+1}} = \triangle^3 U_{6^n}^6 + 6\triangle^2 U_{6^n}^4 q^{6^n} + 9\triangle U_{6^n}^2 q^{6^n 2} + 2q^{6^n 3}.$$
 (3.1)

Notice that even the coefficients of the formula in (3.1) and (2.6) appears to be the terms of the sequence A034807 in the OEIS.

Conclusions

Throughout the paper, we obtain recurrence relations for the sequences $\{U_{k^n}\}$ and $\{V_{k^n}\}$ for certain k's (not all k's) and obtain a polynomial representation for the generalized Lucas number V_{k^n} in terms of generalized Fibonacci numbers U_{k^n} of degree k for even k. In order to clear how the remaining cases could not be obtained, we note some facts here. Since we never reach at the statement $U_{k^{n+1}}$ when we expand the k^{th} powers of the statements U_{k^n} and V_{k^n} by the binomial theorem for even integer k, we can't give a recurrence relation for $U_{k^{n+1}}$ for even k. As a second remaining case, is there a polynomial representation of $U_{k^{n+1}}$ in terms of V_{k^n} for odd k? Related with this question, we note that while doing required operations, there is a problem (in reversing the summation order) so that we couldn't find a representation for the term $U_{k^{n+1}}$ in terms of V_{k^n} .

Acknowledgement

The author would thank to the anonymous referee for his/her valuable suggestions.

References

- P. Filipponi, On the Fibonacci numbers whose subscript is a power, The Fibonacci Quart. 34(3) (1996), 271–276.
- [2] E. Kılıç, Second order linear recursions whose subscripts are a power, Miskolc Math. Notes, 11(2) (2010), 151–161.
- [3] H. Prodinger, On a sum of Melham and its variants, The Fibonacci Quart. 46/47 (2008/2009), 207-215.
- [4] J. Riordan, Combinatorial identities. Wiley, New York, 1979.
- [5] A. Stinchcomb, Problem B-769: First order cubic recurrence relation, The Fibonacci Quart. 32(4) (1994) 373.
- [6] M. N. S. Swamy, On certain identities involving Fibonacci and Lucas numbers. The Fibonacci Quart. 35(3) (1997) 230–232.
- [7] D. C. Terr, Solution B-769: The recurrence of F_{3^n} , The Fibonacci Quart. 33(5) (1995) 468.

TOBB Economics and Technology University Mathematics Department 06560 Ankara Turkey

 $E\text{-}mail \ address: \texttt{ekilic@etu.edu.tr}$