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Abstract. We derive �rst-order nonlinear homogeneous recurrence
relations for certain subsequences of generalized Fibonacci and Lucas
sequences. We also present a polynomial representation for the terms
of Lucas subsequence.

1. INTRODUCTION

Let p and q be nonzero integers such that � = p2 � 4q 6= 0: The gener-
alized Fibonacci sequence fUn (p; q)g ; or brie�y fUng ; and Lucas sequence
fVn (p; q)g ; or brie�y fVng ; are de�ned by for n > 1

Un = pUn�1 � qUn�2 and Vn = pVn�1 � qVn�2;

where U0 = 0; U1 = 1 and V0 = 2; V1 = p; respectively.
When p = �q = 1; Un = Fn (nth Fibonacci number) and Vn = Ln (nth

Lucas number).
The Binet forms of fUng and fVng are

Un =
�n � �n

�� � and Vn = �n + �
n;

where � and � are the roots of x2 � px+ q = 0.
In [5], the solution of the following �rst order cubic recursion was asked

an+1 = 5a
3
n � 3an; a0 = 1: (1.1)

Then the solution was given as an = F3n in [7]. After this, similarly the
solution of recurrence

Pn+1 = 25P
5
n � 25P 3n + 5Pn; P0 = 1 (1.2)

was also asked. Then the solution was given as Pn = F5n :
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As an addendum to the solution of the problem given in [7], Klamkin
asked the solutions of recurrences:

An+1 = A2n � 2; A1 = 3;
Bn+1 = B4n � 4B2n + 2; B1 = 7;
Cn+1 = C6n � 6C4n + 9C2n � 2; C1 = 18:

Then the solutions of them were given as An = L2n ; Bn = L4n and Cn =
L6n :
In [1], the author give a recurrence relation for the Fibonacci subse-

quence fFkng for positive odd k; which generalize (1.1) and (1.2). In [2],
some generalizations of the results of [1] were obtained for the sequences
fUn (p;�1)g and fVn (p;�1)g.
Meanwhile Prodinger [3] proved a general expansion formula for a sum

of powers of Fibonacci numbers, as considered by Melham, as well as some
extensions.
In this paper, we �nd �rst-order nonlinear recurrence relation for the

subsequence fUkng of generalized Fibonacci sequence fUng for odd k; and
�rst-order nonlinear recurrence relation for the subsequence fVkng of gen-
eralized Lucas sequence fVng for both odd and even k: We also give a
polynomial representation for the generalized Lucas number Vkn in terms
of generalized Fibonacci numbers Ukn of degree k for even k:

2. Recurrence Relations

We �nd �rst-order nonlinear recursions for the sequences fUkng and
fVkng for certain k0s. We need the following result for further use.

Lemma 1. For n; t � 0;

i) U(2t+1)n = Un
tX

k=0

2t+ 1

t+ k + 1

�
t+ k + 1

2k + 1

�
�kqn(t�k)U2kn ;

ii) V2tn =
tX

k=0

2t

t+ k

�
t+ k

2k

�
�kqn(t�k)U2kn ;

iii) V(2t+1)n = Vn
tX

k=0

(�1)t+k 2t+ 1

t+ k + 1

�
t+ k + 1

2k + 1

�
qn(t�k)V 2kn

iv) V2tn =
tX
i=0

(�1)t�i 2t

t+ i

�
t+ i

2i

�
q(t�i)nV 2in :
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Proof. In order to prove the claimed identities, it is su¢ cient to use the
following well-known formulas (for more details, see [6]):

Xm + Y m =
bm=2cP
k=0

(�1)k m

m� k

�
m� k
k

�
(XY )

k
(X + Y )

m�2k
; m � 1;

(2.1)
and

Xm � Y m
X � Y =

b(m�1)=2cP
k=0

(�1)k
�
m� k � 1

k

�
(XY )

k
(X + Y )

m�2k�1
; m � 1:

For example, the claim (iii) follows from by taking X = �n, Y = �n and
m = 2t in (2.1). The other claims are similarly obtained. �

For odd k; we give a �rst-order nonlinear recurrence relation for the
sequence fUkng :

Theorem 1. For odd k > 0 and n � 0,

Ukn+1 = 4
k�1
2 Ukkn+

(k�3)=2P
i=0

2k

k + 2i+ 1

�
(k + 1) =2 + i

2i+ 1

�
4iqk

n( k�12 �i)U2i+1kn :

Proof. From the Binet formula of fUng and by the binomial theorem, we
obtain

Ukkn =

 
�k

n � �k
n

�� �

!k
=

1

4k=2

kP
j=0

�
k
j

�
(�1)j �jk

n

�(k�j)k
n

(2.2)

=
1

4(k�1)=2

 
Ukn+1 +

(k�1)=2P
j=1

�
k
j

� �
�qk

n
�j
U(k�2j)kn

!
;

where � is de�ned as before. By (2.2), we obtain for odd k;

Ukn+1 = 4(k�1)=2Ukkn �
(k�1)=2P
j=1

�
k
j

�
qk

nj (�1)j U(k�2j)kn : (2.3)

By (i) in Lemma 1 and (2.3), we conclude

Ukn+1 = 4(k�1)=2Ukkn

�
k�1
2P
j=1

k�1
2 �jP
i=0

(�1)j
�
k
j

��
(k+1)=2+i�j

2i+1

�
k�2j

k+1
2 +i�j4

iqk
n( k�12 �i)U2i+1kn

which, after reversing the summation order, can be rewritten as

Ukn+1 = 4(k�1)=2Ukkn �
(k�1)=2P
i=0

4iqk
n( k�12 �i)Ai;kU

2i+1
kn ; (2.4)

where

Ai;k =
(k�1)=2�iP

j=1

(�1)j
�
k
j

��
(k+1)=2+i�j

2i+1

�
k�2j

(k+1)=2+i�j :
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Since A(k�1)=2;k = 0, the equality (2.4) becomes

Ukn+1 = 4(k�1)=2Ukkn �
(k�3)=2P
i=0

4iAi;kq
kn( k�12 �i)U2i+1kn :

From (pp. 58, [4]), it is known that for 1 � m � (k � 3) =2
mP
j=1

(�1)j k�2j
k�m�j

�
k
j

��
k�m�j
m�j

�
= � k

k�m
�
k�m
m

�
. (2.5)

In order to obtain Ai;k as 2k
k+2i+1

�
(k+1)=2+i
2i+1

�
; it is su¢ cient to replace m by

(k � 1) =2� i in (2.5). Thus we obtain the claimed result. �

For example, when k = 7; we have that

U7n+1 = �
3U77n + 7�

2q7
n

U57n + 14�q
7n2U37n + 7q

7n3U7n :

We now give a nonlinear �rst order recurrence relation for the sequence
fVkng for odd k:

Theorem 2. For n > 0 and odd k > 1,

Vkn+1 = V
k
kn �

k�3
2P
i=0

�
(k � 1) =2 + i

2i+ 1

�
2k

2i� k + 1 (�1)
i+ k�1

2 qk
n( k�12 �i)V 2i+1kn :

Proof. It is easy to see that

V kkn =
kP
j=0

�
k
j

�
�jk

n

�(k�j)k
n

= Vkn+1 +
(k�1)=2P
j=1

�
k
j

�
qjk

n

V(k�2j)kn :

By (iii) in Lemma 1, we write

Vkn+1 = V kkn �
k�1
2P
j=1

k�1
2 �jP
i=0

�
k
j

��
(k+1)=2+i�j

2i+1

�
(�1)

k�1
2 �j+i

�qk
n( k�12 �i) k�2j

(k+1)=2+i�jV
2i+1
kn

which, by reversing the summation order, becomes

= V kkn �
k�3
2P
i=0

k�1
2 �iP
j=1

�
k
j

��
(k+1)=2+i�j

2i+1

�
k�2j

(k+1)=2+i�j (�1)
k�1
2 +i�j

�qk
n( k�12 �i)V 2i+1kn :

For the sum
k�1
2 �iP
j=1

(�1)j
�
k
j

��
(k+1)=2+i�j

2i+1

�
k�2j

(k+1)=2+i�j ;

if we take m = (k � 1) =2� i in (2.5), we obtain the claimed result. �

We now give a nonlinear �rst order recurrence relation for the sequence
fVkng for even k:
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Theorem 3. For n > 0 and even k > 1,

Vkn+1 = Vkn+1 = V
k
kn �

k=2�1X
i=0

(�1)i+
k
2

�
i+ k=2� 1

2i

�
2k

2i� k q
( k2�i)k

n

V 2ikn :

Proof. By the binomial theorem, we have that for even k;

Vkn+1 = V
k
kn +

�
k
k=2

�
q
kn+1

2 �
k
2X
j=1

�
k
j

�
qk

njV(k�2j)kn :

From (iv) in Lemma 1, we write

Vkn+1 = V kkn �
k
2X
i=0

k
2+1�iX
j=1

�
k
j

� (k � 2j)
k
2 � j + i

�k
2 � j + i
2i

�
(�1)

k
2�j�i

�q( k2�i)k
n

V 2ikn :

After reversing the summation order and by using (2.5), we get

Vkn+1 = V
k
kn �

k
2�1X
i=0

(�1)i+
k
2

�
i+ k

2 � 1
2i

�
2k

2i� k q
( k2�i)k

n

V 2ikn ;

as claimed. �

For example, when k = 6; we have that

V6n+1 = V
6
6n � 6q6

n

V 46n + 9q
6n2V 26n � 2q6

n3: (2.6)

3. A Polynomial Representation

We give a polynomial representation for the Lucas number Vkn in terms
of the generalized Fibonacci numbers Ukn for even k:

Theorem 4. For even k > 0; n � 0 and

Vkn+1 =
k=2P
i=0

2k

k + 2i

�
i+ k=2

2i

�
4iU2iknq

kn(k=2�i):

Proof. Consider

Ukkn

=
1

4k=2

kP
j=0

�
k
j

�
(�1)j �jk

n

�(k�j)k
n

=
1

4k=2

 
Vkn+1 � (�1)

k
2 q

kn+1

2

�
k
k=2

�
+

k=2P
j=1

(�1)j
�
k
j

�
V(k�2j)knq

jkn

!
:
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By (ii) in Lemma 1 and reversing the summation order of the equation
above, we write

Ukkn =
1

4k=2
(Vkn+1 + (�1)

k
2 qk

n+1=2
�
k
k=2

�
+

k�2
2P
j=1

k
2�jP
i=0

�
k
j

�
� (�1)j k�2j

k=2�j+i
�
k=2�j+i

2i

�
4iqk

n(k=2�i)U2ikn
�
;

which becomes,

=
1

4k=2

 
Vkn+1 +

k�2
2P
i=0

k
2�iP
j=1

(�1)j k�2j
k=2�j+i

�
k
j

��
k=2�j+i

2i

�
qk

n(k=2�i)4iU2ikn

!
:

If we take m = k
2 � i in (2.5) for 1 � m � k=2, the last equation takes the

form:

Ukkn =
1

4k=2

 
Vkn+1 �

k�2
2P
i=0

2k

k + 2i

�
i+ k=2

2i

�
4iU2iknq

kn(k=2�i)

!
;

as claimed. �

When k = 6; we get

V6n+1 = 43U66n + 642U46nq
6n + 94U26nq6

n2 + 2q6
n3: (3.1)

Notice that even the coe¢ cients of the formula in (3.1) and (2.6) appears
to be the terms of the sequence A034807 in the OEIS.

Conclusions

Throughout the paper, we obtain recurrence relations for the sequences
fUkng and fVkng for certain k�s (not all k�s) and obtain a polynomial rep-
resentation for the generalized Lucas number Vkn in terms of generalized
Fibonacci numbers Ukn of degree k for even k. In order to clear how the
remaining cases could not be obtained, we note some facts here. Since we
never reach at the statement Ukn+1 when we expand the kth powers of the
statements Ukn and Vkn by the binomial theorem for even integer k; we
can�t give a recurrence relation for Ukn+1 for even k: As a second remaining
case, is there a polynomial representation of Ukn+1 in terms of Vkn for odd k
? Related with this question, we note that while doing required operations,
there is a problem (in reversing the summation order) so that we couldn�t
�nd a representation for the term Ukn+1 in terms of Vkn :
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