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ABSTRACT. In this work we explore the p-adic valuation of Eulerian numbers.
We construct a tree whose nodes contain information about the p-adic valua-
tion of these numbers. Using this tree, and some classical results for Bernoulli
numbers, we compute the exact p divisibility for the Eulerian numbers when
the first variable lies in a congruence class and p satisfies some regularity prop-
erties.

1. INTRODUCTION

Integer sequences arise in many contexts of combinatorics and number theory.
Many of these sequences are very old and very well-known, for instance, the classical
sequence of the Fibonacci numbers and the Binomial coefficients. However, as it is
expected, new integer sequences continue to arise in the literature. Today, there is
a big catalog of these sequences and many of them can be found in The On-Line
Encyclopedia of Integer Sequences (OEIS) [12].

A natural question, and an active area of research, is to study divisibility prop-
erties of this type of sequences. For example, in [9, 13], the p-divisibility of the
Fibonacci numbers is considered. In [2], a study of the p-divisibility of k-central
binomial coefficients is presented. Finally, in [1, 14], the 2-divisibility of the Stirling
numbers of the second kind is considered.

Nowadays, divisibility properties are discussed within the framework of p-adic
valuations. Let p be a prime and n a non-zero integer. The p-adic valuation of n,
denoted by v,(n), is defined by

(1.1) n=p»Ma,

where ¢ € Z and p does not divide a. In other words, v,(n) is the exponent of
the highest power of p that divides n. The value 1v,(0) is defined (naturally) to be
oo. In this article, we study the p-adic valuation of the combinatorial sequence of
Eulerian numbers.

The Eulerian number A(n, k) is the number of permutations of the numbers 1 to
n in which exactly k elements are greater than the previous element. The literature
about these numbers is very rich and one can find many properties about them.
For instance, they satisfy the recurrence

(1.2) An,k)=(n—k)An—1,k—1)+ (k+1)A(n —1,k)
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with A(n,0) = 1, their exponential generating function is given by

ke (z—1)e”
(13) ZZA n k 7‘]{;7 72:6&: 761‘77

k=0n=0
they are explicitly defined by

(1.4) A(n, k) z: <n+ 1)(k — i+ 1m

and are related to the Bernoulli numbers B,, via the identities

n

m _ on+liont+l B7l+1
(1.5) m:O(—l) A(n,m) = 2" 2"+ 1)n+ 1
and
(1.6) 3 (~1)™A(n, m) (Z) = (n+1)B,.
m=0

The Bernoulli numbers B,, are used throughout this article. They are defined
via the generating function

t N
(17) et — 1 :TnZ::OBm%
The first few Bernoulli numbers are given by
11 1 1 1 5 691
1.8 1, —=,-,0,—=—=,0,—,0, —=—,0, —=,0, ==, - -
(18) 276777 300742777 300776677 27307

It is not hard to show that B,, = 0 for m an odd number bigger than or equal to 3.
The literature of Bernoulli numbers includes plenty of number-theoretical results.
Many of these results are motivated by the relation between Bernoulli numbers and
Fermat’s last theorem. See [8] and [11] for details. Some of these results will be
presented in this article as soon as they are needed.

As mentioned before, the main focus of this article is the p-adic valuation of
the Eulerian numbers. To be more specific, we study v,(A(n, k)) when k is a fixed
natural number and n varies among all integers greater than k. For example, when
k = 3 we have the integer sequence

(1.9) 1,26, 302, 2416, 15619, 88234, 455192, 2203488, 10187685, 45533450, - - -
This is entry A000498 in OEIS. In Figures 1 and 2 you can see a graphical repre-

sentation of the 2-adic and 3-adic valuations of this sequence.
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FIGURE 1. 2-adic valuation of A(n,3) for 4 <n < 104.



THE p-ADIC VALUATION OF EULERIAN NUMBERS 3

I

3r h N ﬂ

0 .

( “ ﬂ Il “
i “‘\ \h\\

n A
iR

\ —
[
| |
I
AT IR AT

(N
I |
M\\ \‘H
|
20 40 60 80 100

FIGURE 2. 3-adic valuation of A(n,3) for 4 <n < 104.

The problem is to describe patterns (if any) inside this type of graphs. In the
next section, we use trees to describe the p-adic valuation of the Eulerian numbers.
In sections 3 and 4, we observe some patterns in these trees. Moreover, we show
that these patterns are connected to some classical number-theoretical results about
Bernoulli numbers. This connection allows us to calculate the exact p-divisibility
of the Eulerian numbers when the index n lies in a particular modular class.

2. THE p-ADIC TREES

One approach to study the p-divisibility of an integer sequence is to construct
a tree (as it was done in [1, 3]) whose nodes give certain information about the
p-adic valuation of the sequence. In this section, we present a construction that is
completely analogous to the one presented in [1] and [3] for the p-adic valuation
of the Stirling numbers of the second kind. Our construction uses the fact that
Eulerian numbers are periodic modulo p™ for p prime and m a natural number.
More precisely, the sequence A(n,k) mod p™, for k fixed, is periodic with period
Lon(p, k) = (p — 1)ptos(WI+™  This is a result of Carlitz and Riordan [4].

We present the construction of the tree for k = 3 and p = 2 instead of the general
case. This was done in order to facilitate the reading of the manuscript and the
understanding of the general construction. Since k¥ = 3 and p = 2, then we are
interested in the sequence {v2(A(n,3))}n>3. To start the construction, consider a
root vertex that represents all natural numbers greater than k, i.e. greater than 3.
The next step is to verify if the 2-adic valuation of A(n, 3) is the same constant for
every n in this vertex. If it is constant, then we stop the construction, since this
implies that we know the 2-adic valuation of the sequence. As expected, the valu-
ation is not the same constant for all n in this vertex. In fact, a simple calculation
tells us that the sequence of 2-adic valutions in this vertex is given by

0,1,1,4,0,1,3,5,0,1,1,- - .

Since the 2-adic valuation of A(n,3) is not constant for n in this vertex, then we
split the vertex. It is here where we use the fact that the sequence {A(n,3)}n>3
is periodic mod 2™ with period L,,(2,3) = 2™, Split this vertex (the natural
numbers bigger than 3) into equivalence classes modulo L;(2,3) = 4. We call this
set of classes the first level (or level one) of the tree. The reason for choosing to split
modulo L1(2,3) = 4 comes from the fact that n; = ny mod 4 implies A(nq,3) =
A(ng,3) mod 2. In other words, the sequence {A(n,3) mod 2} is constant on each
of these vertices.

In Figure 3 you can see the graphical representation of the tree up to level one.
In the picture, the node on the left represents the class of 0 mod 4. Similarly,



4 FRANCIS N. CASTRO, OSCAR E. GONZALEZ, AND LUIS A. MEDINA

the second to the left represents the class of 1, the third the class of 2, and the
fourth the class of 3. We use the notation vg,1,v1,1,v2,1, and vz ; to represent these
vertices.

FIGURE 3. The first level for p = 2 and k = 3.

Definition 2.1. Given any vertex v in the tree, we say that the 2-adic valuation
is constant at v if v5(A(n, 3)) is the same constant for every n € v.

To continue with the construction, we verify if the 2-adic valuation is constant at
each of the vertices in level one. If the valuation is constant at v; 1, say the constant
is ¢, then we stop at v; 1 (since this implies that we know the valuation for this
particular class) and label the edge that connects v; 1 with the previous level with
the constant c. However, if the valuation is not constant at the vertex v; i, then
we split v; 1 into the corresponding classes modulo L2(2,3) = 8 and label these
new vertices by v; 2 and v;44,2. The set of all the classes coming from the splitting
vertices in level one is called the second level. In Figure 4 you can find a graphical
representation of the tree up to level 2. The left node at level 2 corresponds to v 2,

e

F1GURE 4. The second level for p =2 and k = 3.

the second node to vs 2, the third to vz 2, and the fourth to v7 .

Continue in this manner to construct the third level, the fourth level, and so on.
In Figure 5 you can find the tree up to level 8.

The construction of the tree for any k£ and p is analogous. If the root vertex does
not have constant p-adic valuation, then we split it into the classes modulo L;(p, k)
and call them the first level. Then we verify if the p-adic valuation is constant at
each of these vertices. If the answer is yes at the vertex v; 1, then we stop at it and
mark the corresponging edge with the constant valuation. On the other hand, if the
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FI1GURE 5. The eight level for p =2 and k = 3.

valuation at the vertex v; 1 is not constant, then we split it into the corresponding
classes modulo Ls(p, k) and continue.

In the next two sections we present a study of these trees. We decipher a pat-
tern inside them when £ = —1 mod p. This, along with some classical number-
theoretical results about Bernoulli numbers, allows us to calculate the exact p-
divisibility for A(n, k) when n lies in a particular modular class.

Remark 2.2. The picture in Figure 5 is a guess of the actual tree. The same holds

for the picture of every tree on this article. They were generated on Mathematica

and you can find the implementation here:
http://emmy.uprrp.edu/lmedina/software/

Nevertheless, even though these trees are a guess, the information they provide is

used to find and prove concrete results.

3. A PATTERN IN THE TREES AND EXPLICIT p-ADIC VALUATIONS

In this section we study the trees constructed in the previous section. It turns
out that there is a pattern when £ = —1 mod p.
To start the study, consider the trees in Figures 5, 6 and 7. Observe the right-

FIGURE 6. p-adic tree when k =2 and p = 3.

most branch in all three cases. Note that after the second level, these branches split
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FIGURE 7. p-adic tree when k =4 and p = 5.

in the same manner as the p-adic valuation of the positive integers, i.e. the right
sibling continues branching while the other ones die. This pattern in the rightmost
branch seems to hold when £k = —1 mod p. In other words, computer experiments
suggest the following observation:

Observation: The p-adic valuation of the sequence A((p — 1)p**tm — 1,k) for
k= -1 mod p, a > [log,(k +1)|, and m any positive integer is given by

B A= D m—1b) = {EZ; D et poa

We partially prove the observation when p is not a Wolstenholme prime. Remark-
ably, our proof is elementary.

Definition 3.1. A prime p is a Wolstenholme prime if p divides the numerator of
the Bernoulli number B),_3.

Remark 3.2. The only known Wolstenholme primes are 16843 and 2124679. There
are no other Wolstenholme primes less than 10°, see [10].

Our proof depends on Lemma 3.4 (see below). However, the proof of this lemma
uses the following classical result.

Theorem 3.3 (von Staudt-Clausen). Let Ba, be the 2n-th Bernoulli number. Then

(3.2) Bont+ > lez

v-12n?
Here, p runs over all primes with the property (p — 1)|2n. In particular, the de-
nominator of Bay, is square-free and divisible by 6.

Lemma 3.4. Suppose that p is prime, r is an integer such that 0 < r < p, and m
and n are natural numbers with m > 2. Let

n—1

o n—pi—r)™
(3.3) H, ,(n,m) = ; i
Define
(3.4) C(n,m) := (m-— 1)n —1 —mn, and

’ 2 6

Dlnm) = (ml)(nl)n(?nl)'
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If p > 3, then we have

(35)  Hpp(nym) = (—1)™nr™" + (~1)"pnCln,m)™? mod o2

If p =3, then

(3.6) Hs,(n,m) = (=1)"nr™ '+ (=1)"3nC(n,m)r™ >
+(=1)™9n%D(n, m)r™= mod 3v3(M+2,

In particular,

(3.7) vp(Hp,r(n,m)) = vp(n)
for all odd primes. Finally, if m is odd, then
(3.8) va(Hz,1(n,m)) = va(n).

Proof. The case when p = 2 and m is odd can be proved using induction. As a
result, we decided not to present the proof of this case.

Suppose that p is an odd prime. Suppose that n is a positive integer. Expand
(pn —pi —r)™ to get

(pn—pi—r
HP,T‘(n’m) = )
= pL+Tr
nl(pz—r (—pi—r)m1t
3.9 = + mpn mod p*»(M+2
(3:9) = pL+T b ; pL+T b
n—1 n—1
= (=)™ (pi+r)™ (=)™ mpn Y (pi )™ mod prMF
=0 =0
Consider the second sum in (3.9). Note that
n—1 n—1m-—2 m— 92
(" Y i)™ = ) Y S ()i
=0 i=0 j=0 \ J
(3.10) = (=)™ b mpnr™™? mod p*tvr™

Consider now the first sum in (3.9). Observe that

|
A
3
A
3
A

n

it = cm S (") piny

=0 i=0 j=0
m—1n—1 m—1
SELG D 9 DI (g
7=0 ¢=0 J
Suppose that 7 > 3. In this case, we have the sum
n—1 1
(3.11) Y (m]— )Tm_l_j(pin)j.
i=0

Apply the classical identity

+1) = B
3.12 o — B (@ m
(312) Z m+1 ’

+2
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where B, (z) represents the m-th Bernoulli polynomial and B,,, the m-th Bernoulli
number, to see that (3.11) equals

Jj+1
Now, the Bernoulli polynomial B;1(n) can be expressed as
j+1 .
+1
(314) Bj+1(n) = Z (j k )B]quknk.
k=0

By Theorem 3.3 we know that if p appears in the denominator of any of the
Bjii-y’s, for k = 0,1,---,j + 1, then it will have multiplicity one. This implies
that

B; — B;
(3.15) Vp Bim() = By vp(n) —vp(j+1) — 1.

J+1

Since j —vp(j + 1) — 1 > 2 for j > 3, then it follows that (3.13) is congruent to 0
modulo p?t¥»(™) Thus,

(3.16)
n—1 2 n—1
-nm Z(pz +r) = (—)™ Z Z ( ) m=1=J(pin)? mod p>tvr(™,
i=0 =0 i=
Congruences (3.9), (3.10), and (3. 6) yield the result. O

Our proof of the observation also uses the next result of Glaisher [5].

Theorem 3.5. If m is a positive integer and p a prime such that p > m + 3, then

-1y i TPBp—1-m mod p?, if m is even,
(3.17) Z =
J=1 m((;n:;))ﬁBpfg,m mod p?, if m is odd
Lemma 3.4 may be used to prove the observation for general k with & = —1

mod p. However, we relax the hypothesis of the observation (we now require a >
2[log,(k +1)]) in order to provide a simpler elementary proof.

Theorem 3.6. Suppose that p is a prime that is not Wolstenholme. Suppose that
k is an integer such that k = —1 mod p. Let r = |log,(k +1)] and suppose that a
is an integer such that a > 2r. Then,

(318)  pp(Alp = 1p" i — 1,1)) = “Ziiﬁiiiih Lopes

Proof. We present the proof for p > 3. The proofs for p = 2 and p = 3 follow in a
similar manner. Suppose that kK = pb — 1 and let r = |logy(k + 1)|. Suppose that
a is an integer such that a > 2r. By (1.4), we have

k+1 a+1
Z(_l)j <(p - 1)]1) * m) (k+1-— )(P Dp®Ttm—1

A((p—1)p**ttm — 1,k)

=0

_ a lm at1
(3.19) = Z(_l)j ((p Ujp " )(pb_j)(p—l)p m—1

Jj=0
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The p-adic valuation of A((p — 1)p®tm — 1,k) is given by the p-adic valuation of
pb
) —1 a+1 w
(3.20) > (1 (“’ H m) (pb— )",
Jj=1,ptj J

This last sum can be written as

p—l b—1 a+1

r i((p—=1)p tim . C1)pt i

I T () [ B

r=1 1=0

Consider the sum

—, (- 1ptm ot
(3.22) Z(—1)1< it >(pb—pi _T)(p—l)p m—1
=0

Expand the binomials to obtain

a 1 a
(3.23) (p—1)p*ttm ( (p—1)p**ttm — l) (pb — 7)(P=Dp" 1 m=1
T

T

—

!

=1

(p—1)p*tm prol (p—Dp*ttm —1 at1

— l (pb—p — )PPt

p+ r =1
(b—1)b+r—1 1
i (p—=1)p*tim (p—1)p*tm—1 1)t
+ ey (b—1p+r 11 l (p =)o

P =1

Now, further expand this expression to to get
(3.24) (=1)" "' (p—1)p**'Hy, (b, (p — Dp**'m — 1) m+Ba(r)m*+Bs(r)m*+- - - .

Thus, the p-adic valuation of A((p—1)p*Ttm—1,k) is given by the p-adic valuation
of the sum

p—1 p—1
(325)  —(p—1p™ Y Hy, (b, (p— 1pm—1) m+ > Ba(r)ym? + -
r=1 r=1

We study each term of (3.25) individually.
We start with H,, , (b7 (p— Dp*tim — 1). Note that Lemma 3.4 implies that
this number is equivalent to

(3.26)  —br@ VP M2 phO(b, (p — 1)pim — 1)r@ VP

modulo p»(®)*2. Thus, the p-adic valuation of (3.26) is v,(b) = v, (k+1) — 1. This
implies that

(327) v ((p— Dp* " Hy, (b, (p — Dp*ttm — 1) m) = a+ vp(k + 1) + vp(m).

However, note that in (3.25) we have a sum involving the H, ,’s, thus we must con-
sider the contribution of the “free from p” part of them. To find such a contribution,
consider the following sum

a+1m73

p—1
(3.28) pP=DptHim=2,
1

r=



10 FRANCIS N. CASTRO, OSCAR E. GONZALEZ, AND LUIS A. MEDINA

Note that

(3.29) Zr(p D — Zr mod p?.

r=1

Remark 3.7. Observe that if p = 3, then this number is not divisible by 3. This
helps to explain why the formula (3.18) does not have the +1 when p = 3.

If p > 3, then Theorem 3.5 implies that

2
(3.30) ZT*Q = ngp,g mod p?.

Since p is not a Wolstenholme prime, then p divides (3.28), but p? does not divide
it. On the other hand, note that

p—1 p—1

(3.31) Zr(pfl)paﬂmfg = Zr*‘g mod p
r=1 r=1
p—1
= r® mod p
r=1
= 0 modp.

We conclude that

p—1

(3.32) Vp <—(p — 1)pa'~'1 Z H,, (b7 (p— 1)p“+1m — 1) m>
r=1

is given by

(3.33) vp(m) +vp(k+1)+a+ 1.

Consider now the other terms of (3.24), i.e. the terms By(r)m! for t > 2. Let us
start with By (r)m?2. Observe that the general term in (3.23) has the form

a pit+r—1 a
(3.34) (—1)iw ( 11 (p = p™+im — l) (pb — pi — )P~ DP*Hm—1

pi+r Pl l
where 0 < ¢ < b— 1. This implies that

p—1b— 1pz+r1 7122a+2

p—1
(335) Y Ba(r)=)_>_ Z Gt Y (ph— pi— )P ML
r=1

r=1i=0 I[=1

Our choice of a leads to
_ 1)p2a+2

(3.36) v, <(p (

W(pb *pZ — r)(pl)pa"'lml) Z 2a+2—r > a+Vp(k+].)+1

and thus,

(3.37) vo(Ba(r)) > a+vp(k+1)+ 1.
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This yields

p—1 p—1
(3.38) Vp <Z Bg(r)m2> = 1 (Z Bg(?")) + 2v,(m)

> 14+a+uv(k+1)+20,(m)

> 1+a+v(k+1)+vp(m),
which implies that the p-adic valuation of the second term in (3.24) is bigger than
the p-adic valuation of the first term. A similar argument shows that
(3.39) vp(Bym') > 1+ a+vp(k + 1) + v,(m),

for all ¢ > 2. The result now follows from the ultrametric property of the p-adic
valuation. This concludes the proof. O

We point out that the above proof can be carried over to the Wolstenholme
primes p = 16843 and p = 2124679. In both cases we have p|B,_3, but p* { B,_3.
In view of Theorem 3.5, we have,

(3.40) vp(A((p — Dp*m — 1,k)) = vp(m) +vp(k + 1) +a + 2,

for Kk = —1 mod p and a > 2[log,(k + 1)]. If there is any other Wolstenholme
prime p, then

(341)  up(A(p - D™ m— 1,8) > vy(m) + vk + 1)+ at 2,
for k= —1 mod p and a > 2[log,(k +1)].

4. OTHER PATTERNS WHEN k= —1 mod p AND A CONNECTION TO REGULAR
PRIMES

The pattern described in the previous section is not unique. In fact, it seems
that there are other patterns in these trees, even for k Z —1 mod p. However, we
continue with the case K = —1 mod p and present some patterns and some proofs.
Perhaps this study can be extended to the case when k % —1 mod p.

Let us consider the tree when k& = 2 and p = 3 and the tree when & = 4 and
p = 5. These are the trees in Figures 6 and 7. However, to facilitate the reading,
we include them in Figures 8 and 9.

FIGURE 8. p-adic tree when k =2 and p = 3.
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FIGURE 9. p-adic tree when k =4 and p = 5.

Observe first the tree for £ = 2 and p = 3. Note that the node that corresponds
to 2 mod 6 splits very similar to the node 5 mod 6. The node 5 mod 6 belongs
to the case considered in the previous section. Observe now the tree for £ = 4
and p = 5. In Figure 10 you can see the nodes 4 mod 20, 9 mod 20, and 14
mod 20. Note that these nodes split in a similar manner as the node 19 mod 20.
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\ \ \
\ RO X ] X
\ \ \ \ X
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\ \ \ \ \
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\ \ \ \ \
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\ \
7 7
/ 7 7 /
7 / 7
/A / /
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/ /
/
/ f
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The branch corresponding to ‘The branch corresponding to the The branch corresponding to
the node 4 mod 20 (after the node 9 mod 20 (after the second the node 14 mod 20 (after the
second level). ) second level).

FIGURE 10. The nodes 4 mod 20, 9 mod 20, and 14 mod 20

Again, the node 19 mod 20 was considered in the previous section. If we continue
analyzing these trees, then a pattern emerges. It appears that the p-adic valuation
of A((p —i)p***m — 1,k), for i = 2,--- ,p — 1, behaves in a manner that is very
similar to the p-adic valuation of A((p — 1)p**tim — 1,k).

Let us explore this problem. For simplicity, we assume that p > 3. If we follow
the proof of Theorem 3.6, then we see that if a is big enough, then the p-adic
valuation of A((p —i)p®*1m — 1,k) is given by the p-adic valuation of

p—1
(4.1) —(p =0T Hypr (b, (p— )p™'m — 1) m,
r=1
where k = pb — 1. By Lemma 3.4 we know that
N a o mli— it —
Hyp (b, (p—)p*t'm—1) = (—1)m0-DHpppmaptim=2 4
42 (— 1) DO, (p — D) o — 1)

modulo p*»(M+2. As before, since we are considering a sum involving the Hy,’s,
then we must account for the contribution of the “free from p” part of them. In
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other words, we must consider the contribution of the sums
p—1 p—1
(4.3) Zr(p_i)paﬂm_Q and Z p(P=Dp*Tim=3
r=1 r=1
Moreover, in some cases it may be necessary to consider the contribution of

p—1
(4.4) Dot
r=1

for [ > 3, but we do not consider these cases in this work.

4.1. A connection to regular primes. We now present a study for the case
when ¢ = 3. In other words, we consider the p-adic valuation of

(4.5) A((p—3)p*tm—1,k).

We start with the analysis of the contribution of the sums (4.3) when ¢ = 3. This
information is summarized in the next theorem.

Theorem 4.1. Let p > 3 be prime and suppose that a > 2. Suppose that m is
positive. Then

p—1
—3)p*tim—2 _

(4.6) Zr(p 3)p 2= PBp—3)petim—2 mod p?

r=1
and

p—1 3
a+1

(4.7) p(P=3)p"Tm=3 = —fp2B(p_3)pa,+1m_4 mod p°.

2

r=1

Proof. We present the proof for the first sum. Use the classical identity (3.12) to
obtain

-1
(4.8) Z)Zr(p73)p“'+lmf2 _ B(P—3)P"’+1m—1(p) - B(P—?’)P“'Hm—l
. r=1 (p - 3)pa+1m -1 '
After writing B(,_sype+1,,—1(p) in terms of the Bernoulli numbers, we see that
p—1
a+1
(4.9) ZT(”%)” me2 = PBp_3)patim—2 mod 2.
r=1

This is guaranteed because the coefficient of p? contains B(p—3)pa+t1m—3 and since
(p — 3)p®1m — 3 is odd, then this Bernoulli number is 0. On the other hand, the
coefficient of p? contains B(p—3ypat1m—4- However, if p appears in the denominator
of this Bernoulli number, then it will have multiplicity one, since the denominator
is square-free. Thus, the contribution of p? times its coefficient is divisible by p?
and the result holds. (]

Now that we have the contributions of these sums, we move on to the calculation
of the p-adic valuation of (4.5). First note that Theorem 4.1 implies that p always
divides the second sum in (4.3). Thus, we must analyze the contribution of the first
sum in (4.3).

Write m as

(4.10) m = (”21> 140,
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where 0 < b < (p—1)/2. Observe that

p—1 p—1
(4.11) pP=3)p*Ttm—2 _ Zr<p*3)p0+l((ljz;l)+b)*2
r=1 r=1
p—1
= ) 2 eq p?
r=1

= pB(pf?))pa-%—lbe modp2.

We explore the contribution of (4.11) for each of these residues. Suppose first that
b=(p—3)/2=-1 mod (p—1)/2. Then

(=1 (p—3)p*tb—2.

Theorem 3.3 implies that p appears in the denominator of B(,_3),e+1,_2, and so p
does not divide the sum in (4.11). Thus, the contribution of the first sum in (4.3)
when ¢ = 3 is zero for this case.
Suppose now that b Z —1 mod (p—1)/2. Use the p-adic continuity of Bernoulli
numbers [7, p. 44]
m—1 Bm — n—1 Bn b
(4.12) (A=p") = =1 -p"")- = modp,

which holds when b, m and n are positive integers such that m and n are not
divisible by p — 1 and m =n (mod p*~!(p — 1)), and the fact that

(4.13) (p—3)p*Tb—2=(p-3b—-2=p—20—3 modp— 1,
to obtain

2
(4.14) B(p73)p“+1b72 = me—%—s mod p.

Thus, if p t Bp—2p—3, then p divides (4.11), but p? does not. However, since b # —1
mod (p — 1)/2, then b takes on the values b = 0,1,2,---,(p — 5)/2. This implies
that we require that

(4.15) ptBp_s, when b = 0,
ptBp_s, when b =1,
p 1 Ba, when b= (p —5)/2.

These primes are special and have a name.

Definition 4.2. We say that an odd prime p is regular if p does not divide any
of the Bernoulli numbers B,, for n = 2,4,6,--- ,p — 3. An odd prime that is not
regular is called irregular. Regular primes were introduced by Kummer in his work
on Fermat’s Last Theorem.

Remark 4.3. The first few irregular primes are
37,59,67,101,103, 131, 149, 157, 233, 257, 263, 271, 283, 293, 307, - - -

This is sequence A000367 in OEIS. It is known that there is an infinite amount of
irregular primes (Jensen [6]).

The next theorem summarizes what we just found.
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Theorem 4.4. Suppose that p > 3 is a regular prime. Suppose thatk = —1 mod p
and that a > 2|log,(k +1)|. Define

)0, ifm=-1 mod (p—1)/2,
(4.16) om.p) = {1, ifm#% -1 mod (p—1)/2.
Then,
(4.17) vp(A(p — 3)p“Ttm — 1,k) = a + vp(m) + vp(k + 1) + 6(m, p).

Here is an example that shows why regularity of the prime is important.

Example 4.5. Counsider the prime p = 37 (the first irregular prime), k¥ = 36 and
a = 2. The first few values of the sequence v37(A(34 x 373m — 1, 36)) are given by:

(4.18) 5,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,3,4,5,4,
474743434747474343474747434a374767"’

while the first few values of 2 4 v37(m) + v37(37) + 6(m, 37) are:

(4.19) 4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,3,4,4,4,4,
4,4,4,4,4,4,4,4,4,4,4,4,4,4,3,4,5,--- .

Observe that they differ in the positions 1,19,37,---. Note that (p — 1)/2 = 18

and 1,19,37,--- are congruent to 1 mod 18. By previous discussion, when b = 1

mod (p — 1)/2, we require that p does not divide B,_5 for our formula to work.
However, B,_5 = B3y and p = 37 is an irregular prime precisely because 37 | Bss.

The same technique used in the proof of Theorem 4.4 may be applied to the case
when ¢ is odd (the case when ¢ is even is different, but it is not considered in this
work). For example, for i = 5 we have the following theorem.

Theorem 4.6. Suppose that p > 7 is prime, k = — mod p, and a > 2|log,,(k+1)].
If p=1 mod 4 and p does not divide any of the Bernoulli numbers

BQ, B67 e 7Bp—77 Bp—?n
then
(4.20) vp(A((p — 5)p*m — 1,k)) = 1+ a+vp(m) + vp(k +1).

On the other hand, if p =3 mod 4, define

0, ifm=22 mod (p—1)/2,
(4.21) v(m.p) = {1, ifm# %3‘ mod (p—1)/2.
If p is reqular, then
(4.22) vp(A((p — 5)p*'m — 1,k)) = a + vp(m) + vp(k + 1) + y(m, p).

However, since this does not bring any new techniques, then we decided not to
include the study for ¢ odd in general. Nevertheless, we present one last case that
is related to the Legendre symbol.
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4.2. Bernoulli, Euler and Legendre. We now present the last study of this
article. We consider the case ¢ = (p+ 1)/2 when p > 3. In other words, we are
interested in the p-adic valuation of

(4.23) A (<p21> p*ttm —1, k> .

It turns out that, as in the previous two cases, the divisibility of the Eulerian
numbers is related to the divisibility of the Bernoulli numbers.
We start with the following result.

Theorem 4.7. Let (%) denote the Legendre symbol. Suppose that m is a positive
integer and p a prime such that p(p —1)/2 > m + 3. If m is even, then

b1 (%) pB(prl)p_m mod p?, ifp=1 mod 4,
= mp2 B dp®, ifp=3 mod4
3P Blosiye oy mod ifp= mod 4.
Howewver, if m is odd, then

1 (z) —%sz(pT_l)pz_m_l mod p?, ifp=1 mod 4,

v) _

rm -
r=1 pB(p;l)p_m mod p?, if p=3 mod 4.

2

Proof. The proof of this theorem is very similar to the one of Theorem 4.1. We
present the idea of the proof when m is even. Suppose that p is a prime such that
p=1 mod 4. Note that

p—1 (ﬁ) p—1 ( 1)
4.24 L Bz )p—m d p?.
(42 2o mod»

Now use the identity (3.12) and proceed as in Theorem 4.1.
If p =3 mod 4, then use the fact that

p—1 (I) p—1 L
P— 2
(4.25) g AL NT ()P m od P>
rm
r=1 r=1

Apply (3.12) and proceed as before to obtain the result. O

Let us explore the problem of finding the p-adic valuation of

(4.26) A ((79;1> p*m -1, k> .

Note that if m is even, i.e. m = 2[, then the problem of computing the p-adic
valuation of (4.26) is reduced to the calculation of the p-adic valuation of

(4.27) A(lp—Dp*tH—1,k).
By Theorem 3.6 we know that if p is not a Wolstenholme prime, then

(4.28) v, (A ((p;l> Pl — 1, k)) vp(A ((p— Dp* 11— 1,K))

= a+1+4+v(k+1)+1,0)
= a+1+4+v(k+1)+vp(m).
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Thus, suppose that m is odd and consider the sums

p—1 p—1
(4.29) 3=/ =2 gy N7 oD/ s,
r=1 r=1

Write m = 2] + 1 with [ a non-negative integer. Note that

p—1 p—1
(4.30) ZT((P—l)/2)P"+1(2l+1)—2 = 276((19—1)/2)17““—2 mod p?
r=1 r=1
p—1 (ﬁ)
= Z % mod p?.
r
r=1
Similarly,
. ()
((p=1)/2)p* T (2+1)—2 — P’ 2
(4.31) er P P = Zl 3 mod p~.

Theorem 4.7 provides information about the divisibility of these two sums.

Theorem 4.8. Suppose that p > 13 and p = 1 mod 4. Suppose that p is not a
Wolstenholme prime and that

P )[ BLgE) .
Suppose that k = —1 mod p and a > 2[log,(k +1)]. Then,
(4.32) Vp (A <p;1> p*m —1, k) =vp(m)+vp(k+1)+a+1

In particular, the result holds for all regular primes bigger than or equal to 13 that
are congruent to 1 modulo 4.

Proof. Note that by the previous discussion, to prove this theorem, it is sufficient
to show that p divides

—
T3

p—1 ) p—1 (z)
P
(4.33) 3 and ; e

r=1

but p? does not divide the first sum. Theorems 3.3 and 4.7 imply that p divides the
second sum in (4.33), so it remains to show that p divides the first sum in (4.33),
but p? does not.

By Theorem 4.7 we know that

p—1 (I)
r;) _ 2
(4.34) Z . :])B(%)p_2 mod p~.
r=1
Observe that p does not divide this number if and only if p appears in the denom-
inator of B(p;l)pfz. By Theorem 3.3, this would be true if
2

(4.35) @1ﬂ<p21)p2

However, the only solution to (4.35) is p = 5 and we are assuming that p > 13,
thus we know that p divides (4.34).
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Now we show that p? does not divide (4.34). Note that this is equivalent to
showing that p does not divide B( P21y o Use Kummer’s congruence [7, p. 44]
2

Bty 1)1 B,

4.36 _ip=)+i == od p,

(430) p-n+i @

which holds for p odd and ¢ an even number such that (p — 1) { ¢, to obtain
4

(4.37) B(prl)p_2 = ngT_s mod p.

However, by hypothesis, we know that p does not divide B,-5. This concludes the
2
proof. O

Remark 4.9. There is no prime 13 < p < 3.3 x 10° such that p =1 mod 4 and
D B(,—5)/2- Note that the existence of such a prime p is special, because it will be
congruent to 1 modulo 4 and

p—1 (E)
(4.38) p? Z%
r=1
Remark 4.10. Observe that if ¥k = —1 mod 5 and a > 2|log;(k + 1)], then,
following the proof of the above theorem, we arrive to the conclusion
L+ (—1)™
2

(4.39) vs(A(2 x 5T m — 1, k) = a + vs(m) +vs(k + 1) +
This coincides with Theorem 4.4 because §(m,5) = (1 + (—1)™)/2.

In conclusion, we showed that a simple construction of a tree for the p-adic val-
uation of the Eulerian number A(n, k) contains some interesting patterns. More-
over, these patterns are connected to classical number-theoretical results involving
Bernoulli numbers. It would be interesting to know if something similar occurs to
the p-adic valuation of other combinatorial sequences.
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