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Abstract—For applications of face recognition (FR) in video
surveillance, it is often costly or unfeasible to collect several high
quality reference samples a priori to design representative facial
models. Moreover, changes in capture conditions and human
physiology create divergence between facial models and input
captures. Multiple classifier systems (MCS) have been successfully
applied to video-to-video FR, where the face of each individual
of interest is modeled using an ensemble of 2-class classifiers
(trained on target vs. non-target samples). However, the reliable
self-update of these individual-specific ensembles with relevant
target and non-target samples raises several challenges. In this
paper, an adaptive MCS is proposed that allows for self-updating
facial models given face trajectories captured during operations.
Different faces appearing in a camera viewpoint are tracked, and
ensemble predictions for facial captures are accumulated along
each track for robust video-to-video FR. When the number of
positive predictions over time surpasses an update threshold, the
target face samples extracted from the trajectory are combined
with non-target samples selected from the cohort and universal
models for efficient self-update the corresponding face model. A
learn-and-combine strategy is then employed to avoid knowledge
corruption during self-update of an ensemble. At a transaction
level, the adaptive MCS outperforms the reference systems that
do not allow self-updating on Face in Action videos. Analysis at
a trajectory level indicates that the proposed system allows for
robust spatio-temporal recognition, which translates to enhanced
security and situation analysis.

I. INTRODUCTION

Face recognition (FR) systems are increasingly employed
in video surveillance applications to rapidly determine if facial
regions detected across a network of video cameras correspond
to the facial model1 of individuals of interest. For instance,
FR is used in person re-identification applications for search
and retrieval, which involves video-to-video FR. In video-to-
video FR, facial regions of interest (ROIs) extracted from video
streams are employed to design of facial models.

In video surveillance, tracking information may be used to
record a complete trajectory from arrival until the individual
leaves the scene. A facial trajectory is defined as a set of facial
ROIs (produced by a face detection process) that correspond to
a same high quality track of an individual across consecutive
frames. In addition, individuals in a scene may be tracked, and
the corresponding ROIs isolated through face detection may
regrouped. A system for spatio-temporal FR will recognize
individuals over time based on a group of ROIs.

1A facial model is defined as either a set of one or more reference samples
(for template matching), or a statistical model estimated during training with
reference samples (for classification).

The design of facial models is ideally performed during
enrollment, using high-quality reference ROI samples captured
for the target individual. This requirement is challenging in
practical video-to-video FR. Given semi- and unconstrained
capture conditions, video-to-video FR systems must recognize
faces that exhibit changes in illumination, scale, blur, pose,
occlusion and expression. Therefore, enrollment of an individ-
ual relies on a limited number of reference sample, resulting
in facial models that are poor representatives of faces to be
recognized during operations.

Several adaptive classifiers have been proposed in literature
[1]–[4] for incremental learning of labeled samples. These
can be used to update facial models from new reference data
captured after enrollment, allowing to maintain or increase
matching performance. Adaptive multiple classifier systems
(MCS) have been successfully applied for FRiVS [5]. In these
systems, the face model of each individual is encoded using
an ensemble of 2-class classifiers or detectors (EoD), allowing
a high level of discrimination between target and non-target
individuals. In this paper, it is assumed that face matching is
performed with an EoD per individual of interest [1].

An issue with the supervised update of face models is the
analysis and labelling of new reference videos captured during
operations. This costly process must be addressed manually by
a domain expert that isolates target faces in video surveillance
footage. Rather than relying on a human expert, the system
may perform self-updating of facial models with operational
videos. An approach to exploit both labeled and unlabeled data
in adaptive biometrics is self-update [6].

In this paper, an adaptive MCS is proposed for self-
update of the facial models under semi- and uncontrolled
capture conditions seen in video-to-video FR using facial
trajectories. During operations, information from a tracker
and an individual-specific EoD is integrated at a decision-
level for enhanced spatio-temporal FR. A detection threshold
is applied to the accumulated positive EoD predictions over
trajectories to produce a decision, and a second (higher) update
threshold allows to select update trajectories. When a new
trajectory is suitable for update (i.e., surpasses the higher
update threshold), its facial ROIs are combined with those
of non-target samples selected from the cohort and universal
models. This block of data is comprised of diverse facial
regions associated with target and non-target trajectories, and
allows to generate a new pool of 2-class classifiers, and to
update the fusion function of the user specific EoD. This learn-
and-combine strategy has been shown to reduce the impact
of knowledge corruption in adaptive ensembles [1]. Practical



memory limitations impose the need for a method to select
and manage the most relevant validation samples. A long
term memory (LTM) is maintained over time with a fixed
number of validation samples per individual. These samples
are ranked and selected according to their relative entropy with
the Kullback-Leibler (KL) divergence [7].

One challenge with self-update is the reliable selection
operational samples from the target individual to update facial
models. A high level of confidence is required to avoid up-
dating models with impostor or non-target data. The proposed
adaptive MCS employs the tracker quality to regroup detected
facial regions in facial trajectories, and applies a threshold to
the accumulated EoD predictions over a trajectory to produce
accurate decisions. A second (higher) threshold is applied to
select high confidence trajectories that can be used for update.
The system then performs self-update of the corresponding
facial models using all facial regions of interest (ROIs) linked
to a high confidence update trajectory. A single face trajectory
may contain target ROIs that were incorrectly classified by
the MCS, this allows facial models to be adapted with a
diversified set of reference samples that are close to the
boundaries between target and non-target distributions, and
thereby improve the generalization performance.

The proposed MCS was validated with the Faces in Action
video dataset, and each EoD in the MCS was designed
with ARTMAP neural classifiers. After supervised learning of
an EoD with enrollment videos, new videos from different
operational sessions are processed by the system, allowing
to self-update face models for high confidence trajectories.
Performance is assessed at the transaction and trajectory levels.

II. ADAPTIVE VIDEO-TO-VIDEO FR

Assume that video-to-video FR is performed on video
streams that are captured using one or more video surveil-
lance cameras. First, the face detection (segmentation) process
isolates the facial ROIs corresponding to faces captured in
frames. Then, invariant and discriminant features are extracted
for tracking and classification functions. Tracking follows
the movement or expression of faces in consecutive video
frames and regroup facial regions of a same person, whereas
classification matches ROIs to the facial models of individuals
enrolled to the system. A track ID is typically initialized
with an ROI that is detected at different locations than other
faces. Finally, the decision function combines the tracking IDs
and classification scores in order to predict a list of likely
individuals in the scene.

In the literature, FR in video surveillance (FRiVS) is
addressed as an open set or open-world problem, where the
number of individuals of interest is greatly outnumbered by
other individuals. A multi-class classifier designed to address
the open set problem in video FR is the TCM-kNN proposed
by Li and Wechsler in [8]. This matcher takes advantage of
transductive inference to generate a class prediction based on
randomness deficiency. Tax and Duin also proposed propose a
heuristic to combine any type of one-class classifiers for multi-
class classification with outlier rejection. It allows to adjust the
rejection threshold per class, and to combine class models that
are not based on probability densities [9].

Modular architectures with one detector per individual have
been proposed to address the problem with individual-specific
1- or 2-class classifier [5]. For instance, Kamgar-Parsi et al.
propose an approach based on the identification of the decision

region(s) in the feature space of individual-specific faces by
training a dedicated feed-forward neural network for each
individual of interest [10]. Another recent example is the SVM-
based modular system proposed by Ekenel et al., for access
control [11]. The architectures have been extended to train an
ensemble of detectors per (EoD) per individual. An example
of such systems is the EoD (2-class classifiers) proposed by
Pagano et al. It allows for the generation of a diversified pool
of ARTMAP neural networks using a DPSO based training
strategy, and detectors are then selected and combined in
the ROC space using Boolean combination (BC) [5]. Non-
target samples are retrieved from the cohort and universal
background models.

Spatio-temporal approaches for FR merge spatial infor-
mation (e.g. face appearance) with the sequential variations
presented over time (e.g behavior). Zhang and Martinez use
probabilities accumulated by matching ROIs to the individual-
specific Gaussian mean estimated from gallery reference sam-
ples, and normalize to produce posterior probabilities. This
temporal analysis is independent of the matching or tracking
algorithm [12]. Liu and Chen used HMMs to model the
appearance and dynamics of a person, obtaining high confident
results on sequences that were then used to adapt the models.
A potential problem with the modeling of probability distri-
butions of the motion is the assumption that the movement
will be very similar, regardless of the new scenario [13].
Accumulating classification responses over time eliminates the
assumption, and still takes into account the time information.
For instance, the work of Ekenel et al. evaluates a video-to-
video FR system for individuals entering into a room, which
progressively combines confidence scores of the matchers
using a sum rule over the full sequences to estimate the
identity in video [11]. In their approach, they use a k-NN
classifier on a DCT representation of face images, and use min-
max normalization on the distance-based output scores, and
then compare their proposed approaches: distance-to-model,
distance-to-second-closest and a combination of both.

One of the main challenges encountered in video surveil-
lance is that facial models lose their representativeness over
time because they are designed a priori using limited numbers
of reference samples captured from semi- and uncontrolled
environments. Facial ROIs incorporate considerable variations
due to limited control over capture conditions (e.g., illumina-
tion, and pose), and to changes is physiology over time (e.g.,
aging). These factors often result in facial models that are poor
representatives of faces to be recognized during operations.

A. Self-Updating in Biometrics:

Strategies for the design of adaptive biometric systems
involve (1) the selection of diversified, relevant reference
samples to update a template gallery or an LTM of reference
validation samples, and (2) the actual update of template
galleries or classifier parameters using supervised or semi-
supervised learning schemes. Techniques that are suitable for
the selection of relevant samples in adaptive MCS have been
reviewed in [7].

Several approaches in literature are suitable for semi-
supervised learning of face models in adaptive biometrics [14].
Self-update methods have been proposed for template match-
ing [6], where biometric models are first designed by storing
samples from a labeled data set DL in a template gallery
G. Then, during operations, similarity scores for unlabeled



samples are produced through template matching. Positive pre-
diction is output if the score surpasses the decision threshold
γd. Predictions linked to a high degree of confidence (surpass-
ing a higher updating threshold, γu ≥ γd), are integrated to
the gallery G, thereby updating the corresponding biometric
models. Similar self-updating strategies methods (e.g., [15]–
[17]) have been proposed for neural or statistical classifi-
cation systems that estimate of biometric models. Although
self-update methods can improve accuracy [14], adapting a
biometric system using operational data carries an inherent
risk. There exists a trade-off between the false updates and
false rejections that affect of performance, and the decision
threshold is crucial in self-update system.

B. Adaptive Face Recognition:

In the literature, adaptive FR systems have traditionally
incorporated newly-acquired reference samples to update the
selection of a user’s template from a gallery, via clustering
and editing techniques. Processing thus allows an improved
representation of intra-class variations to be obtained with
a single template. Some adaptive biometric systems have
been proposed to refine facial models according to intra-class
variations in input samples [18].

Approaches for self-update of facial models are generally
based on the matching scores. For instance, in [19], Euclidean
distance-based measure of similarity is used, and at each
iteration, the PCA-based feature space for matching is updated
with the newly-acquired soft-labeled samples. An extension
to the self-update algorithm named the Graph Mincut [20],
has been proposed to update templates by analyzing the
underlying graphical structure of input operational data. A pair-
wise similarity measure between operational data and existing
templates is used to draw a graph that relates these samples.
A representative example of adaptation in spatio-temporal FR,
that exploits classification similarity and video information
have been proposed by Franco et al. [21]. The authors propose
an incremental template update strategy that is based on the
similarity between captured ROIs and templates. It exploits the
frequency of face detections over a complete video sequences
of the different subjects in the scene, and their last position
within the frame in the sequences.

More recently, adaptive MCS have been proposed for su-
pervised update of facial models in video-to-video FR. An in-
cremental learning strategy based on DPSO has been proposed
for video-based access control [4]. It allows the evolution
of an ensemble of heterogeneous multi-class classifiers from
new videos. An ensemble of two-class classifiers or detectors
(EoDs) per individual has been proposed by dela Torre et al.
[1]. When a new data block becomes available, a diversified
pool of PFAM classifiers is generated with a DPSO learning
strategy and combines to others using Boolean combination
(BC). Learn++ is a well-known ensemble-based technique for
incremental learning that has been tested on FR problems [2].
This technique is inspired by the AdaBoost algorithm – it
performs supervised incremental learning by incorporating a
new set of weak classifiers to the ensemble each time new
data becomes available.

III. SELF-UPDATING WITH FACIAL TRAJECTORIES

In this paper, an adaptive MCS for video-to-video FR is
proposed, where new trajectories captured during operations
allows for self-updating facial models. As shown in Fig. 1, the

proposed system is comprised of a segmentation module for
face detection, a face tracker, a modular classification system
with one EoD per individual of interest, a decision fusion
module, and a design/update module.

During operations, information from a tracker and
individual-specific EoDs are integrated at a decision level.
The face tracker initializes a new trajectory with the first
facial ROI captured by the segmentation system in a different
area of the scene. As the tracker follows the facial region
through the scene, the segmentation system captures facial
ROIs for some of the frames, allowing to produce a trajectory
T . The diverse set of ROIs belongs to the same individual
is defined by the tracker. Feature vectors are extracted from
ROIs segmented in each frame, and presented to each EoDk.
Each EoDk is comprised of a pool of 2-class classifiers Pk =
{c1,k, ..., cM,k}, and a fusion function Fk that is designed
using a validation set Dc

k, for k ∈ {1, ...,K}. Ensemble
member cm,k produces an output score s+m,k(a) for a given
feature vector a corresponding to an input ROI. The scores
are then combined using Fk. Each EoDk produces an output
prediction pk(a). Positive predictions are then accumulated
over time in the decision fusion module. Depending on the
strategy used for fusion, a subset of the classifiers in the pool
Pk is selected to maximize performance.

Faces in a video sequence are tracked from frame to frame
and regrouped, and the positive EoDk predictions pk along
a trajectory T are accumulated over time for robust spatio-
temporal recognition. Finally, an individual-specific threshold
is applied to the accumulation curves of each EoDk in order
to generate an overall prediction dk for each EoDk. There
are several evidence accumulation modules per track ID, to
simultaneously recognize several people at a time in the
scene. A highly confident trajectory T is associated with an
individual of interest k when the number of accumulated
positive predictions from the EoDk (over a fixed-size window)
surpasses the update threshold, Ak ≥ γuk , the design/update
system assigns the label k to the trajectory Tk for update.

The adaptive MCS detects the presence of individuals of
interest based on the number of positive EoDk predictions
over trajectories. Given a high quality trajectory T , each
EoDk generates a prediction pk(an) for each sample an
associated with a ROI in the trajectory. Output predictions
from EoDk over the ROI samples of a trajectory T , at
the selected operations point, are defined by the set Pk =
{pk(a1), ..., pk(aN )}, associated with each input ROI sample
an. Negative predictions set pk(an) = 0, and positive ones
set pk(an) = 1. The decision fusion system accumulates the
number of positive predictions Ak of each EoDk on fixed size
window W according to:

Ak =

W−1∑
i=0

pk(a(W−i)) ∈ [0,W ] (1)

For instance, a window of size W = 30 accumulates the
last 30 positive predictions from the same trajectory. Each
EoDk accumulates a sequence of positive predictions that
range from 0 (EoDk made only negative predictions for W ),
to a maximum of W (EoDk made only positive predictions
for the last W ROIs).

Based on these accumulations Ak, for k = 1, ...,K, the
system produces decisions. If Ak surpasses threshold γdk , the
system detects the presence of individual k and alerts the
operator. Furthermore, if Ak surpasses the update threshold γuk ,



Fig. 1. Block diagram of the proposed MCS that for video-to-video FR that allows for self-updating of facial models.

the trajectory is suitable for self-updating of the corresponding
EoDk. Given the negative effects on performance caused by
false updates, threshold γuk is greater or equal to γdk . For
each EoDk, the detection threshold γdk is estimated using a
validation set composed of one positive and several negative
trajectories. In this way, a single target trajectory is required
for design and update of the facial model.

In the design/update phase, when a new facial trajectory
Tk becomes available for individual k, One-Sides Selection
is used to form a individual-specific training set Dk with all
its target samples and non-target samples selected from CM
and UM. An ensemble EoDk is updated with new ROIs from
a trajectory Tk by generating new pool base detectors, and
adding these to a pool Pk of previously trained detectors,
and updating the fusion function according to the old and
new validation samples. [1]. A fixed size LTM is maintained
with validation samples that are representative of the decision
bound between target and non-target distributions. When a new
validation set D with target and non-target samples becomes
available for individual k, all samples are ranked according
to the Kullback-Leibler divergence. Then, the λk/2 highest
ranked target samples, as well as the λk/2 highest ranked non-
target samples are preserved, whereas the rest are discarded.
The procedure followed by the management strategy to rank
and select representative validation samples to be stored in the
LTMk [7]. The decision-level fusion function is updated based
on new data and pre-stored reference samples (from the LTM).

IV. EXPERIMENTAL RESULTS

The adaptive MCS proposed in this paper for video-to-
video FR is characterized for person re-identification appli-
cation, using videos from the Carnegie Mellon University
Face in Action (FIA) database [22]. This database consists
of 20 second videos captures from 244 subjets under semi-
constrained conditions mimicking a passport checking sce-
nario. An array of 6 cameras horizontally positioned at face
level, and positioned at 0o (frontal) and ±72o (left and right)
angle with respect to the individual. Three cameras were set
to an 8-mm focal-length (zoomed), resulting in face regions
of about300 × 300 pixels, and the other three to a 4-mm
focal-length (unzoomed) with regions of about 100 × 100

pixels. Faces are captured at 30 frames per second, a Sony
ICX424 camera at a resolution of 640x480 pixels. Data has
been captured on three sessions separated by a three months
interval for each individual.

Ten individuals were randomly selected for re-identification
(k = FIA ID = 2, 58, 72, 92, 147, 151, 176, 188, 190 and
209), and one EoDk is designed for each. Of the remaining
individuals, 88 are selected as part of the universal model
(UM), and the rest are considered as unknown test individuals.
Face trajectories from individuals of interest contain between
80 and 239 facial ROIs, and non-target training and test
samples differ in each dataset. Facial trajectories were formed
with frontal facial ROIs segmented using the Viola-Jones
algorithm, and the CAMSHIFT algorithm for face tracking. All
ROIs are scaled to 70x70 pixels, the resolution of the smallest
face captures after face detection. The Multi Scale LBP [23]
feature extractor has been used with three different block sizes
(3 × 3, 5 × 5 and 9 × 9), along with pixel intensity features.
Resulting features are combined into feature vectors, and PCA
is applied to select the 32 most discriminant projected features.

Prior to computer simulations, four data subsets have been
prepared. Trajectories in the design dataset D are comprised
of target ROIs from the the zoomed view of capture session 1.
The test/adaptation datasets D1 to D3 have been constructed
with ROIs from the unzoomed view of capture sessions 1 to
3 respectively. Non-target samples are independently selected
for each of the training/validation sets picked from the cohort
model (CM) and UM, using One-Side Selection. The CM
comprises trajectories from non-target individuals enrolled to
the system. The MCS used for simulations is comprised of
an ensemble of 2-class Probabilistic Fuzzy ARTMAP (PFAM)
classifiers per individual of interest, EoDk(PFAM). The DPSO
learning strategy was used for classifiers generation, and
Boolean Combination was applied for decision-level fusion of
classifiers in the ROC space [1]. The reference approaches for
baseline comparison are the multi-class TCM-kNN [8] and the
same MCS that does not allow for self-update (see [5]). After
performance evaluation on D1 the classifiers were updated
with trajectories in D1 and tested on D2. The same process
was repeated for update/test on D2 and D3 respectively.

Evaluation was performed following 2 × 5-fold cross-
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Fig. 2. Average transaction-based performance of the proposed MCS
and referencee systems for 10 independent experiments, and over the 10
individuals of interest, in terms of (a) pAUC(5%) and (b) F1 (at fpr = 1%).
Systems were designed and updated with D, D1 and D2, and performance
is shown after testing on D1 → D2 → D3

validation for 10 independent trials. Target samples from
the learning set were randomly split according to a uniform
distribution, in 5 folds of the same size. The folds were first
distributed in three different design sets, including two folds
for training (Dt

t), 1
1
2 folds to stop training epochs (De

t ), and
1 1
2 folds for fitness evaluation (Df

t ). Validating the number of
training epochs for classifier convergence was performed on
De

t , whereas particle fitness was evaluated on Df
t . The DPSO

algorithm was initialized with a swarm of 60 particles, and a
maximum of 5 particles within each of the 6 subswarms. The
algorithm was set to run a maximum of 30 iterations, allowing
5 extra iterations to ensure convergence. Once the global best
particle is found, its classifier and the 6 local bests from
each subswarm were added to the EoDk(PFAM). Once the
classifiers were trained, De

t and Df
t are combined, randomized

and divided in two equally distributed subsets to produce a
validation data for threshold/fusion function estimation (Dc

t ),
and to select the operations point (Ds

t ). Each fold was assigned
to a different training/validation set at each replica of the
experiment. At replication 5, the five folds were regenerated
after a randomization of the sample order for each class,
and the process was repeated to generate a standard error on
ten different assignments. Evaluation was performed at the
transaction level (in the ROC and Precision-Recall spaces),
and at the trajectory level (time-based analysis of the entire
system over video sequences).

Figure 2 presents the average transaction-level performance
for the reference and proposed systems. The performance is
evaluated using the partial AUC for a 0 ≤ fpr ≤ 0.05:
pAUC (5%) and the scalar F1 measure for a desired operations
point of fpr = 1%. Performance for modular systems were
measured for each individual (EoDk), and average values are
presented. In order to have comparable results for TCM-
kNN, empirical ROC curves were estimated on validation
for each individual. The selection of the operations point, as
well as performance evaluation were computed after applying
the specialized rejection threshold of the TCM-kNN. Note
that this rejection threshold is estimated on the training data,
taking advantage of the peak-side-ratio that characterizes the
distributions of p-values for each class.

Overall results for all approaches show a degradation in the
system performance after testing on D2, with a slight recovery
after testing on D3. This decline in performance underscores
the importance of adapting facial models as new reference

TABLE I. AVERAGE PERFORMANCE OF PROPOSED MCS SYSTEM FOR
INDIVIDUALS k = 58 AND 188 OVER 10 REPLICATIONS OF THE

EXPERIMENT.

EoD58 EoD188

fpr ↓
0.233
±0.094

→ 0.863
±0.085

→ 1.619
±0.385

2.544
±0.567

→ 1.175
±0.201

→ 0.310
±0.098

tpr ↑
84.432
±3.328

→ 35.442
±8.100

→ 51.163
±14.319

89.576
±4.256

→ 89.884
±3.093

→ 93.698
±1.744

F1 ↑
0.849
±0.023

→ 0.353
±0.066

→ 0.384
±0.093

0.472
±0.054

→ 0.667
±0.031

→ 0.920
±0.013

pAUC(5%) ↑
98.455
±0.225

→ 74.578
±3.539

→ 80.443
±6.337

91.120
±2.408

→ 96.387
±0.480

→ 99.723
±0.050

videos become available. Except for the initial test (on D1)
results indicate that the self-update of ensembles during oper-
ations with high quality trajectories allows a better recovery
in performance than both reference systems. An advantage
of the proposed system is the incorporation of diversified
information into facial models of detected individual. Self-
updating provides EoDs with a greater diversity of samples
captured under various conditions (pose, lighting, etc). These
samples allow for a more accurate definition of the boundaries
between target and non-target individuals in accordance with
the most recent facial samples.

By observing the performance of the system for specific
individuals (see Table I), it can be observed that the in-
dividual 58 initially exhibits a high level of performance.
EoD58 is negatively affected by updates – results for EoD58

show a significant decline in performance after updating on
D1 (testing on D2). However, EoD188 presents a constant
increase in performance. Despite the incorrect updates, the fpr
decreases after each self-update. This suggests that lamb-like
individuals stand to benefit somewhat from diverse of samples
from incorrect updates. In fact, incorrect self-updates favors
diversity between old and new classifiers, and may result in
an increase in the performance of the updated EoD.

In the proposed MCS, the face tracker groups ROIs corre-
sponding to trajectories initiated in each video sequence. EoD
prediction for each ROI in each trajectory are accumulated
over time. To assess the overall system performance over
time, Figures 3 and 4 show the result of a trajectory-based
analysis for individuals with ID 58 and 188 on the same
experimental trial. Results are shown for 3 different evidence
accumulation strategies according to time and in the ROC
space. Accumulation of EoD predictions over the ROIs in
the trajectory provides the better discrimination, specially if
segmentaion does not capture many ROIs in a track due to
poor capture quality. Results also suggest that decision-level
fusion with a threshold-optimized techniques like Boolean
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Fig. 3. Example of a trajectory-based analysis with EoD58 (top row) and
EoD188 (bottom row) for the 3 evidence accumulation strategies: accumulation
of EoD predictions over the ROIs in the trajectory (left), over each frame
(center), and accumulation of scores over ROIs in a trajectory (right).
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Fig. 4. ROC performance for 3 evidence accumulation strategies from
trajectory-based analysis with EoD58.

combination provide a higher level of performance because
thresholds are specialized to base detectors.

V. CONCLUSION

In this paper, a modular and adaptive MCS, with user-
specific ensembles of detectors was proposed for video-to-
video FR. It allows for self-updating of facial models based
on trajectories defined by the tracker. During operations, it
integrates track IDs of a face tracker and predictions of a
individual-specific ensemble at a decision-level for enhanced
video-to-video FR. Accumulated predictions of a window of
W frames over each trajectory define the corresponding accu-
mulation curve for a given module k. When the accumulation
curve surpasses a detection threshold, the individual is detected
as a target. If the curve surpasses a more conservative update
threshold, the ROI samples of the trajectory are used for self
update of the system. In order to update facial models, target
facial regions from the trajectory are combined with non-target
samples selected from the cohort and universal models, using
an extended condensed nearest neighbor selection.

Transaction-based results obtained with ensembles of 2-
class ARTMAP classifiers generated using a DPSO strat-
egy on videos from the CMU-FIA dataset indicate that the
proposed adaptive MCS outperforms reference systems that
do not perform self-update. Trajectory-based analysis shows
the increased discrimination achieved when EoD predictions
are accumulated according to a trajectory, leading to robust
spatio-temporal recognition. The proposed system has been
characterized using data that incorporates a gradual pattern
of changes for facial models, over different capture sessions.
However, future research should include system performance
under both gradual and abrupt patterns of change, as seen in
variations of illumination and pose.
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