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Abstract

We find an application of the lasso (least absolute shrinkage and selection operator) in sub-5-minute solar
irradiance forecasting using a monitoring network. Lasso is a variable shrinkage and selection method for
linear regression. In addition to the sum of squares error minimization, it considers the sum of ¢;-norms of
the regression coefficients as penalty. This bias-variance trade-off very often leads to better predictions.

One second irradiance time series data are collected using a dense monitoring network in Oahu, Hawaii.
As clouds propagate over the network, highly correlated lagged time series can be observed among station
pairs. Lasso is used to automatically shrink and select the most appropriate lagged time series for regression.
Since only lagged time series are used as predictors, the regression provides true out-of-sample forecasts.
It is found that the proposed model outperforms univariate time series models and ordinary least squares
regression significantly, especially when training data are few and predictors are many. Very short-term
irradiance forecasting is useful in managing the variability within a central PV power plant.

Keywords: Lasso, Irradiance forecasting, Monitoring network, Parameter shrinkage

1. Introduction

Variability in solar irradiance reaching the ground is primarily caused by moving clouds. To accurately
forecast the irradiance, cloud information must be directly or indirectly incorporated into the formulation.
Due to the stochastic nature of the clouds, it is difficult to fully model their generation, propagation,
and extinction using physical approaches. Statistical methods are therefore often used to extract cloud
information from observations (e.g. Yang et al., 2015; Dong et al., 2014; Lonij et al., 2013).

We are particularly interested in very short term (sub-5-minute) irradiance forecasting as the clouds
are relatively persistent during a short time frame. Unlike the forecasts with longer horizons where the
results are essential for electricity grid operations, the very short term forecasts find their applications in
large photovoltaics (PV) installations. Knowing the potential shading/unshading over a particular section
of a PV system in advance may be advantageous to maximum power point tracking algorithms (Hohm and
Ropp, 2000). Accurate sub-minute forecasts could also bring possibilities to better control of ramp-absorbing
ultracapacitors (Mahamadou et al., 2011; Teleke et al., 2010).

Inman et al. (2013) reviewed the state-of-the-art methods for very short term irradiance forecasting.
The methods involve using either sky cameras (Nguyen and Kleissl, 2014; Yang et al., 2014¢; Quesada-Ruiz
et al., 2014) or a sensor network (Lipperheide et al., 2015; Bosch and Kleissl, 2013; Bosch et al., 2013). All of
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these listed references aim at explicitly deriving the cloud motions and thus forecast the irradiance. Beside
many assumptions, such as linear cloud edge, that have to be made, various types of error will be embedded
in different phases of such methods, especially during the conversion from cloud condition to ground-level
irradiance. It is therefore worth investigating the alternative methods where cloud information is considered
indirectly.

Along-wind and cross-wind correlations observed between two irradiance time series have been studied
intensively in the literature (e.g. Arias-Castro et al., 2014; Hinkelman, 2013; Lonij et al., 2013; Perez et al.,
2012). If along-wind correlation between a pair of stations can be observed, we can use regression-based
methods for forecasting. However, several problems have to be addressed before we describe our method:

e The discrepancy between the direction of a station pair and the direction of wind may result in a
smaller correlation. How do we incorporate the strength of cross-correlation between monitoring sites
into the forecasting model?

e When the wind speed changes from day to day or even within a day, the choices of lagged time
series also need to be constantly updated. How do we then automatically select the most appropriate
spatio-temporal neighbors for forecasting?

e When the correlation is unobserved, do we need to switch the spatio-temporal forecasting algorithm
to a purely temporal algorithm in an ad hoc manner?

With these questions, we consider the lasso (least absolute shrinkage and selection operator) regression
(Efron et al., 2004; Tibshirani, 2011, 1996). Lasso is a variable shrinkage and selection method for linear
regression. In our application, the predictors (regressors) are the time series collected at the neighboring
stations at various time lags (autocorrelated time series may also be used); the responses (regressands) are
the time series collected at the forecast station. Some advantages of the lasso over the ordinary least squares
regression, ridge regression and subset selection methods are discussed in section 2.

1.1. Data

Data from a dense grid of irradiance sensors located on Oahu Island, Hawaii, are used in this work. The
network is installed by the National Renewable Energy Laboratory (NREL) in March 2010. It consists of
17 radiometers, as shown in Fig. 1. The sampling rate of these stations is 1 second. Previously, Hinkelman
(2013) showed the possibility of observing highly correlated time series from this network; data from 13 days
dominated by broken clouds were used in that study. We therefore use the data from the exact same days
(Hinkelman, 2014) to study the predictive performance of such network configuration. The data are freely
available at http://www.nrel.gov/midc/oahu_archive/.

Throughout the paper, the 1 second irradiance data will be averaged into various intervals to evaluate
the forecasts with different forecast horizons. As high frequency data often have local maxima and minima
caused by noise rather than cloud effects (Bosch and Kleissl, 2013), the smallest aggregation interval is 10
second. Prior to any forecasting, the global horizontal irradiance (GHI) time series from these 17 stations
are first transformed into clearness index time series. Such transformation is commonly used in irradiance
forecasting to stabilize the variance, i.e., to remove the diurnal trends in the GHI time series. We use the
solar positioning algorithm developed by Reda and Andreas (2008) for extraterrestrial irradiance calculation.
Finally, we include a zenith angle filter of <80°.

1.2. Error metrics

All the forecasting models in this paper are built using the clearness index time series; the errors are
evaluated using the GHI transformed back from the forecast clearness index. Two error metrics are used in
this paper, namely, the normalized mean absolute error (nMAE) and the forecast skill (FS). The nMAE is
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Figure 1: Layout of the 17 stations of the NREL Oahu network. The scale of the map is shown in the bottom right corner.
The arrow in the top right corner shows the prevailing trade winds direction (60° from north). The average wind speed during
the periods of analyses is 10 m/s. See (Arias-Castro et al., 2014; Hinkelman, 2013) for more details on the data.

given by:
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where GG; denotes the GHI measured at ith time step; @l denotes the forecast produced. The forecast skill
(Chu et al., 2015) is given by:

nRMSE(fh) @
nRMSE, (fh)

where fh denotes the forecast horizon; nRMSE,, and nRMSE are the normalized root mean square errors of
the persistence model and the proposed model respectively. A persistence model assumes that the forecast
is equal to the current observation; it is often used as a naive benchmark. The nRMSE is given by:
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The nMAE is a form of mean absolute error (MAE) while the forecast skill is a form of mean square
error (MSE). MAE and MSE both measure the average magnitude of the errors and are frequently used in
forecasting applications. MAE is a linear score which weights individual error equally. For the case of the
MSE, the errors are squared before averaging; it gives higher weights to large errors. This indicates that the
MSE is more useful when large errors are particularly undesirable, as in the case of solar power forecasting.
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2. Method

Given data (z?,y;), i =1,--- ,n, where ' = (2,1, -+ , ;) are the p predictor variables and y; are the
responses, the linear regression model has the form:

P
yi = PBo + Z Bjwij (4)
j=1
where 3 = (Bo, B1,- -+ ,Bp) " is the regression parameter. The lasso estimate of 3 is defined by:
2

n

p
B = arg[?in S lvi— B> Biwi ;
=1

i=1
p
sty 1Bl <t )
j=1

where ¢ > 0 is a tuning parameter which controls the amount of shrinkage. Eq. (5) is equivalent to the
{1-penalized regression problem of finding:

n

2
P p
B =argming > (i Fo=3_ By | +AD 5] (6)
J=1 j=1

i=1

where A is a tuning parameter which regulates the strength of the penalty (Tibshirani, 1996).

Minimizing the sum of squares part of Eq. (6) gives the ordinary least squares (OLS) estimate. The OLS
estimates have low bias but high variance. It can be shown that by removing predictors from the full least
squares model, the variance of the estimated response is reduced with an increased bias as trade-off (Miller,
2002). Furthermore, the model accuracy can often be improved by shrinking or setting some coefficients to
zero. Therefore, regression shrinkage and selection is a useful tool when the aim is to predict the response
variable accurately.

Beside the lasso, ridge regression and subset selection (such as the stepwise regression) are also frequently
used to improve OLS. Ridge regression penalizes the sum of squares using an /-penalty, i.e., by changing
the |B;] terms in Egs. (5) and (6) to ﬂjz. One of the advantages of the ridge regression is its stability, i.e.,
the ridge regression estimates are little affected by small changes in the regression inputs. Subset selection
methods select a subset of predictors, the OLS is then used to estimate the regression coefficients of the
predictors that are retained. The advantage of subset selection methods is its interpretability, i.e., the
irrelevant predictors are excluded from the model. However, it is noted that the lasso model is interpretable
like the subset selection method; it also has the stability of the ridge regression (Tibshirani, 1996). The
above discussion can be inferred from a geometrical point of view; we refer the readers to (Hastie et al.,
2009; Efron et al., 2004).

The most interesting property of the lasso comes from its ¢1-penalty, which often shrinks some regression
coefficients to exactly zero. This property suits our application where down-wind stations should have
minimal influence, if not no influence, on the measurements at up-wind stations. As uncorrelated predictors
only contribute to the variance of the OLS estimates but not the accuracy, they therefore should not be
included in the model. By selecting a proper t, the uncorrelated predictors can be truncated. The standard
way to select t is k-fold cross validation (Efron et al., 2004); we use the k-fold cross validation (CV) in this
work. Alternatively, information criteria can be used (see Zou et al., 2007; Tibshirani and Taylor, 2012).
We use the implementation by Hastie and Efron (2013) for lasso computation. The library is implemented
in the statistical software R (R Core Team, 2014); we list the key steps here:

1. Coeflicients 3; are set as zeros at the start.
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2. Find the predictor x; with highest absolute correlation with y.

3. Increase the coefficient /3; in the direction of the sign of its correlation with y, until some other predictor
x), has as much correlation with r as x; has. r is the residual, r =y — 7.

4. Increase (B;, fx) in their joint least squares direction, until some other predictor z,, has as much
correlation with the residual r.

5. The algorithms stops when all the predictors are in the model.

For further understanding on the shrinkage and selection procedures of the lasso, we refer the readers to
(Efron et al., 2004; Tibshirani, 2014).

Two families of time series models, namely, the exponential smoothing (ETS) family of models and
the autoregressive integrated moving average (ARIMA) family of models are used to benchmark the lasso
regression model. The implementations for these models follow our previous works (Dong et al., 2013; Yang
et al., 2012). Systematic descriptions on the ETS model and the ARIMA model can be found in the books
by Hyndman et al. (2008) and Box et al. (1994) respectively. The clearness persistence model (see Marquez
and Coimbra, 2012, for definition) is included as the baseline model. The above benchmarks are univariate
models, i.e., using data from a single station. Therefore, the OLS is used as a multivariate benchmarking
model.

3. Results from a single day with a single forecast horizon

Throughout this section, only the 10 second averaged data from a single day, namely, 2010 July 31, is
used. After applying the data filters described in section 1.1, 4133 data points are obtained for each station.
A total of 5 case studies are presented in this section.

3.1. The effect of parameter shrinkage

To demonstrate the shrinkage effect of the lasso, we consider a forecasting example at station DH4. In
this example, the first 2066 data points (50%) are used for fitting and the remaining data points are used
for validation. Two stations, namely, DH5 (up-wind station) and DH6 (down-wind station), are used as
the spatial neighbors of the forecast station. For each spatial neighbor, time series up to lag-3 are used.
Together with the autocorrelated time series from DH4 itself, we have a lasso regression with design matrix
x with p = 9 and n = 2063. Note that the first 3 training samples are used to produce the lagged time
series, n for the design matrix is therefore reduced by 3.

Recall Eq. (5), the parameter ¢ controls the amount of shrinkage. When ¢ is large, the constraint on the
¢1-norms loses its effect. More specifically, when ¢ > j BJ", where BJ" is the full OLS estimates, the lasso

estimates B\j is equal to Bj" To visualize the effect of ¢, we define the shrinkage factor:

/%

For any 0 < s < 1, the corresponding solution of the lasso can be found. The solution path (the collection
of all solutions for 0 < s < 1) of the lasso can be found using the algorithm shown in section 2. Fig. 2 shows
the solution path of the lasso. It can be seen that predictor DH5[1] (the lag-1 time series at station DH5)
enters the model first. This agrees with the physical understanding, namely, the up-wind station has an
effect on station DH4. On the other hand, predictor DH6[3] enters the model at a later stage with small
coeflicients throughout, indicating that this predictor has a small effect on the response variable. If we
select s anywhere along the scale, the shrinkage effect is obvious. For example, if we choose s = 0.35, only
two predictors, DH5[1] and DH4[1], will be used to predict the clearness index at DH4; their coefficients
are given by the intersections of the solution path and the dashed vertical line, as shown in Fig. 2. Other
predictors have zero coeflicients.

B (7)
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Figure 2: Estimates of lasso regression coefficients Ej» j=1,---,9, for the case study in section 3.1. The covariates enter the

regression model as s increases (indicated by the solid vertical lines). For s = 1, the lasso gives OLS estimates. The predictors
are lagged time series, for example, DH5[1] corresponds to the lag-1 time series at station DH5. The response is the time series
at station DH4. See text for the interpretation of the dashed vertical line.

3.2. Case study 1: forecast DH/ using 9 predictors

Once the lasso solution path is calculated and the best s value is determined by CV, we can fit the model
using new predictor values (the remaining 50% of data). As all the predictors are lagged variables, the
forecast of the response variable can be readily obtained. To benchmark the lasso, the persistence, ARIMA
and ETS models are used. The ARIMA and ETS models use the same training length as the lasso; the
forecasts are produced for the remaining data using the trained models. The persistence is only evaluated
for the testing data. Beside the univariate (single-sensor) models, full OLS (the s = 1 case) is also used to
benchmark the lasso. Suppose we have response vector y and design matrix X, the OLS estimates are:

B = (XTX)'XTy 8)

The nMAEs for the persistence, ETS, ARIMA, OLS and lasso models are 7.93%, 7.93%, 8.68%, 4.20%,
4.18%, respectively. The forecast skills (FS) for the ETS, ARIMA, OLS and lasso models are 0.00, 0.03,
0.49, 0.49 respectively. It is observed that the OLS and lasso produce significantly better forecasts than
the univariate models. It is also found that the choice of error metric can lead to different conclusions on
forecast results; the ARIMA model is worse than persistence in terms of nMAE but is better in terms of
FS. We note that the predictive performance of the lasso is similar to the OLS in this example. However, as
shown in later examples, when the number of predictors gets large and/or the training data are insufficient,
the OLS produces unacceptable results.

3.83. Case study 2: forecast DH/ using various training data lengths

The above toy example assumes a fixed training length. If 50% of data are used for training in each day,
it would not be acceptable for operational forecasting. Therefore, we investigate the effect of training length
on forecast accuracy in this case study. Forecasts at DH4 using the lasso and OLS models with various
training data lengths are evaluated. The results from the ETS and ARIMA models are omitted. Previously,
the choice of 9 predictors is only made for simplicity, i.e., to make Fig. 2 readable. In this case study, a

6
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full network model with p = 170 is considered, i.e., time series up to lag-10 from each of the 17 stations are
used. The results are depicted in Table 1.

Table 1: The performance of the lasso and OLS models for various training data lengths (in % of total number of data points).
10 second averaged data from 2010 July 31 are used.

nMAE [%] forecast skill
% train pers ols lasso ols lasso
10 8.36  12.16 7.73 -0.06 0.39
20 8.65 8.89 4.39 0.23 0.54
30 8.67 5.59 4.16 0.49 0.57
40 8.20 5.05 3.99 0.51 0.56
50 7.98 4.89 3.95 0.51 0.56

It can be concluded from Table 1 that the lasso outperforms the OLS method for all training lengths.
The accuracy of the OLS model reduces when the training data become fewer. Furthermore, even when the
data are sufficient (such as the 50% case), the OLS still performs worse than the lasso. This is due to the
large number of irrelevant predictors in the OLS model. On the other hand, the accuracy reduction in the
lasso is marginal (except for the 10% case). These observations align with the discussions in Chapter 1 of the
book by Miller (2002). In a regression problem with many predictors, when the data are few, the regression
coefficients given by the OLS will be poorly determined, and the predictions also tend to be poor. Fig. 3
shows the distributions of regression coefficients fitted using the lasso and OLS for each training length. We
note that Gaussian kernel is used in the plot for visualization. In each subplot, 170 red dots are plotted with
some overlay, representing the 170 estimated regression coefficients. For the 10% case, the lasso identifies 4
predictors with larger coefficients while the remaining predictors have near zero coefficients. In contrast, the
OLS produces a distribution of coefficients with a wide spread. As the length of the training data increases,
the coefficients determined by the OLS become similar to those determined by the lasso. Consequently, the
forecast errors of the OLS are comparable to the errors of the lasso for longer training lengths.

In addition to the analyses above, the time series plots and the scatter plots of the forecasts (the 20%
case) are shown in Fig. 4. The top plot shows that the lasso improves the forecasts significantly. There
is no time lag between the forecast and measured time series, which is otherwise unachievable using any
univariate statistical method. The bottom plot of Fig. 4 shows that the lasso can reduce the variance of the
forecast significantly, thus may result in narrower confidence intervals for interval-based forecasts.

We note that for operational forecasting, the problem of training length can be relaxed thanks to possible
similarities in meteorological conditions. In other words, when the present day’s meteorological conditions
are similar to the conditions in some historical days, previously trained models can be readily applied to
the present forecasts. Furthermore, we can adaptively update the model within a day when data become
available. Such enhancements to the method are not discussed in this work.

3.4. Case study 3: forecast DHJ using various numbers of predictors

In this case study, we verify the effect of number of predictors on the lasso. Based on the results from
case study 2, 20% of the data are used for training and the remaining data are used for testing. We can
vary p by either adjusting the number of spatial neighbors or adjusting the number of lagged series (the
temporal neighbors). The relationship is written as p = (ns;+1) x ng, where n; and n; are numbers of spatial
and temporal neighbors respectively. The +1 term indicates that the autocorrelated time series are used as
predictors as well. The nMAE and FS of the lasso are shown in Fig. 5; the results from the benchmarking
models are omitted.

The number of spatial neighbors in Fig. 5 are incremented sequentially following the increasing distance
to station DH4, i.e., DH3 (nearest to DH4) is added first and AP6 (furthest from DH4) is added last. We
note that ns; < 3 cases produce larger errors; to visualize the color contrast among other combinations, these
cases are excluded from the plot. As the forecast results do not differ much from each other for different p,
no obvious conclusion can be established regarding the best combination of ns; and n;. In other words, once

7
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Figure 3: Distributions of regression coefficients using the lasso and OLS for various training data lengths (in % of total number
of data points). In each subplot, there are 170 red dots (with some overlay) representing 170 regression coefficients, i.e., p = 170.
Gaussian kernel is used for density estimation and visualization.

the most correlated predictors (DH5(1] in this case) are added into the lasso, the forecast does not improve
substantially by adding in other predictors. It may also be noted that the distributions of nMAE and FS in
Fig. 5 seem to possess certain geometrical patterns. At this stage, we hypothesize that these patterns are
due to spatial and temporal frequency of the data. Further investigations may apply.

3.5. Case study 4: forecast all stations using preselected predictors (with known wind information)

In section 3.4, we showed that the irradiance measurements from the up-wind stations are essential to
make good forecasts. It is therefore logical to select ns and n; based on the prior knowledge on wind speed
and direction. We consider the wind speed u and timescale . Suppose 2 is the set of all up-wind stations
to an arbitrary station so, i.e., Q@ = {s; : s; € up-wind stations}, then the following rules should apply:

ns = card(Q) 9)
max<<, [MD s, €Q (10)

ut

ny

where card(-) is the cardinality of the set; ¢ is some positive integer which will be explained shortly; do;
is the along-wind distance between the forecast station so and an up-wind station s;. Notation [-] is the
ceiling operator; it is used because n; can only take discrete values. We note that this preselection method
is similar to the heuristic proposed by Yang et al. (2014a). It was shown that the preselection (shrinkage)
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can improve the forecast from the models which consider the full set of spatio-temporal neighbors (Yang
et al., 2014a).

Eq. (9) ensures that all the up-wind stations are included as lasso predictors. Eq. (10) ensures the moving
clouds have sufficient time to reach the forecast station. Moreover, when n; < ¢, we manually force it to be
¢, to include sufficient number of autocorrelated predictors. For example, for station AP7, it has no up-wind
station, therefore its ny = 0 and n; = ¢. It should be noted that when ( is large enough, Eq. (10) loses
its effect. We set ¢ = 3 for illustration. Hinkelman (2013) showed that the average inferred wind speed for
the 13 selected days is 10 m/s, i.e., u = 10. Furthermore, in this section, ¢ = 10 s. Therefore, as another
example, station DHS8 should have ny, = 16 and n; = [1046/(10 x 10)] = 11, where 1046 m is the along-wind
distance between DH8 and AP7. With these assumptions, we use the lasso and other benchmarking models
to predict the irradiance observed at all the stations on 2010 July 31. The training and testing data follows
section 3.1, namely, 20% and 80% respectively. The nMAE and FS for various models are shown in Table 2.

Table 2: The nMAE [%] and FS of the forecasts for 2010 July 31. 10 second average data are used. The lasso implementations
using Eqs. (9) and (10) are benchmarked using the persistence (pers), exponential smoothing state space (ets), the autoregressive
integrated moving average (arima) and the ordinary least squares (ols) models.

nMAE [%] forecast skill
station pers ets arima ols lasso ets arima ols lasso
AP1 8.62 9.01 8.92 8.51 7.17 -0.02 0.00 0.17 0.25
AP3 9.00 10.15 10.17 9.03 8.51 -0.09 -0.05 0.12 0.15
AP4 9.16 11.20 10.03  10.36  10.15 -0.18 -0.03 -0.01 0.01
AP5 8.50 9.19 9.30 9.68 8.19 -0.04 -0.02 0.11 0.19
AP6 8.36 9.84 8.89 9.96 9.05 -0.12 -0.02  -0.04 0.01
APT 9.85  11.48 11.08 10.20 10.15 -0.13 -0.04 -0.01 0.00
DH1 8.25 9.67 8.67 11.34 8.10 -0.13 -0.01  -0.07 0.12
DH2 8.70 9.62 9.83 10.93 9.33 -0.07 -0.04  -0.02 0.08
DH3 8.86 9.30 9.40 6.46 5.21 -0.03 -0.02 0.43 0.53
DHA4 8.65 9.29 9.02 6.02 4.41 -0.04 0.00 0.44 0.54
DH5 8.55 9.36 8.86  10.67 9.16 -0.06 0.01  -0.01 0.09
DH6 8.59 9.10 9.33 8.53 5.89 -0.02 -0.03 0.25 0.44
DH7 8.44 9.31 10.20 6.56 4.92 -0.07 -0.07 0.40 0.51
DHS 8.49 9.29 9.06 9.29 5.75 -0.04 -0.01 0.20 0.44
DH9 8.79 9.51 9.07 8.55 6.46 -0.04 0.01 0.28 0.39
DH10 8.62 9.13 9.14 7.75 4.71 -0.03 0.00 0.34 0.56
DH11 8.42 8.94 8.58  12.98 7.61 -0.02 0.02 -0.15 0.20
average  8.70 9.61 9.39 9.22 7.34 -0.07 -0.02 0.14 0.27

Table 2 shows that the lasso outperforms the univariate models significantly; its improvement from the
OLS model is also evident. This indicates that although the preselection using Eqs. (9) and (10) could
reduce the number of potential predictors by excluding the down-wind stations, the lasso can further shrink
and select the remaining predictors. In a later section of the paper, we show that the improvements made
using the lasso from using the OLS are more significant for longer forecast horizons.

3.6. Case study 5: forecast all stations using 170 predictors (with unknown wind information)

The case study in section 3.5 considers the wind information. When wind information is unknown,
sufficiently large ns and n; can be assumed based on expert view. For instance, we can assume the full
network models used in case study 2, i.e., ng = 16, n; = 10 and p = 170. The nMAE and FS for the
lasso and the OLS models are shown in Table 3. It is observed that the average nMAE and FS of the OLS
models in Table 3 are much worse than those in Table 2. This is because that case study 5 contains more
irrelevant predictors due to unknown wind information; the OLS models thus have larger variances. On the
other hand, the performance of the lasso models in case study 5 is consistent with the earlier case study,
indicating effective shrinkage and selection.

It is evident from the errors reported in Tables 2 and 3 that the lasso performs well at the center
stations (e.g., DH3, DH4 and DH10) where suitable predictors can be found from lagged time series from
the peripheral stations. However, for stations located at the boundary of the sensor grid, due to lack of
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Table 3: Same as Table 2, except that the lasso assumes unknown wind information. The number of predictors p = 170 are
used in both the lasso and OLS models.

nMAE [%] forecast skill
station ols lasso ols  lasso
AP1 12.22 7.85 -0.07 0.23
AP3 14.33 8.64 -0.23 0.17
AP4 13.77 9.62 -0.17 0.08
AP5 11.94 8.12 -0.05 0.20
AP6 14.28 9.38 -0.26 0.02
AP7 13.71 10.27 -0.14 0.02
DH1 14.05 8.31 -0.26 0.11
DH2 14.74 9.17 -0.29 0.12
DH3 9.29 5.41 0.22 0.52
DHA4 8.89 4.39 0.23 0.54
DH5 13.37 9.28 -0.17 0.10
DH6 8.74 5.81 0.23 0.44
DH7 7.75 4.56 0.32 0.51
DHS 8.83 5.83 0.23 0.44
DH9 9.39 6.42 0.21 0.40
DH10 8.40 4.88 0.29 0.56
DHI11 14.61 7.71 -0.27 0.20
average 11.67 7.39 -0.01 0.27

suitable predictors, the lasso may produce higher errors (see AP6 and AP7). We would like to note that
if autocorrelated predictors are not used, the results will be worse. As we cannot “infinitely” expand the
monitoring network so that an up-wind station can always be found, the best practice is thus to include the
autocorrelated time series in the model. In this way, it allows the lasso to possibly reduce to an autoregressive
model.

4. Results from all 13 days with various forecast horizons

In the previous section, performance of the lasso along with several benchmarking models is evaluated
at a forecast horizon of 10 second for 2010 July 31. In this section, additional forecasting results are shown
using data from all 13 selected days with various forecast horizons.

4.1. Case study 6: forecast all stations for all 13 days (with known wind information)

The configurations of this case study are identical to case study 4 in section 3.5, namely, using 10 second
averaged data with a training length of 20%. For each day and for each station, autocorrelated time series
are included in the lasso; ns and n; choices are made using Eqs. (9) and (10). Forecast skills of the lasso
and OLS are shown in Table 4 with nMAE and the results of the univariate models omitted. By examining
the average errors, it is observed that the lasso performs better than the OLS for all 13 selected days. We
also observe that for most days, the boundary stations produce small FS due to lack of suitable spatial
neighbors. Furthermore, it is found that for various days, the accuracies of the lasso can be very different.
For examples, on September 7, many stations yield negative FS, whereas good forecasts are observed on
July 31. We explain the results from a statistical point of view as follows.

Recall the lasso procedure shown in section 2, the correlations between the predictors and the residuals
are considered at each step. We thus note that the performance of our lasso application depends on the
spatio-temporal correlation structure of the clearness index. Similar to a purely spatial correlation structure,
a spatio-temporal correlation structure describes not only the spatial cross-correlation (correlation between
data collected at two sites), but also the temporal cross-correlation (correlation between lagged data collected
at two sites). In matrix form, for n stations and m maximum lags, the empirical spatio-temporal correlation
structure can be written as:

2=(Z B - Bp), RV (11)
11



Table 4: Evaluation of the forecast skill for the 13 days selected days expect for 2010 July 31. The lasso and OLS settings
follow section 3.5. Bold numbers indicate better OLS forecasts.

\ Jul 31 \ Aug 1-5 |  Aug2l \
station ols lasso ols  lasso ols lasso ols lasso ols lasso ols lasso ols lasso
AP1 0.17 0.25 0.27 0.30 0.20 0.20 0.23 0.27 0.20 0.26 0.11 0.16 0.12 0.13
AP3 0.12 0.15 0.18 0.20 0.20 0.19 0.16 0.18 0.23 0.25 0.09 0.10 0.06 0.06
AP4 -0.01 0.01 0.06 0.07 0.07 0.07 0.07 0.08 0.07 0.07 0.05 0.06 0.08 0.08
AP5 0.11 0.19 0.21 0.25 0.17 0.25 0.25 0.28 0.14 0.18 -0.01 0.08 0.10 0.16
AP6 -0.04 0.01 -0.03 0.04 0.05 0.05 0.03 0.05 -0.02 0.02 0.04 0.07 0.03 0.06
APT -0.01 0.00 0.03 0.03 0.04 0.04 0.03 0.03 0.03 0.03 0.01 0.01 0.00 0.00
DH1 -0.07 0.12 -0.04 0.13  -0.03 0.12 0.00 0.10 -0.01 0.14 -0.14 0.08 0.00 0.10
DH2 -0.02 0.08 0.01 0.11 0.06 0.07 0.06 0.11  -0.01 0.09 -0.05 0.06 0.04 0.10
DH3 0.43 0.53 0.49 0.54 0.46 0.45 0.50 0.54 0.55 0.58 0.36 0.40 0.52 0.56
DH4 0.44 0.54 0.47 0.46 0.38 0.43 0.55 0.59 0.50 0.58 0.30 0.36 0.48 0.48
DH5 -0.01 0.09 0.05 0.11 0.09 0.10 0.10 0.13 0.15 0.16 0.01 0.07 0.05 0.07
DH6 0.25 0.44 0.27 0.45 0.29 0.44 0.42 0.50 0.42 0.53 0.09 0.23 0.09 0.14
DH7 0.40 0.51 0.37 0.55 0.36 0.46 0.45 0.51 0.34 0.47 0.13 0.25 0.30 0.29
DHS8 0.20 0.44 0.09 0.47 0.21 0.50 0.31 0.43 0.29 0.41 0.00 0.20 0.07 0.18
DH9 0.28 0.39 0.26 0.35 0.22 0.37 0.35 0.43 0.36 0.42 0.03 0.15 0.12 0.11
DH10 0.34 0.56 0.47 0.54 0.40 0.46 0.52 0.57 0.46 0.54 0.18 0.26 0.52 0.53
DHI11 -0.15 0.20 -0.11 0.19 -0.13 0.19 0.06 0.22 -0.03 0.18 -0.09 0.12  -0.05 0.09
average 0.14 0.26 0.18 0.28 0.18 0.26 0.24 0.29 0.22 0.29 0.06 0.16 0.15 0.19

‘ Aug 29 ‘ Sep 5-7 ‘ Sep 21 ‘ Oct 27 | average ‘
station ols lasso ols lasso ols lasso ols lasso ols lasso ols lasso ols lasso
AP1 0.13 0.20 0.08 0.11 0.06 0.11  -0.09 -0.14 0.13 0.14 0.35 0.36 0.15 0.18
AP3 0.09 0.11 0.07 0.07 0.08 0.08 -0.01 -0.01 0.11 0.12 0.24 0.25 0.13 0.13
AP4 0.06 0.06 0.08 0.07 0.06 0.06 0.00 0.01 0.08 0.08 0.07 0.08 0.06 0.06
AP5 0.10 0.18 -0.05 0.13 -0.07 -0.03 -0.30 -0.11 -0.03 -0.05 0.29 0.32 0.07 0.14
APG6 0.00 0.04 -0.01 0.02 0.05 0.06 0.01 0.00 0.01 0.02 0.00 0.01 0.01 0.04
APT7 0.00 0.00 0.06 0.06 0.03 0.03 0.04 0.04 0.06 0.06 0.01 0.01 0.03 0.03
DH1 -0.02 0.15 -0.15 0.04 -0.13 -0.01 -0.84 -0.01 -0.10 0.00 -0.17 0.13  -0.13 0.08
DH2 0.04 0.12  -0.02 0.04 0.02 0.04 -0.26 -0.14 0.04 0.08 -0.01 0.07 -0.01 0.06
DH3 0.39 0.45 0.32 0.37 0.16 0.19 0.06 0.01 0.35 0.36 0.56 0.55 0.40 0.42
DH4 0.38 0.43 0.16 0.29 0.02 0.20 -0.14 0.15 0.23 0.27 0.49 0.56 0.33 0.41
DH5 0.07 0.12 0.05 0.08 -0.26 -0.19 -0.08 -0.03 0.04 0.05 0.17 0.22 0.03 0.08
DH6 0.38 0.48 -0.02 0.12 -0.61 -0.16 -0.53 -0.05 -0.20 -0.13 0.50 0.63 0.10 0.28
DH7 0.31 0.44 0.03 0.20 -0.08 0.01 -0.35 -0.31 0.05 0.06 0.57 0.64 0.22 0.31
DHS8 0.30 0.40 -1.04 0.16 -0.71 -0.06 -1.13 -0.14 -0.17 0.14 0.23 0.55 -0.10 0.28
DH9 0.20 0.39 -0.14 0.14 -0.52 -0.05 -0.57 -0.14 -0.13 0.01 0.50 0.57 0.07 0.24
DH10 0.26 0.42 0.08 0.26 0.01 0.23 -0.50 -0.10 0.18 0.23 0.46 0.57 0.26 0.39
DH11 -0.01 0.16 -0.43 0.03 -0.51 -0.10 -1.58 0.02 -0.31 0.06 0.01 0.25 -0.26 0.12

average 0.16 0.24  -0.06 0.13 -0.14 0.02 -0.37 -0.06 0.02 0.09 0.25 0.34 0.08 0.19

27 where 3, represents the spatial submatrix at time lag 7:

211,7 E12,‘r Eln,‘r
Yoty o2 ot Dopr

5= O IS (12)
Enl,‘r Zn2,’r T E'an,T

2rs - where ¥;; » denotes the lag 7 empirical correlation between stations i and j. We note that the correlation
276 matrix X in Eq. (11) follows a kriging formulation (Yang et al., 2013b).

277 Following Egs. (11) and (12), spatio-temporal correlation matrices for 2010 July 31 and September 7
27s  are shown in Fig. 6, where m is set as 5 for illustration purpose. Each matrix therefore has dimension
270 85 x 17 with spatial submatrices stratified by gray dashed lines. To visualize the correlations, we arrange
280 the stations ¢ = 1,--- ,n in the along-wind direction, i.e., station-1 corresponds to AP7 while station-17
2e1 corresponds to DHS8. By observing the spatial submatrices in the July 31 plot, directional property can be
a2 clearly identified as the correlations from the lower triangular regions (along-wind) are much stronger than
2s3  the ones in the upper triangular regions (against-wind). However, the directional effects on September 7 are
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Figure 6: Spatio-temporal correlation structures on 2010 July 31 and September 07. Abscissa and ordinate of each subplot are
the row and column index of the matrix ¥ in Eq. (11) respectively, with n = 17 and m = 5. Asymmetric spatial submatrices
can be seen on July 31 plot, indicating a strong evidence for along-wind correlation. Directional correlation is less obvious for
the case of September 07.

present but are less significant. As mentioned earlier, the lasso selects a new predictor based on correlation
in each step, the proximities of correlation between the residual and each candidate can make the selection
degenerate. The forecasting results for September 7 are therefore worse than the results from other days.

4.2. Case study 7: forecast all stations with various forecast horizons (with known wind information)

The last case study in this paper evaluates performance of the lasso at various forecast horizons. Data
from the 13 selected days are first averaged into 10, 20, 30, 40, 50, 60, 120, 180 and 300 second intervals.
For each set of the averaged data, one-step-ahead forecasts using the lasso, OLS, ETS and ARIMA are
performed. Case study 2 shows that the performance of the OLS improves substantially when the training
data length increases. Furthermore, case studies 4 and 5 show that the performance of the OLS can be
enhanced by preselecting the up-wind spatial neighbors. A pro-OLS formulation is considered in this case
study, i.e., we assume the wind information is known and use 50% of the data for training.

The forecast skill of the lasso is plotted against the forecast horizon in Fig. 7. Forecast skills of the OLS,
ETS and ARIMA models are shown using other types of lines. We can conclude from Fig. 7 that the lasso in
general has a better performance than the benchmarking models for all forecast horizons. For sub-1-minute
horizons, the lasso performs well over the univariate models. On the other hand, for fh = 300s, all the
methods (except for the OLS) are comparable to the persistence model. Another observation which can be
made is that the forecast skills of the leading (upwind) and the lagging (downwind) stations are significantly
different at smaller forecast horizons. For the stations without any leading station, namely, AP4, AP6, AP7,
DH1 and DH2, the lasso gives comparable results to the persistence model. On the other hand, even with
the presence of only one leading station, as in the cases of AP3, AP5 and DH5, the lasso can effectively
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Figure 7: Average forecast skill of the lasso regression method during the 13 selected days at each station.

pick up the relevant predictors and show superiority. On the contrary, although a pro-OLS formulation is
used here, OLS still performs badly for fh > 60. We note that when wind information is assumed to be
unknown and/or fewer data are used for training, OLS is more likely to produce unacceptable results due
to the degeneracies in the predictors (see Appendix A for more details).

5. Conclusions

A very short-term irradiance forecasting method is proposed. The lasso is used to shrink and select the
spatio-temporal neighbors from lagged time series collected by a dense network of monitoring stations. Due
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to the presence of highly correlated data from the along-wind station pairs, the forecast results improve
significantly from persistence and other univariate time series methods. The lasso also outperforms the
ordinary least squares model. The advantage of the lasso over OLS is more notable when the number of
predictors in a regression model is large and/or training data are few.

The lasso method answers the earlier questions in section 1. As the lasso considers correlation intrinsically,
magnitudes of the observed correlation are embedded in the lasso procedure. When wind speed and direction
change from day to day or within a day, an adaptive model can be considered. In other words, the lasso is
iteratively used to identify the most appropriate predictors for a given time period. When the correlation is
unobserved at the boundary stations, autocorrelated time series from the station itself can be included as
predictors. Such practice allows the lasso to behave similar to an autoregressive model; its performance is
thus expected to be no worse than persistence and simple time series models.

Forecasting using the lasso requires a sensor network. The method herein described can be applied to
networks with other spatial and temporal scales. However, the performance the lasso is limited by the
observed spatio-temporal correlations. In a previous work by Yang et al. (2014a), the lasso was used to
forecast the irradiance using a sparse network of 13 stations in Singapore, a 40x20 km island. Due to the
low station density, thus low correlations among the stations, the performance of the lasso was shown to
be suboptimal. This problem therefore brings the question on applicability of the lasso. Fortunately, as
the ground-based irradiance sensing technologies advance, it would soon to be justifiable to install sensor
networks with utility scale solar power plants. In addition, reference cells are often installed at plane of
array to monitor the PV performance. These tilted data can also be utilized in forecasting by converting
them to GHI using inverse transposition models, such as the ones shown in (Yang et al., 2014b, 2013a).
Alternatively, in-plane clear sky models can be used to normalize the tilted reference cell measurements,
and thus make them useful for forecasting (Lipperheide et al., 2015).

Appendix A. Additional forecasting results

We have shown that the OLS performs worse than the lasso at various forecast horizons in section 4.2.
In this appendix, some additional forecast results are provided. Beside using the training length of 50%,
other choices including 20%, 30% and 40% are explored with known wind information. Instead of using the
forecast skill defined in Eq. (2), we consider a new forecast skill which may suit the situation better. The
forecast skill of the lasso with respect to the OLS results is defined as:

HRMSElasso(fh; tl)
nRMSEs(fh; tl)

FS*(fh;tl) =1 — (A1)
where fh and tl denote the forecast horizon and training length respectively; nRMSEj,sso and nRMSEgs
are normalized root mean square errors of the lasso and OLS models. Following this definition, the FS*
values are plotted in Fig. A.8. It can be concluded that the lasso is superior to OLS at all forecast horizons
and for all training lengths. It is evident that as the forecast horizon increases, the accuracies of the OLS
models drop significantly due to fewer fitting samples (for the same training percentage, the fh = 300 cases
have fewer training points than the fh = 10 cases). Consequently, the FS* tends to increase as the forecast
horizon increases.

Appendix B. Supplementary material

Supplementary data associated with this article can be found, in the online version, at online URL
placeholder.

We provide the R code used to generate the results shown in Tables 2 and 3. Instead of providing the
data (which would then violate the NREL data agreement), we provide the R code used to arrange the data,
thus make the code readily executable once R is installed and the raw data are downloaded from the NREL
website. The software installation information can be found at http://www.r-project.org/.
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Figure A.8: Average forecast skill (with respect to the OLS results) of the lasso regression method during the 13 selected days
at each station. Various training lengths are considered.
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