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Abstract

We find an application of the lasso (least absolute shrinkage and selection operator) in sub-5-minute solar
irradiance forecasting using a monitoring network. Lasso is a variable shrinkage and selection method for
linear regression. In addition to the sum of squares error minimization, it considers the sum of `1-norms of
the regression coefficients as penalty. This bias-variance trade-off very often leads to better predictions.

One second irradiance time series data are collected using a dense monitoring network in Oahu, Hawaii.
As clouds propagate over the network, highly correlated lagged time series can be observed among station
pairs. Lasso is used to automatically shrink and select the most appropriate lagged time series for regression.
Since only lagged time series are used as predictors, the regression provides true out-of-sample forecasts.
It is found that the proposed model outperforms univariate time series models and ordinary least squares
regression significantly, especially when training data are few and predictors are many. Very short-term
irradiance forecasting is useful in managing the variability within a central PV power plant.

Keywords: Lasso, Irradiance forecasting, Monitoring network, Parameter shrinkage

1. Introduction1

Variability in solar irradiance reaching the ground is primarily caused by moving clouds. To accurately2

forecast the irradiance, cloud information must be directly or indirectly incorporated into the formulation.3

Due to the stochastic nature of the clouds, it is difficult to fully model their generation, propagation,4

and extinction using physical approaches. Statistical methods are therefore often used to extract cloud5

information from observations (e.g. Yang et al., 2015; Dong et al., 2014; Lonij et al., 2013).6

We are particularly interested in very short term (sub-5-minute) irradiance forecasting as the clouds7

are relatively persistent during a short time frame. Unlike the forecasts with longer horizons where the8

results are essential for electricity grid operations, the very short term forecasts find their applications in9

large photovoltaics (PV) installations. Knowing the potential shading/unshading over a particular section10

of a PV system in advance may be advantageous to maximum power point tracking algorithms (Hohm and11

Ropp, 2000). Accurate sub-minute forecasts could also bring possibilities to better control of ramp-absorbing12

ultracapacitors (Mahamadou et al., 2011; Teleke et al., 2010).13

Inman et al. (2013) reviewed the state-of-the-art methods for very short term irradiance forecasting.14

The methods involve using either sky cameras (Nguyen and Kleissl, 2014; Yang et al., 2014c; Quesada-Ruiz15

et al., 2014) or a sensor network (Lipperheide et al., 2015; Bosch and Kleissl, 2013; Bosch et al., 2013). All of16
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these listed references aim at explicitly deriving the cloud motions and thus forecast the irradiance. Beside17

many assumptions, such as linear cloud edge, that have to be made, various types of error will be embedded18

in different phases of such methods, especially during the conversion from cloud condition to ground-level19

irradiance. It is therefore worth investigating the alternative methods where cloud information is considered20

indirectly.21

Along-wind and cross-wind correlations observed between two irradiance time series have been studied22

intensively in the literature (e.g. Arias-Castro et al., 2014; Hinkelman, 2013; Lonij et al., 2013; Perez et al.,23

2012). If along-wind correlation between a pair of stations can be observed, we can use regression-based24

methods for forecasting. However, several problems have to be addressed before we describe our method:25

• The discrepancy between the direction of a station pair and the direction of wind may result in a26

smaller correlation. How do we incorporate the strength of cross-correlation between monitoring sites27

into the forecasting model?28

• When the wind speed changes from day to day or even within a day, the choices of lagged time29

series also need to be constantly updated. How do we then automatically select the most appropriate30

spatio-temporal neighbors for forecasting?31

• When the correlation is unobserved, do we need to switch the spatio-temporal forecasting algorithm32

to a purely temporal algorithm in an ad hoc manner?33

With these questions, we consider the lasso (least absolute shrinkage and selection operator) regression34

(Efron et al., 2004; Tibshirani, 2011, 1996). Lasso is a variable shrinkage and selection method for linear35

regression. In our application, the predictors (regressors) are the time series collected at the neighboring36

stations at various time lags (autocorrelated time series may also be used); the responses (regressands) are37

the time series collected at the forecast station. Some advantages of the lasso over the ordinary least squares38

regression, ridge regression and subset selection methods are discussed in section 2.39

1.1. Data40

Data from a dense grid of irradiance sensors located on Oahu Island, Hawaii, are used in this work. The41

network is installed by the National Renewable Energy Laboratory (NREL) in March 2010. It consists of42

17 radiometers, as shown in Fig. 1. The sampling rate of these stations is 1 second. Previously, Hinkelman43

(2013) showed the possibility of observing highly correlated time series from this network; data from 13 days44

dominated by broken clouds were used in that study. We therefore use the data from the exact same days45

(Hinkelman, 2014) to study the predictive performance of such network configuration. The data are freely46

available at http://www.nrel.gov/midc/oahu_archive/.47

Throughout the paper, the 1 second irradiance data will be averaged into various intervals to evaluate48

the forecasts with different forecast horizons. As high frequency data often have local maxima and minima49

caused by noise rather than cloud effects (Bosch and Kleissl, 2013), the smallest aggregation interval is 1050

second. Prior to any forecasting, the global horizontal irradiance (GHI) time series from these 17 stations51

are first transformed into clearness index time series. Such transformation is commonly used in irradiance52

forecasting to stabilize the variance, i.e., to remove the diurnal trends in the GHI time series. We use the53

solar positioning algorithm developed by Reda and Andreas (2008) for extraterrestrial irradiance calculation.54

Finally, we include a zenith angle filter of <80◦.55

1.2. Error metrics56

All the forecasting models in this paper are built using the clearness index time series; the errors are57

evaluated using the GHI transformed back from the forecast clearness index. Two error metrics are used in58

this paper, namely, the normalized mean absolute error (nMAE) and the forecast skill (FS). The nMAE is59
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Figure 1: Layout of the 17 stations of the NREL Oahu network. The scale of the map is shown in the bottom right corner.
The arrow in the top right corner shows the prevailing trade winds direction (60◦ from north). The average wind speed during
the periods of analyses is 10 m/s. See (Arias-Castro et al., 2014; Hinkelman, 2013) for more details on the data.

given by:60

nMAE =

1

n

n∑
i=1

∣∣∣Ĝi −Gi∣∣∣
1

n

n∑
i=1

Gi

× 100% (1)

where Gi denotes the GHI measured at ith time step; Ĝi denotes the forecast produced. The forecast skill61

(Chu et al., 2015) is given by:62

FS(fh) = 1− nRMSE(fh)

nRMSEp(fh)
(2)

where fh denotes the forecast horizon; nRMSEp and nRMSE are the normalized root mean square errors of63

the persistence model and the proposed model respectively. A persistence model assumes that the forecast64

is equal to the current observation; it is often used as a naive benchmark. The nRMSE is given by:65

nRMSE =

√√√√ 1

n

n∑
i=1

(
Ĝi −Gi

)2
1

n

n∑
i=1

Gi

× 100% (3)

The nMAE is a form of mean absolute error (MAE) while the forecast skill is a form of mean square66

error (MSE). MAE and MSE both measure the average magnitude of the errors and are frequently used in67

forecasting applications. MAE is a linear score which weights individual error equally. For the case of the68

MSE, the errors are squared before averaging; it gives higher weights to large errors. This indicates that the69

MSE is more useful when large errors are particularly undesirable, as in the case of solar power forecasting.70
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2. Method71

Given data (xi, yi), i = 1, · · · , n, where xi = (xi1, · · · , xip)> are the p predictor variables and yi are the72

responses, the linear regression model has the form:73

yi = β0 +

p∑
j=1

βjxij (4)

where β = (β0, β1, · · · , βp)> is the regression parameter. The lasso estimate of β is defined by:74

β̂ = argmin
β


n∑
i=1

yi − β0 − p∑
j=1

βjxij

2
 ,

s.t.
p∑
j=1

|βj | ≤ t (5)

where t ≥ 0 is a tuning parameter which controls the amount of shrinkage. Eq. (5) is equivalent to the75

`1-penalized regression problem of finding:76

β̂ = argmin
β


n∑
i=1

yi − β0 − p∑
j=1

βjxij

2

+ λ

p∑
j=1

|βj |

 (6)

where λ is a tuning parameter which regulates the strength of the penalty (Tibshirani, 1996).77

Minimizing the sum of squares part of Eq. (6) gives the ordinary least squares (OLS) estimate. The OLS78

estimates have low bias but high variance. It can be shown that by removing predictors from the full least79

squares model, the variance of the estimated response is reduced with an increased bias as trade-off (Miller,80

2002). Furthermore, the model accuracy can often be improved by shrinking or setting some coefficients to81

zero. Therefore, regression shrinkage and selection is a useful tool when the aim is to predict the response82

variable accurately.83

Beside the lasso, ridge regression and subset selection (such as the stepwise regression) are also frequently84

used to improve OLS. Ridge regression penalizes the sum of squares using an `2-penalty, i.e., by changing85

the |βj | terms in Eqs. (5) and (6) to β2
j . One of the advantages of the ridge regression is its stability, i.e.,86

the ridge regression estimates are little affected by small changes in the regression inputs. Subset selection87

methods select a subset of predictors, the OLS is then used to estimate the regression coefficients of the88

predictors that are retained. The advantage of subset selection methods is its interpretability, i.e., the89

irrelevant predictors are excluded from the model. However, it is noted that the lasso model is interpretable90

like the subset selection method; it also has the stability of the ridge regression (Tibshirani, 1996). The91

above discussion can be inferred from a geometrical point of view; we refer the readers to (Hastie et al.,92

2009; Efron et al., 2004).93

The most interesting property of the lasso comes from its `1-penalty, which often shrinks some regression94

coefficients to exactly zero. This property suits our application where down-wind stations should have95

minimal influence, if not no influence, on the measurements at up-wind stations. As uncorrelated predictors96

only contribute to the variance of the OLS estimates but not the accuracy, they therefore should not be97

included in the model. By selecting a proper t, the uncorrelated predictors can be truncated. The standard98

way to select t is k-fold cross validation (Efron et al., 2004); we use the k-fold cross validation (CV) in this99

work. Alternatively, information criteria can be used (see Zou et al., 2007; Tibshirani and Taylor, 2012).100

We use the implementation by Hastie and Efron (2013) for lasso computation. The library is implemented101

in the statistical software R (R Core Team, 2014); we list the key steps here:102

1. Coefficients βj are set as zeros at the start.103
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2. Find the predictor xj with highest absolute correlation with y.104

3. Increase the coefficient βj in the direction of the sign of its correlation with y, until some other predictor105

xk has as much correlation with r as xj has. r is the residual, r = y − ŷ.106

4. Increase (βj , βk) in their joint least squares direction, until some other predictor xm has as much107

correlation with the residual r.108

5. The algorithms stops when all the predictors are in the model.109

For further understanding on the shrinkage and selection procedures of the lasso, we refer the readers to110

(Efron et al., 2004; Tibshirani, 2014).111

Two families of time series models, namely, the exponential smoothing (ETS) family of models and112

the autoregressive integrated moving average (ARIMA) family of models are used to benchmark the lasso113

regression model. The implementations for these models follow our previous works (Dong et al., 2013; Yang114

et al., 2012). Systematic descriptions on the ETS model and the ARIMA model can be found in the books115

by Hyndman et al. (2008) and Box et al. (1994) respectively. The clearness persistence model (see Marquez116

and Coimbra, 2012, for definition) is included as the baseline model. The above benchmarks are univariate117

models, i.e., using data from a single station. Therefore, the OLS is used as a multivariate benchmarking118

model.119

3. Results from a single day with a single forecast horizon120

Throughout this section, only the 10 second averaged data from a single day, namely, 2010 July 31, is121

used. After applying the data filters described in section 1.1, 4133 data points are obtained for each station.122

A total of 5 case studies are presented in this section.123

3.1. The effect of parameter shrinkage124

To demonstrate the shrinkage effect of the lasso, we consider a forecasting example at station DH4. In125

this example, the first 2066 data points (50%) are used for fitting and the remaining data points are used126

for validation. Two stations, namely, DH5 (up-wind station) and DH6 (down-wind station), are used as127

the spatial neighbors of the forecast station. For each spatial neighbor, time series up to lag-3 are used.128

Together with the autocorrelated time series from DH4 itself, we have a lasso regression with design matrix129

x with p = 9 and n = 2063. Note that the first 3 training samples are used to produce the lagged time130

series, n for the design matrix is therefore reduced by 3.131

Recall Eq. (5), the parameter t controls the amount of shrinkage. When t is large, the constraint on the132

`1-norms loses its effect. More specifically, when t >
∑
j β̂

o
j , where β̂oj is the full OLS estimates, the lasso133

estimates β̂j is equal to β̂oj . To visualize the effect of t, we define the shrinkage factor:134

s = t

/
p∑
j=1

∣∣∣β̂oj ∣∣∣ (7)

For any 0 < s ≤ 1, the corresponding solution of the lasso can be found. The solution path (the collection135

of all solutions for 0 < s ≤ 1) of the lasso can be found using the algorithm shown in section 2. Fig. 2 shows136

the solution path of the lasso. It can be seen that predictor DH5[1] (the lag-1 time series at station DH5)137

enters the model first. This agrees with the physical understanding, namely, the up-wind station has an138

effect on station DH4. On the other hand, predictor DH6[3] enters the model at a later stage with small139

coefficients throughout, indicating that this predictor has a small effect on the response variable. If we140

select s anywhere along the scale, the shrinkage effect is obvious. For example, if we choose s = 0.35, only141

two predictors, DH5[1] and DH4[1], will be used to predict the clearness index at DH4; their coefficients142

are given by the intersections of the solution path and the dashed vertical line, as shown in Fig. 2. Other143

predictors have zero coefficients.144
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Figure 2: Estimates of lasso regression coefficients β̂j , j = 1, · · · , 9, for the case study in section 3.1. The covariates enter the
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3.2. Case study 1: forecast DH4 using 9 predictors145

Once the lasso solution path is calculated and the best s value is determined by CV, we can fit the model146

using new predictor values (the remaining 50% of data). As all the predictors are lagged variables, the147

forecast of the response variable can be readily obtained. To benchmark the lasso, the persistence, ARIMA148

and ETS models are used. The ARIMA and ETS models use the same training length as the lasso; the149

forecasts are produced for the remaining data using the trained models. The persistence is only evaluated150

for the testing data. Beside the univariate (single-sensor) models, full OLS (the s = 1 case) is also used to151

benchmark the lasso. Suppose we have response vector y and design matrix X, the OLS estimates are:152

β̂o =
(
X>X

)−1
X>y (8)

The nMAEs for the persistence, ETS, ARIMA, OLS and lasso models are 7.93%, 7.93%, 8.68%, 4.20%,153

4.18%, respectively. The forecast skills (FS) for the ETS, ARIMA, OLS and lasso models are 0.00, 0.03,154

0.49, 0.49 respectively. It is observed that the OLS and lasso produce significantly better forecasts than155

the univariate models. It is also found that the choice of error metric can lead to different conclusions on156

forecast results; the ARIMA model is worse than persistence in terms of nMAE but is better in terms of157

FS. We note that the predictive performance of the lasso is similar to the OLS in this example. However, as158

shown in later examples, when the number of predictors gets large and/or the training data are insufficient,159

the OLS produces unacceptable results.160

3.3. Case study 2: forecast DH4 using various training data lengths161

The above toy example assumes a fixed training length. If 50% of data are used for training in each day,162

it would not be acceptable for operational forecasting. Therefore, we investigate the effect of training length163

on forecast accuracy in this case study. Forecasts at DH4 using the lasso and OLS models with various164

training data lengths are evaluated. The results from the ETS and ARIMA models are omitted. Previously,165

the choice of 9 predictors is only made for simplicity, i.e., to make Fig. 2 readable. In this case study, a166
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full network model with p = 170 is considered, i.e., time series up to lag-10 from each of the 17 stations are167

used. The results are depicted in Table 1.168

Table 1: The performance of the lasso and OLS models for various training data lengths (in % of total number of data points).
10 second averaged data from 2010 July 31 are used.

nMAE [%] forecast skill

% train pers ols lasso ols lasso

10 8.36 12.16 7.73 -0.06 0.39
20 8.65 8.89 4.39 0.23 0.54
30 8.67 5.59 4.16 0.49 0.57
40 8.20 5.05 3.99 0.51 0.56
50 7.98 4.89 3.95 0.51 0.56

It can be concluded from Table 1 that the lasso outperforms the OLS method for all training lengths.169

The accuracy of the OLS model reduces when the training data become fewer. Furthermore, even when the170

data are sufficient (such as the 50% case), the OLS still performs worse than the lasso. This is due to the171

large number of irrelevant predictors in the OLS model. On the other hand, the accuracy reduction in the172

lasso is marginal (except for the 10% case). These observations align with the discussions in Chapter 1 of the173

book by Miller (2002). In a regression problem with many predictors, when the data are few, the regression174

coefficients given by the OLS will be poorly determined, and the predictions also tend to be poor. Fig. 3175

shows the distributions of regression coefficients fitted using the lasso and OLS for each training length. We176

note that Gaussian kernel is used in the plot for visualization. In each subplot, 170 red dots are plotted with177

some overlay, representing the 170 estimated regression coefficients. For the 10% case, the lasso identifies 4178

predictors with larger coefficients while the remaining predictors have near zero coefficients. In contrast, the179

OLS produces a distribution of coefficients with a wide spread. As the length of the training data increases,180

the coefficients determined by the OLS become similar to those determined by the lasso. Consequently, the181

forecast errors of the OLS are comparable to the errors of the lasso for longer training lengths.182

In addition to the analyses above, the time series plots and the scatter plots of the forecasts (the 20%183

case) are shown in Fig. 4. The top plot shows that the lasso improves the forecasts significantly. There184

is no time lag between the forecast and measured time series, which is otherwise unachievable using any185

univariate statistical method. The bottom plot of Fig. 4 shows that the lasso can reduce the variance of the186

forecast significantly, thus may result in narrower confidence intervals for interval-based forecasts.187

We note that for operational forecasting, the problem of training length can be relaxed thanks to possible188

similarities in meteorological conditions. In other words, when the present day’s meteorological conditions189

are similar to the conditions in some historical days, previously trained models can be readily applied to190

the present forecasts. Furthermore, we can adaptively update the model within a day when data become191

available. Such enhancements to the method are not discussed in this work.192

3.4. Case study 3: forecast DH4 using various numbers of predictors193

In this case study, we verify the effect of number of predictors on the lasso. Based on the results from194

case study 2, 20% of the data are used for training and the remaining data are used for testing. We can195

vary p by either adjusting the number of spatial neighbors or adjusting the number of lagged series (the196

temporal neighbors). The relationship is written as p = (ns+1)×nt, where ns and nt are numbers of spatial197

and temporal neighbors respectively. The +1 term indicates that the autocorrelated time series are used as198

predictors as well. The nMAE and FS of the lasso are shown in Fig. 5; the results from the benchmarking199

models are omitted.200

The number of spatial neighbors in Fig. 5 are incremented sequentially following the increasing distance201

to station DH4, i.e., DH3 (nearest to DH4) is added first and AP6 (furthest from DH4) is added last. We202

note that ns < 3 cases produce larger errors; to visualize the color contrast among other combinations, these203

cases are excluded from the plot. As the forecast results do not differ much from each other for different p,204

no obvious conclusion can be established regarding the best combination of ns and nt. In other words, once205
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Figure 3: Distributions of regression coefficients using the lasso and OLS for various training data lengths (in % of total number
of data points). In each subplot, there are 170 red dots (with some overlay) representing 170 regression coefficients, i.e., p = 170.
Gaussian kernel is used for density estimation and visualization.

the most correlated predictors (DH5[1] in this case) are added into the lasso, the forecast does not improve206

substantially by adding in other predictors. It may also be noted that the distributions of nMAE and FS in207

Fig. 5 seem to possess certain geometrical patterns. At this stage, we hypothesize that these patterns are208

due to spatial and temporal frequency of the data. Further investigations may apply.209

3.5. Case study 4: forecast all stations using preselected predictors (with known wind information)210

In section 3.4, we showed that the irradiance measurements from the up-wind stations are essential to211

make good forecasts. It is therefore logical to select ns and nt based on the prior knowledge on wind speed212

and direction. We consider the wind speed u and timescale t̄. Suppose Ω is the set of all up-wind stations213

to an arbitrary station s0, i.e., Ω = {sj : sj ∈ up-wind stations}, then the following rules should apply:214

ns = card(Ω) (9)

nt = max

(
ζ,

⌈
max(d0j)

ut̄

⌉)
, sj ∈ Ω (10)

where card(·) is the cardinality of the set; ζ is some positive integer which will be explained shortly; d0j215

is the along-wind distance between the forecast station s0 and an up-wind station sj . Notation d·e is the216

ceiling operator; it is used because nt can only take discrete values. We note that this preselection method217

is similar to the heuristic proposed by Yang et al. (2014a). It was shown that the preselection (shrinkage)218
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can improve the forecast from the models which consider the full set of spatio-temporal neighbors (Yang219

et al., 2014a).220

Eq. (9) ensures that all the up-wind stations are included as lasso predictors. Eq. (10) ensures the moving221

clouds have sufficient time to reach the forecast station. Moreover, when nt < ζ, we manually force it to be222

ζ, to include sufficient number of autocorrelated predictors. For example, for station AP7, it has no up-wind223

station, therefore its ns = 0 and nt = ζ. It should be noted that when ζ is large enough, Eq. (10) loses224

its effect. We set ζ = 3 for illustration. Hinkelman (2013) showed that the average inferred wind speed for225

the 13 selected days is 10 m/s, i.e., u = 10. Furthermore, in this section, t̄ = 10 s. Therefore, as another226

example, station DH8 should have ns = 16 and nt = d1046/(10×10)e = 11, where 1046 m is the along-wind227

distance between DH8 and AP7. With these assumptions, we use the lasso and other benchmarking models228

to predict the irradiance observed at all the stations on 2010 July 31. The training and testing data follows229

section 3.1, namely, 20% and 80% respectively. The nMAE and FS for various models are shown in Table 2.230

Table 2: The nMAE [%] and FS of the forecasts for 2010 July 31. 10 second average data are used. The lasso implementations
using Eqs. (9) and (10) are benchmarked using the persistence (pers), exponential smoothing state space (ets), the autoregressive
integrated moving average (arima) and the ordinary least squares (ols) models.

nMAE [%] forecast skill

station pers ets arima ols lasso ets arima ols lasso

AP1 8.62 9.01 8.92 8.51 7.17 -0.02 0.00 0.17 0.25
AP3 9.00 10.15 10.17 9.03 8.51 -0.09 -0.05 0.12 0.15
AP4 9.16 11.20 10.03 10.36 10.15 -0.18 -0.03 -0.01 0.01
AP5 8.50 9.19 9.30 9.68 8.19 -0.04 -0.02 0.11 0.19
AP6 8.36 9.84 8.89 9.96 9.05 -0.12 -0.02 -0.04 0.01
AP7 9.85 11.48 11.08 10.20 10.15 -0.13 -0.04 -0.01 0.00
DH1 8.25 9.67 8.67 11.34 8.10 -0.13 -0.01 -0.07 0.12
DH2 8.70 9.62 9.83 10.93 9.33 -0.07 -0.04 -0.02 0.08
DH3 8.86 9.30 9.40 6.46 5.21 -0.03 -0.02 0.43 0.53
DH4 8.65 9.29 9.02 6.02 4.41 -0.04 0.00 0.44 0.54
DH5 8.55 9.36 8.86 10.67 9.16 -0.06 0.01 -0.01 0.09
DH6 8.59 9.10 9.33 8.53 5.89 -0.02 -0.03 0.25 0.44
DH7 8.44 9.31 10.20 6.56 4.92 -0.07 -0.07 0.40 0.51
DH8 8.49 9.29 9.06 9.29 5.75 -0.04 -0.01 0.20 0.44
DH9 8.79 9.51 9.07 8.55 6.46 -0.04 0.01 0.28 0.39
DH10 8.62 9.13 9.14 7.75 4.71 -0.03 0.00 0.34 0.56
DH11 8.42 8.94 8.58 12.98 7.61 -0.02 0.02 -0.15 0.20

average 8.70 9.61 9.39 9.22 7.34 -0.07 -0.02 0.14 0.27

Table 2 shows that the lasso outperforms the univariate models significantly; its improvement from the231

OLS model is also evident. This indicates that although the preselection using Eqs. (9) and (10) could232

reduce the number of potential predictors by excluding the down-wind stations, the lasso can further shrink233

and select the remaining predictors. In a later section of the paper, we show that the improvements made234

using the lasso from using the OLS are more significant for longer forecast horizons.235

3.6. Case study 5: forecast all stations using 170 predictors (with unknown wind information)236

The case study in section 3.5 considers the wind information. When wind information is unknown,237

sufficiently large ns and nt can be assumed based on expert view. For instance, we can assume the full238

network models used in case study 2, i.e., ns = 16, nt = 10 and p = 170. The nMAE and FS for the239

lasso and the OLS models are shown in Table 3. It is observed that the average nMAE and FS of the OLS240

models in Table 3 are much worse than those in Table 2. This is because that case study 5 contains more241

irrelevant predictors due to unknown wind information; the OLS models thus have larger variances. On the242

other hand, the performance of the lasso models in case study 5 is consistent with the earlier case study,243

indicating effective shrinkage and selection.244

It is evident from the errors reported in Tables 2 and 3 that the lasso performs well at the center245

stations (e.g., DH3, DH4 and DH10) where suitable predictors can be found from lagged time series from246

the peripheral stations. However, for stations located at the boundary of the sensor grid, due to lack of247
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Table 3: Same as Table 2, except that the lasso assumes unknown wind information. The number of predictors p = 170 are
used in both the lasso and OLS models.

nMAE [%] forecast skill

station ols lasso ols lasso

AP1 12.22 7.85 -0.07 0.23
AP3 14.33 8.64 -0.23 0.17
AP4 13.77 9.62 -0.17 0.08
AP5 11.94 8.12 -0.05 0.20
AP6 14.28 9.38 -0.26 0.02
AP7 13.71 10.27 -0.14 0.02
DH1 14.05 8.31 -0.26 0.11
DH2 14.74 9.17 -0.29 0.12
DH3 9.29 5.41 0.22 0.52
DH4 8.89 4.39 0.23 0.54
DH5 13.37 9.28 -0.17 0.10
DH6 8.74 5.81 0.23 0.44
DH7 7.75 4.56 0.32 0.51
DH8 8.83 5.83 0.23 0.44
DH9 9.39 6.42 0.21 0.40
DH10 8.40 4.88 0.29 0.56
DH11 14.61 7.71 -0.27 0.20

average 11.67 7.39 -0.01 0.27

suitable predictors, the lasso may produce higher errors (see AP6 and AP7). We would like to note that248

if autocorrelated predictors are not used, the results will be worse. As we cannot “infinitely” expand the249

monitoring network so that an up-wind station can always be found, the best practice is thus to include the250

autocorrelated time series in the model. In this way, it allows the lasso to possibly reduce to an autoregressive251

model.252

4. Results from all 13 days with various forecast horizons253

In the previous section, performance of the lasso along with several benchmarking models is evaluated254

at a forecast horizon of 10 second for 2010 July 31. In this section, additional forecasting results are shown255

using data from all 13 selected days with various forecast horizons.256

4.1. Case study 6: forecast all stations for all 13 days (with known wind information)257

The configurations of this case study are identical to case study 4 in section 3.5, namely, using 10 second258

averaged data with a training length of 20%. For each day and for each station, autocorrelated time series259

are included in the lasso; ns and nt choices are made using Eqs. (9) and (10). Forecast skills of the lasso260

and OLS are shown in Table 4 with nMAE and the results of the univariate models omitted. By examining261

the average errors, it is observed that the lasso performs better than the OLS for all 13 selected days. We262

also observe that for most days, the boundary stations produce small FS due to lack of suitable spatial263

neighbors. Furthermore, it is found that for various days, the accuracies of the lasso can be very different.264

For examples, on September 7, many stations yield negative FS, whereas good forecasts are observed on265

July 31. We explain the results from a statistical point of view as follows.266

Recall the lasso procedure shown in section 2, the correlations between the predictors and the residuals267

are considered at each step. We thus note that the performance of our lasso application depends on the268

spatio-temporal correlation structure of the clearness index. Similar to a purely spatial correlation structure,269

a spatio-temporal correlation structure describes not only the spatial cross-correlation (correlation between270

data collected at two sites), but also the temporal cross-correlation (correlation between lagged data collected271

at two sites). In matrix form, for n stations and m maximum lags, the empirical spatio-temporal correlation272

structure can be written as:273

Σ =
(
Σ0 Σ1 · · · Σm−1

)>
, ∈ Rnm×n (11)
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Table 4: Evaluation of the forecast skill for the 13 days selected days expect for 2010 July 31. The lasso and OLS settings
follow section 3.5. Bold numbers indicate better OLS forecasts.

Jul 31 Aug 1–5 Aug 21

station ols lasso ols lasso ols lasso ols lasso ols lasso ols lasso ols lasso

AP1 0.17 0.25 0.27 0.30 0.20 0.20 0.23 0.27 0.20 0.26 0.11 0.16 0.12 0.13
AP3 0.12 0.15 0.18 0.20 0.20 0.19 0.16 0.18 0.23 0.25 0.09 0.10 0.06 0.06
AP4 -0.01 0.01 0.06 0.07 0.07 0.07 0.07 0.08 0.07 0.07 0.05 0.06 0.08 0.08
AP5 0.11 0.19 0.21 0.25 0.17 0.25 0.25 0.28 0.14 0.18 -0.01 0.08 0.10 0.16
AP6 -0.04 0.01 -0.03 0.04 0.05 0.05 0.03 0.05 -0.02 0.02 0.04 0.07 0.03 0.06
AP7 -0.01 0.00 0.03 0.03 0.04 0.04 0.03 0.03 0.03 0.03 0.01 0.01 0.00 0.00
DH1 -0.07 0.12 -0.04 0.13 -0.03 0.12 0.00 0.10 -0.01 0.14 -0.14 0.08 0.00 0.10
DH2 -0.02 0.08 0.01 0.11 0.06 0.07 0.06 0.11 -0.01 0.09 -0.05 0.06 0.04 0.10
DH3 0.43 0.53 0.49 0.54 0.46 0.45 0.50 0.54 0.55 0.58 0.36 0.40 0.52 0.56
DH4 0.44 0.54 0.47 0.46 0.38 0.43 0.55 0.59 0.50 0.58 0.30 0.36 0.48 0.48
DH5 -0.01 0.09 0.05 0.11 0.09 0.10 0.10 0.13 0.15 0.16 0.01 0.07 0.05 0.07
DH6 0.25 0.44 0.27 0.45 0.29 0.44 0.42 0.50 0.42 0.53 0.09 0.23 0.09 0.14
DH7 0.40 0.51 0.37 0.55 0.36 0.46 0.45 0.51 0.34 0.47 0.13 0.25 0.30 0.29
DH8 0.20 0.44 0.09 0.47 0.21 0.50 0.31 0.43 0.29 0.41 0.00 0.20 0.07 0.18
DH9 0.28 0.39 0.26 0.35 0.22 0.37 0.35 0.43 0.36 0.42 0.03 0.15 0.12 0.11
DH10 0.34 0.56 0.47 0.54 0.40 0.46 0.52 0.57 0.46 0.54 0.18 0.26 0.52 0.53
DH11 -0.15 0.20 -0.11 0.19 -0.13 0.19 0.06 0.22 -0.03 0.18 -0.09 0.12 -0.05 0.09

average 0.14 0.26 0.18 0.28 0.18 0.26 0.24 0.29 0.22 0.29 0.06 0.16 0.15 0.19

Aug 29 Sep 5–7 Sep 21 Oct 27 average

station ols lasso ols lasso ols lasso ols lasso ols lasso ols lasso ols lasso

AP1 0.13 0.20 0.08 0.11 0.06 0.11 -0.09 -0.14 0.13 0.14 0.35 0.36 0.15 0.18
AP3 0.09 0.11 0.07 0.07 0.08 0.08 -0.01 -0.01 0.11 0.12 0.24 0.25 0.13 0.13
AP4 0.06 0.06 0.08 0.07 0.06 0.06 0.00 0.01 0.08 0.08 0.07 0.08 0.06 0.06
AP5 0.10 0.18 -0.05 0.13 -0.07 -0.03 -0.30 -0.11 -0.03 -0.05 0.29 0.32 0.07 0.14
AP6 0.00 0.04 -0.01 0.02 0.05 0.06 0.01 0.00 0.01 0.02 0.00 0.01 0.01 0.04
AP7 0.00 0.00 0.06 0.06 0.03 0.03 0.04 0.04 0.06 0.06 0.01 0.01 0.03 0.03
DH1 -0.02 0.15 -0.15 0.04 -0.13 -0.01 -0.84 -0.01 -0.10 0.00 -0.17 0.13 -0.13 0.08
DH2 0.04 0.12 -0.02 0.04 0.02 0.04 -0.26 -0.14 0.04 0.08 -0.01 0.07 -0.01 0.06
DH3 0.39 0.45 0.32 0.37 0.16 0.19 0.06 0.01 0.35 0.36 0.56 0.55 0.40 0.42
DH4 0.38 0.43 0.16 0.29 0.02 0.20 -0.14 0.15 0.23 0.27 0.49 0.56 0.33 0.41
DH5 0.07 0.12 0.05 0.08 -0.26 -0.19 -0.08 -0.03 0.04 0.05 0.17 0.22 0.03 0.08
DH6 0.38 0.48 -0.02 0.12 -0.61 -0.16 -0.53 -0.05 -0.20 -0.13 0.50 0.63 0.10 0.28
DH7 0.31 0.44 0.03 0.20 -0.08 0.01 -0.35 -0.31 0.05 0.06 0.57 0.64 0.22 0.31
DH8 0.30 0.40 -1.04 0.16 -0.71 -0.06 -1.13 -0.14 -0.17 0.14 0.23 0.55 -0.10 0.28
DH9 0.20 0.39 -0.14 0.14 -0.52 -0.05 -0.57 -0.14 -0.13 0.01 0.50 0.57 0.07 0.24
DH10 0.26 0.42 0.08 0.26 0.01 0.23 -0.50 -0.10 0.18 0.23 0.46 0.57 0.26 0.39
DH11 -0.01 0.16 -0.43 0.03 -0.51 -0.10 -1.58 0.02 -0.31 0.06 0.01 0.25 -0.26 0.12

average 0.16 0.24 -0.06 0.13 -0.14 0.02 -0.37 -0.06 0.02 0.09 0.25 0.34 0.08 0.19

where Στ represents the spatial submatrix at time lag τ :274

Στ =


Σ11,τ Σ12,τ · · · Σ1n,τ

Σ21,τ Σ22,τ · · · Σ2n,τ

...
...

. . .
...

Σn1,τ Σn2,τ · · · Σnn,τ

 , ∈ Rn×n (12)

where Σij,τ denotes the lag τ empirical correlation between stations i and j. We note that the correlation275

matrix Σ in Eq. (11) follows a kriging formulation (Yang et al., 2013b).276

Following Eqs. (11) and (12), spatio-temporal correlation matrices for 2010 July 31 and September 7277

are shown in Fig. 6, where m is set as 5 for illustration purpose. Each matrix therefore has dimension278

85 × 17 with spatial submatrices stratified by gray dashed lines. To visualize the correlations, we arrange279

the stations i = 1, · · · , n in the along-wind direction, i.e., station-1 corresponds to AP7 while station-17280

corresponds to DH8. By observing the spatial submatrices in the July 31 plot, directional property can be281

clearly identified as the correlations from the lower triangular regions (along-wind) are much stronger than282

the ones in the upper triangular regions (against-wind). However, the directional effects on September 7 are283

12



Jul−31 Sep−07

0.00

0.25

0.50

0.75

1.00

correlation
coefficient

Figure 6: Spatio-temporal correlation structures on 2010 July 31 and September 07. Abscissa and ordinate of each subplot are
the row and column index of the matrix Σ in Eq. (11) respectively, with n = 17 and m = 5. Asymmetric spatial submatrices
can be seen on July 31 plot, indicating a strong evidence for along-wind correlation. Directional correlation is less obvious for
the case of September 07.

present but are less significant. As mentioned earlier, the lasso selects a new predictor based on correlation284

in each step, the proximities of correlation between the residual and each candidate can make the selection285

degenerate. The forecasting results for September 7 are therefore worse than the results from other days.286

4.2. Case study 7: forecast all stations with various forecast horizons (with known wind information)287

The last case study in this paper evaluates performance of the lasso at various forecast horizons. Data288

from the 13 selected days are first averaged into 10, 20, 30, 40, 50, 60, 120, 180 and 300 second intervals.289

For each set of the averaged data, one-step-ahead forecasts using the lasso, OLS, ETS and ARIMA are290

performed. Case study 2 shows that the performance of the OLS improves substantially when the training291

data length increases. Furthermore, case studies 4 and 5 show that the performance of the OLS can be292

enhanced by preselecting the up-wind spatial neighbors. A pro-OLS formulation is considered in this case293

study, i.e., we assume the wind information is known and use 50% of the data for training.294

The forecast skill of the lasso is plotted against the forecast horizon in Fig. 7. Forecast skills of the OLS,295

ETS and ARIMA models are shown using other types of lines. We can conclude from Fig. 7 that the lasso in296

general has a better performance than the benchmarking models for all forecast horizons. For sub-1-minute297

horizons, the lasso performs well over the univariate models. On the other hand, for fh = 300s, all the298

methods (except for the OLS) are comparable to the persistence model. Another observation which can be299

made is that the forecast skills of the leading (upwind) and the lagging (downwind) stations are significantly300

different at smaller forecast horizons. For the stations without any leading station, namely, AP4, AP6, AP7,301

DH1 and DH2, the lasso gives comparable results to the persistence model. On the other hand, even with302

the presence of only one leading station, as in the cases of AP3, AP5 and DH5, the lasso can effectively303
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Figure 7: Average forecast skill of the lasso regression method during the 13 selected days at each station.

pick up the relevant predictors and show superiority. On the contrary, although a pro-OLS formulation is304

used here, OLS still performs badly for fh > 60. We note that when wind information is assumed to be305

unknown and/or fewer data are used for training, OLS is more likely to produce unacceptable results due306

to the degeneracies in the predictors (see Appendix A for more details).307

5. Conclusions308

A very short-term irradiance forecasting method is proposed. The lasso is used to shrink and select the309

spatio-temporal neighbors from lagged time series collected by a dense network of monitoring stations. Due310
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to the presence of highly correlated data from the along-wind station pairs, the forecast results improve311

significantly from persistence and other univariate time series methods. The lasso also outperforms the312

ordinary least squares model. The advantage of the lasso over OLS is more notable when the number of313

predictors in a regression model is large and/or training data are few.314

The lasso method answers the earlier questions in section 1. As the lasso considers correlation intrinsically,315

magnitudes of the observed correlation are embedded in the lasso procedure. When wind speed and direction316

change from day to day or within a day, an adaptive model can be considered. In other words, the lasso is317

iteratively used to identify the most appropriate predictors for a given time period. When the correlation is318

unobserved at the boundary stations, autocorrelated time series from the station itself can be included as319

predictors. Such practice allows the lasso to behave similar to an autoregressive model; its performance is320

thus expected to be no worse than persistence and simple time series models.321

Forecasting using the lasso requires a sensor network. The method herein described can be applied to322

networks with other spatial and temporal scales. However, the performance the lasso is limited by the323

observed spatio-temporal correlations. In a previous work by Yang et al. (2014a), the lasso was used to324

forecast the irradiance using a sparse network of 13 stations in Singapore, a 40×20 km island. Due to the325

low station density, thus low correlations among the stations, the performance of the lasso was shown to326

be suboptimal. This problem therefore brings the question on applicability of the lasso. Fortunately, as327

the ground-based irradiance sensing technologies advance, it would soon to be justifiable to install sensor328

networks with utility scale solar power plants. In addition, reference cells are often installed at plane of329

array to monitor the PV performance. These tilted data can also be utilized in forecasting by converting330

them to GHI using inverse transposition models, such as the ones shown in (Yang et al., 2014b, 2013a).331

Alternatively, in-plane clear sky models can be used to normalize the tilted reference cell measurements,332

and thus make them useful for forecasting (Lipperheide et al., 2015).333

Appendix A. Additional forecasting results334

We have shown that the OLS performs worse than the lasso at various forecast horizons in section 4.2.335

In this appendix, some additional forecast results are provided. Beside using the training length of 50%,336

other choices including 20%, 30% and 40% are explored with known wind information. Instead of using the337

forecast skill defined in Eq. (2), we consider a new forecast skill which may suit the situation better. The338

forecast skill of the lasso with respect to the OLS results is defined as:339

FS∗(fh; tl) = 1− nRMSElasso(fh; tl)

nRMSEols(fh; tl)
(A.1)

where fh and tl denote the forecast horizon and training length respectively; nRMSElasso and nRMSEols340

are normalized root mean square errors of the lasso and OLS models. Following this definition, the FS∗341

values are plotted in Fig. A.8. It can be concluded that the lasso is superior to OLS at all forecast horizons342

and for all training lengths. It is evident that as the forecast horizon increases, the accuracies of the OLS343

models drop significantly due to fewer fitting samples (for the same training percentage, the fh = 300 cases344

have fewer training points than the fh = 10 cases). Consequently, the FS∗ tends to increase as the forecast345

horizon increases.346

Appendix B. Supplementary material347

Supplementary data associated with this article can be found, in the online version, at online URL348

placeholder.349

We provide the R code used to generate the results shown in Tables 2 and 3. Instead of providing the350

data (which would then violate the NREL data agreement), we provide the R code used to arrange the data,351

thus make the code readily executable once R is installed and the raw data are downloaded from the NREL352

website. The software installation information can be found at http://www.r-project.org/.353
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Figure A.8: Average forecast skill (with respect to the OLS results) of the lasso regression method during the 13 selected days
at each station. Various training lengths are considered.
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