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A Linear Identification of Diode Models from

Single I-V Characteristics of PV Panels
Li Hong Idris Lim, Member, IEEE, Zhen Ye, Jiaying Ye, Dazhi Yang, and Hui Du

Abstract—This paper presents a novel approach on diode
model parameters identification from the I-V characteristics of
PV panels. Other than the prevailing methodology of solving a
group of nonlinear equations from a few points on the I-V curve,
the proposed one views the diode model as the equivalent output
of a dynamic system. From this new viewpoint, diode model
parameters are linked to the transfer function (after Laplace
transform) of the same dynamic system whose parameters are
then identified by a simple integral-based linear square. Indoor
flash test shows the accuracy and effectiveness of the proposed
method, and outdoor module testing shows its ability of online
monitoring and diagnostics. Comparisons to the methods of
Lambert W function and evolution algorithms are also included.

Index Terms—Diode model, I-V characteristics, linear least
square, binary search algorithm.

I. INTRODUCTION

THE current-voltage (I-V ) characteristics of photovoltaic

cell/modules play an important role in solar industry

because it exactly reflects the cell/module performance [1].

Lumped-circuit models with multiple diodes (as shown in

Fig.1) have been broadly accepted to accurately describe the

I-V characteristics [2], where diode D1 accounts for carriers

diffusing across the P-N junction and recombining in the bulk

or at surfaces. Diode D2 is sometimes attributed to carrier

recombination by traps within the depletion region [3], or

recombination at an unpassivated cell edge [4]. Theoretically,

more diodes (m > 2) can be added to the circuit in Fig.1

to better account for distributed and localized effects in solar

cells like Auger recombination, but their contributions are too

small as compared to D1 and D2 and can be negligible [5].

The general mathematical description of the diode model in

Fig.1 is given by

I = IL −

m∑

i=1

IDi
− Ish

= IL −

m∑

i=1

Ioi

(

e
V +RsI

ai − 1
)

−
V +RsI

Rsh
, (1)
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Fig. 1. Equivalent circuit of diode models

where IL is the photocurrent proportional to the irradiance;

Ioi is the reverse saturation, ai = NsnikTc/q is the modified

ideality factor [6] for the ith diode (Ns is the number of cells

connected in series, ni is the ideality factor, k is Boltzmann’s

constant, Tc is the cell temperature, and q is the electronic

charge); Rs and Rsh are resistances in series and parallel,

respectively. Only I and V are known variables from the data

sheet or real measurements.

Due to the inherent nonlinearity, it is not straightforward

to determine the model parameters (IL, Io, a, Rs and Rsh)

from the input-output data (I-V characteristics), even for the

simplest case of m = 1. The current methods in literature can

be divided into two categories.

One category is the deterministic solution, which solves the

five model parameters (m = 1) from the five independent

equations. Usually, the four independent equations are chosen

from the open-circuit, short-circuit and maximum power points

at STC (1000 W/m2, Tc = 25◦C, AM = 1.5) as follows.

At short circuit (SC, V = 0):

Isc = IL − Io

(

e
RsIsc

a − 1
)

−
RsIsc
Rsh

. (2)

At open circuit (OC, I = 0):

IL − Io

(

e
Voc
a − 1

)

−
Voc

Rsh
= 0. (3)

At maximum power point (MPP):

Impp = IL−Io

(

e
Vmpp+RsImpp

a − 1
)

−
Vmpp +RsImpp

Rsh
. (4)

dIV

dV

∣
∣
∣
∣
mpp

= −
Vmpp

Rs +
1

Io
a
e
Vmpp+ImppRs

a + 1
Rsh

+Impp = 0. (5)

There are many options for the 5th independent equation:

One way is to estimate one of the five parameters indepen-

dently. For example, IL can be estimated from the influence of

the structure parameters of a silicon solar cell on photocurrent

[7]. Io is material independent and can be explicitly related

to a solid state parameter, the 0K Debye temperature of
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the semiconductor [8]. a can be determined from the use of

properties of special trans function theory (STFT) [9]. Rsh can

be approximated by the inverse of the slope at SC [10], i.e.,

dI/dV |sc ≈ −1/Rsh. Rs estimation are well summarised in

[11]–[14]. The other way is to apply one of (2)-(5) to non-

STC. For example, applying (3) to T ∗
c = Tc +∆T (∆T 6= 0)

gives [15]

0 = IL + αT∆T − Io

(
T ∗
c

Tc

)3

e
Eg
kTc

−
Eg(1−0.0002677∆T )

kT∗

c

×

(

e
Voc+βT ∆T

a
Tc
T∗

c − 1

)

−
Voc + βT∆T

Rsh
,

where Eg = 1.17 − 4.73 × 10−4T 2
c /(Tc + 636) is the band

gap energy; αT and βT are the temperature coefficient of SC

current and OC voltage, respectively.

No matter what the 5th equation is, if the approximated

parameter is significantly different from the real value, it may

lead to a singular solution to the rest of four parameters

[16]. Even if there is no approximation in the 5th equation,

there are no analytical solutions available due to the inherent

nonlinearity. Usually, partial linearization has to be made

to yield empirical formulas [17]–[21], which is a trade-off

between simplicity and accuracy.

The other category is the optimal solution, which employs

nonlinear fitting procedures based on the minimisation of

deviations between modelled and measured I-V curves, in

accordance with some metric function (usually least square)

[22]–[25]. Iterative searching algorithms are usually used [26],

[27], but their convergence and accuracy heavily depend on

the initial values and are easily trapped in the local optimums.

For different initial value guess, such approaches can result

in widely different parameter sets, all leading to satisfactory

curve fitting [28]. Although a good match between estimation

and measured data can be obtained, there is no guarantee that

the estimated I-V curve would pass the SC, OC and MPP

points. To achieve the global optimum, evolution algorithms

like differential evolution (DE) and genetic algorithm (GA)

have to be used [29], [30]. But they are too complicated to be

implemented as online calculation.

The current trend is to combine the above two categories,

i.e., employing both nonlinear fitting procedure and algebraic

equations solving [31]–[33]. With a single parameter fitting

procedure, numerical solutions to (2)-(5) will be obtained by

empirical formulas or iterative algorithms. The drawbacks of

the above two categories are mitigated in this way. Recent

progress is reported by Laudani et al. [15], [34]. By applying

the Lambert W function [35], [36] to (1) (m = 1), the implicit

format of I is converted to its equivalent explicit format as

I =
Rsh(IL + Io)− V

Rs +Rsh

−
a

Rs
W

(
IoRsRsh

a(Rs +Rsh)
e

Rsh(V +Rs(IL+Io))

a(Rs+Rsh)

)

. (6)

The benefit of (6) over (1) is that the former is not transcen-

dental anymore, which makes it possible to find solutions to

(2)-(5) by iterative algorithms. Laudani et al. further reduce

the dimension of searching space from 5 to 2 by splitting the

model parameters into two independent unknowns (a and Rs)

and three dependent ones (IL, Io and Rsh). In this way, the

burden of iterative searching is greatly relieved and it becomes

easy to get a and Rs numerically or graphically. To the best

of our knowledge, this represents the best achievement ever

reported in the literature.

This paper opens a new angle to view the diode model

from the systems perspective. Actually, one of the biggest

application of Lambert W function is to solve differential

equations, which is directly linked to the representation of

a linear system in time domain. For example, the first-order

linear system can be described as Tdy(t)/dt + y(t) = u(t),
whose unit ramp response, y(t) = t + T (e−t/T − 1), has

the same format as (1). This motivates us that the I-V
curve governed by (1) can be viewed as the output of some

linear system, and the model parameters can be linked to

the parameters of a linear differential equation, which is then

determined by system identification methods available in the

literature [37], where linear least squares is good enough to

yield satisfactory solutions.

The whole paper is organised as follows. Section II de-

scribes the way to transform the static I-V curve to the

dynamic linear system output. Integral-based system identi-

fication methods and linear least square algorithm are then

proposed in Section III. Examples of indoor flash test and

applications of outdoor module testing are given in Section

IV to illustrate the accuracy and effectiveness of the proposed

method. Comparison with the existing methods is demon-

strated in Section V. Section VI draws the conclusion.

II. DYNAMIC SYSTEM FORMULATION

A. One-diode model

Recall I-V curve described by (1) with m = 1. Let y = I
and x = V +RsI , (1) then becomes

y = IL + Io − Ioe
x
a −

x

Rsh
. (7)

Taking differential once on both sides of (7) gives

dy

dx
= −

Io
a
e

x
a −

1

Rsh
. (8)

Differentiating once more for (8) gives

d2y

dx2
= −

Io
a2

e
x
a . (9)

Eliminating ex/a from (8) and (9) gives

a
d2y

dx2
−

dy

dx
=

1

Rsh
. (10)

Let t = x and u(t) ≡ 1, (10) is equivalent to

a
d2y(t)

dt2
−

dy(t)

dt
=

u(t)

Rsh
, (11)

which is a standard differential equation representation of a

second order linear system. t is the “time”, u(t) and y(t) are

the system “input” and “output”, respectively. Since u(t) ≡ 1,

y(t) is the unit step response of the system in “time” domain.
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Take Laplace transform, F (s) = L[f(t)] =
∫∞

0
e−stf(t)dt,

on both sides of (11),

a[s2Y (s)− sy(0)− y′(0)]− [sY (s)− y(0)] =
U(s)

Rsh
. (12)

Utilize sU(s) = 1, and (12) is equivalent to

a
[
s2Y (s)− s2U(s)y(0)− sU(s)y′(0)

]

− [sY (s)− sU(s)y(0)] =
1

Rsh
U(s).

It follows from (7) that y(0) = IL, y′(0) = −Io/a− 1/Rsh,

so the transfer function from Y (s) to U(s) is

G(s) :=
Y (s)

U(s)
=

ay(0)s2 + [ay′(0)− y(0)]s+ 1
Rsh

as2 − s

=
aILs

2 − (Io +
a

Rsh
+ IL)s+

1
Rsh

as2 − s
. (13)

The corresponding time domain differential equation is

a
d2y(t)

dt2
−

dy(t)

dt
= aIL

d2u(t)

dt2
−

(

IL + Io +
a

Rsh

)

×
du(t)

dt
+

u(t)

Rsh
. (14)

It should be noted that (11) is different from (14) because

of the non-zero initial conditions. In other words, (14) is the

description of the same system of (11) but with zero initial

conditions. This will facilitate the calculation of the integral-

based identification proposed in Section III.

B. Multi-diode model

Similarly by letting y = I and x = V +RsI in (1), it yields

y = IL +

m∑

i=1

Ioi −

m∑

i=1

Ioie
x
ai −

x

Rsh
. (15)

Taking differential once on both sides of (15) gives

dy

dx
= −

m∑

i=1

Ioi
ai

e
x
ai −

1

Rsh
. (16)

Differentiating (16) for k times, k = 1, 2, · · · ,m, yields

y(k+1)(x) = −

m∑

i=1

Ioi
ak+1
i

e
x
ai , (17)

where y(k)(x) = dky/dxk. Rewrite (17) in matrix format,








y(2)(x)

y(3)(x)
...

y(m+1)(x)








︸ ︷︷ ︸

B

=








a−1
1 a−1

2 · · · a−1
m

a−2
1 a−2

2 · · · a−2
m

...
...

. . .
...

a−m

1 a−m

2 · · · a−m
m








︸ ︷︷ ︸

A









−
Io1
a1

e
x
a1

−
Io2
a2

e
x
a2

...

−
Iom

am
e

x
am









.

Since ak 6= 0, A is a Vandermonde matrix with det(A) 6= 0,

so A−1 exists and
[

−
Io1
a1

e
x
a1 ,−

Io2
a2

e
x
a2 , . . .−

Iom
am

e
x

am

]T

= A−1B, (18)

where A−1 = [ξi,j ] ∈ Rm×m with

ξi,j =

∑

1≤k1<···<kn−j≤n
k1,··· ,kn−j 6=i

(−1)j−1a−1
k1

· · · a−1
kn−j

a−1
i

∏

1≤k≤n
k 6=i

(
a−1
k − a−1

i

) . (19)

Substituting (18) into (16) yields

y(1)(x) −

m∑

j=1

m∑

i=1

ξi,jy
(j+1)(x) = −

1

Rsh
. (20)

Let t = x and u(t) ≡ 1, (20) becomes the differential equation

representation of an mth-order “dynamic” system:

y(1)(t)−

m∑

j=1

m∑

i=1

ξi,jy
(j+1)(t) = −

u(t)

Rsh
. (21)

Taking Laplace transform for both sides of (21) yields

sY (s)− y(0)−
m∑

j=1

m∑

i=1

ξi,j



 sj+1Y (s)

−

j+1
∑

k=1

sk−1y(j+1−k)(0)

)

= −
U(s)

Rsh
. (22)

It follows from (15)-(17) that y(0) = IL, y(1)(0) =
−
∑m

i=1 Ioi/ai − 1/Rsh, y(k+1)(0) = −
∑m

i=1 Ioi/a
k+1
i for

k = 1, 2, · · · ,m. Since sU(s) = 1, (22) becomes

sY (s)− ILsU(s)−

m∑

j=1

m∑

i=1

ξi,j



 sj+1Y (s)− U(s)×

(
j
∑

k=1

sk
m∑

i=1

−Ioi

aj+1−k
i

−
sj

Rsh
+ ILs

j+1

)]

= −
U(s)

Rsh
.

The transfer function is G(s) = Y (s)/U(s) = N/D, where

D =

m∑

j=1

m∑

i=1

ξi,js
j+1 − s,

N =
1

Rsh
− ILs+

m∑

j=1

m∑

i=1

ξi,j×

(

ILs
j+1 −

sj

Rsh
−

j
∑

k=1

sk
m∑

i=1

Ioi

aj+1−k
i

)

.

The corresponding time domain differential equation with zero

initial condition is

αm+1y
(m+1)(t) + · · ·+ α2y

(2)(t)− y(1)(t)

= βm+1u
(m+1)(t) + · · ·+ β1u

(1)(t) +
u(t)

Rsh
, (23)

where for j = 1, 2, · · · ,m,

αj+1 =
m∑

i=1

ξi,j , (24)

βm+1 = αm+1IL, (25)

βj = αjIL −
αj+1

Rsh
−

m∑

k=j

m∑

i=1

αk+1Ioi

ak+1−j
i

, (26)

(α1 = −1).
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In general, by introducing a virtual “time” of t = x, the

static relationship between two variables y and x can be

regarded as dynamics from the linear system governed by (23).

Once αi and βi are determined from system identification,

diode model parameters IL, Ioi , ai and Rsh can be solved

linearly from (24)-(26).

III. INTEGRAL-BASED LINEAR IDENTIFICATION

For an integer n ≥ 1, define the multiple integral as [37]

∫ (n)

[T1,T2]

f(τ) =

∫ T2

T1

∫ τn

T1

· · ·

∫ τ2

T1
︸ ︷︷ ︸

n

f(τ1)dτ1dτ2 · · · dτn. (27)

A. One-diode model

Applying (27) to (14) for T1 = 0, T2 = t and n = 2 gives

ay(t)− aILu(t) +

(

IL + Io +
a

Rsh

)∫ (1)

[0,t]

u(τ)

−
1

Rsh

∫ (2)

[0,t]

u(τ) =

∫ (1)

[0,t]

y(τ). (28)

Let γ(t) =
∫ (1)

[0,t] y(τ), θ =
[

a, aIL,
(

IL + Io +
a

Rsh

)

, 1
Rsh

]T

,

φ(t) =
[

y(t),−u(t),
∫ (1)

[0,t]
u(τ),−

∫ (2)

[0,t]
u(τ)

]T

, and (28) can

be rewritten as the matrix format of φT (t)θ = γ(t). Note that

the matrix format holds for any ti ∈ [0, t], i = 1, 2, · · · , N ,

where N is the the number of data samples on the I-V
curve. This actually casts an equation group of Φθ = Γ with

Φ = [φ(t1), φ(t2), · · · , φ(tN )]T and Γ = [γ(t1), γ(t2), · · · ,
γ(tN )]T . If ΦTΦ is nonsingular, the linear least square solu-

tion for θ is given by

θ =
(
ΦTΦ

)−1
ΦTΓ, (29)

which will minimise the square error of (Γ−Φθ)T (Γ−Φθ).
Once θ is determined from (29), the parameters of one-diode

model can be obtained by a = θ1, IL = θ2/θ1, Io = θ3 −
θ2/θ1 − θ1θ4, Rsh = 1/θ4.

B. Multi-diode model

Apply (27) to (23) for T1 = 0, T2 = t and n = m+ 1,

αm+1y(t) + · · ·+ α2

∫ (m−1)

[0,t]

y(τ) −

∫ (m)

[0,t]

y(τ)

= βm+1u(t) + · · ·+ β1

∫ (m)

[0,t]

u(τ) +
1

Rsh

∫ (m+1)

[0,t]

u(τ).

Let γ(t) =
∫ (m)

[0,t] y(τ), θ = [αm+1, · · · , α2, βm+1, · · · , β1,

1/Rsh]
T , φ(t)=[y(t), · · · ,

∫ (m−1)

[o,t] y(τ),−u(t), · · · ,−
∫ (m+1)

[0,t]

u(τ)]T , θ and φ(t) ∈ R(2m+2)×1, we have φT (t)θ = γ(t).
For ti ∈ [0, t], i = 1, 2, · · · , N , the equation group can be

described by Φθ = Γ with Φ = [φ(t1), φ(t2), · · · , φ(tN )]T

and Γ = [γ(t1), γ(t2), · · · , γ(tN)]T . If ΦTΦ is nonsingular,

the least square solution for θ will be

θ =
(
ΦTΦ

)−1
ΦTΓ. (30)

Once θ is determined from (30), Rsh = 1/θ2m+2 is imme-

diately derived. It follows from (25) that IL = βm+1/αm+1 =
θm+1/θ1. ai, i = 1, 2, · · · ,m, will be derived in the following

way. Rewriting (24) in matrix format gives

[α2, · · · , αm+1] = [1, · · · , 1]
︸ ︷︷ ︸

m

A−1.

Right-multiplying A for both sides gives

[α2, · · · , αm+1]






a−1
1 · · · a−1

m
...

. . .
...

a−m
1 · · · a−m

m




 = [1, · · · , 1]

︸ ︷︷ ︸

m

,

which implies that 1/ai, (i = 1, 2, · · · ,m) are the roots of the

following characteristic equation

αm+1λ
m + αmλm−1 + · · ·+ α2λ− 1 = 0. (31)

Solve (31) for λi, and ai = 1/λi, (i = 1, 2, · · · ,m). Ioi , i =
1, 2, · · · ,m, will be derived as follows. (26) can be rewritten

as

βj = αjIL −
αj+1

Rsh
−

m∑

i=1

Ioi

m∑

k=j

αk+1

ak+1−j
i

.

Rewrite further as matrix format,













m∑

k=1

αk+1

ak
1

m∑

k=1

αk+1

ak
2

· · ·
m∑

k=1

αk+1

ak
m

m∑

k=2

αk+1

ak−1
1

m∑

k=2

αk+1

ak−1
2

· · ·
m∑

k=2

αk+1

ak−1
m

...
...

. . .
...

m∑

k=m

αk+1

ak+1−m
1

m∑

k=m

αk+1

ak+1−m
2

· · ·
m∑

k=m

αk+1

ak+1−m
m














︸ ︷︷ ︸

Ψ

×








Io1
Io2

...

Iom







= −








β1 + IL + α2

Rsh

β2 − α2IL + α3

Rsh

...

βm − αmIL + αm+1

Rsh








︸ ︷︷ ︸

Ξ

Note from (31) that
∑m

k=1 αk+1/a
k
i = 1 for i = 1, 2, · · · ,m,

Ψ can be simplified as

Ψ =








1 1 · · · 1
a1 a2 · · · am
...

...
. . .

...

am−1
1 am−1

2 · · · am−1
m








︸ ︷︷ ︸

Ψ∗

−










0 · · · 0
α2 · · · α2

...
. . .

...
m−1∑

k=1

αk+1a
m−1−k
1 · · ·

m−1∑

k=1

αk+1a
m−1−k
m










.

This implies that after elementary row operations, Ψ is

similar to Ψ∗, which is a Vandermonde matrix with

det(Ψ∗) 6= 0. Therefore, Ψ−1 exists (Ψ is full rank) and

[Io1 , Io2 , · · · , Iom ]T = Ψ−1Ξ.
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C. Nonsingularity of ΦTΦ

The existence of the linear least square solution by (29) and

(30) depends on the nonsingularity of ΦTΦ, which is shown

by the following lemma.

Lemma 1: ΦTΦ is nonsingular if ai 6= aj for i 6= j, i, j =
1, 2, · · · ,m, and the sampling number N ≥ 2m+ 2.

Proof: See Appendix.

D. Calculation of multiple integrals

In practice, the integral shown as (27) is numerically esti-

mated by rectangular or trapezoidal integration. For example,

suppose there are N samples at t1, t2, · · · , tN , the rectangular

integration gives

∫ (1)

[t1,ti]

f(τ) =

∫ ti

t1

f(τ1)dτ1 ≈

i−1∑

k=1

f(k)(tk+1 − tk) := f1(i),

∫ (2)

[t1,ti]

f(τ) ≈

i−1∑

k=1

f1(k)(tk+1 − tk) := f2(i),

...
∫ (n)

[t1,ti]

f(τ) ≈

i−1∑

k=1

fn−1(k)(tk+1 − tk) := fn(i).

for i = 1, 2, · · · , N . The more number of samples, fi, the

more accurate the estimation to the multiple integrals will be.

E. Determination of Rs

To calculate θ from (29) or (30), Φ and Γ must be known.

As both of them are integrals to t, t must be known as well.

Since t = V + RsI , Rs must be determined before applying

integrals. It is clear to see that if Rs is bigger than its real

value, t will increase so that the whole I-V curve will move

to the right and the error between the real and estimated I-

V curves will be positive; If Rs decreases, the whole I-V
curve will move to the left and the error between the real and

estimated I-V curves will be negative. Thus, Rs can be used

as a tuning parameter such that the root mean square error

(RMSE) is minimised.

It derives from (1) that

−
1

dI
dV

∣
∣
oc

= Rs +
1

m∑

i=1

Ioi
ai

e
Voc
ai + 1

Rsh

> Rs,

which implies the upper bound of Rs, i.e., Rupp
s = −1/ dI

dV

∣
∣
oc

.

The lower bound of Rs can be zero at first, i.e., Rlow
s =

0. With such a band of Rs ∈ [Rlow
s , Rupp

s ], binary search

algorithm is applied to determine Rs in the following way:

Step 1: Arbitrarily choose Rs from [Rlow
s , Rupp

s ] and

calculate âi, ÎL, Îoi and R̂sh from the proposed linear least

square (29) or (30);

Step 2: Calculate from (1) that

ŷ(t) = ÎL −
m∑

i=1

Îoi

(

e
V +RsI

âi − 1
)

−
V +RsI

R̂sh

,

and RMSE =
√
∑N

i=1 [ŷ(ti)− y(ti)]
2
/N .

Step 3: Calculate ERR =
∑N

i=1[ŷ(ti) − y(ti)]. If

ERR > 0, adjust Rs = (Rs + Rlow
s )/2. Otherwise, adjust

Rs = (Rs +Rupp
s )/2.

Step 4: Update Rupp
s and Rlow

s according to the sign of

ERR. If ERR > 0, Rupp
s = Rs, otherwise, Rlow

s = Rs.

Step 5: If RMSE is less than some tolerance or the

iterative cycle reaches some preset number, stop the searching.

Otherwise, update Rupp
s and Rlow

s according to the sign of

ERR and go back to Step 2.

F. Robustness enhancement

From the viewpoint of control theory, the transfer function

(13) has a pole of s = 1/a > 0, which implies the system

(14) is unstable. This is also true for the general case of multi-

diode model. Identification for unstable system is not preferred

because the convergence of the proposed algorithm might be

sensitive to the accuracy of the integral calculation in such a

case. To improve the robustness of the proposed algorithm, Ṽ
is introduced to yield a stable system.

In case of one-diode model, let V = Voc− Ṽ , 0 ≤ Ṽ ≤ Voc,

and x̃ = Ṽ −RsI , thus x = V +RsI = Voc − (Ṽ −RsI) =
Voc − x̃. It follows from (7)-(9) that

y = IL + Io −
Voc

Rsh
− Ioe

Voc
a e−

x̃
a +

x̃

Rsh
,

dy

dx̃
=

Io
a
e

Voc
a e−

x̃
a +

1

Rsh
,

d2y

dx̃2
= −

Io
a2

e
Voc
a e−

x̃
a .

Let t = x̃ and u(t) ≡ 1, by eliminating e−x̃/a it gives

a
d2y(t)

dt2
+

dy(t)

dt
=

u(t)

Rsh
.

The corresponding transfer function is

G(s) =
Y (s)

U(s)
=

ay(0)s2 + [ay′(0) + y(0)]s+ 1
Rsh

as2 + s
,

where y(0) = IL − Io(e
Voc/a − 1) − Voc/Rsh, y′(0) =

Ioe
Voc/a/a+1/Rsh. In this way, the unstable pole s = 1/a >

0 becomes stable as s = −1/a < 0.

The remaining procedures are the same as aforementioned.

Let φ(t) =
[

y(t),−u(t),−
∫ (1)

[0,t] u(τ),−
∫ (2)

[0,t] u(τ)
]T

, γ(t) =

−
∫ (1)

[0,t]
y(τ), and

θ =








a

aIL − aIo(e
Voc
a − 1)− aVoc

Rsh

IL + Io −
Voc−a
Rsh

1
Rsh







,

the linear least square solution is θ =
(
ΦTΦ

)−1
ΦTΓ with

Φ = [φ(t1), φ(t2), · · · , φ(tN )]T and Γ = [γ(t1), γ(t2), · · · ,
γ(tN )]T . Once θ is determined, the parameters of one-diode

model are obtained by a = θ1, IL = θ2/θ1 + (θ3 − θ2/θ1 −
θ1θ4)(1−e−Voc/θ1)+Vocθ4, Io = (θ3−θ2/θ1−θ1θ4)/e

Voc/θ1 ,

and Rsh = 1/θ4.
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In case of multi-diode model, with the same transform of

x = Voc − x̃, (15) becomes

y = IL +

m∑

i=1

Ioi −

m∑

i=1

Ioie
Voc
ai e

− x̃
ai −

Voc

Rsh
+

x̃

Rsh
. (32)

Let ãi = −ai, ĨL = IL +
∑m

i=1 Ioi(1 − eVoc/ai) − Voc/Rsh,

Ĩoi = Ioie
Voc/ai , R̃sh = −Rsh, and (32) is equivalent to

y = ĨL +

m∑

i=1

Ĩoi −

m∑

i=1

Ĩoie
x̃
ãi −

x̃

R̃sh

,

which has the same format as (15). This means that all the

derivation aforementioned are applicable to the parameter set

{ãi, ĨL, Ĩoi , R̃sh}. Once they are determined, the parameter

set {ai, IL, Ioi , Rsh} is derived immediately by ai = −ãi,
Rsh = −R̃sh, Ioi = Ĩoie

−Voc/ai , and IL = ĨL−
∑m

i=1 Ioi(1−
eVoc/ai) + Voc/Rsh.

IV. VALIDATION

A. Indoor flash test

The I-V characteristics of full-sized commercial modules

were measured indoor by a pulsed solar simulator (PASAN

IIIB) with a constant illumination intensity plateau of about

12 ms used. The data acquisition, which requires about 10 ms,

occurs during the plateau period, whereby the light intensity

varies by less than ±1%. The intensity of the solar simulator

is calibrated with a c-Si reference cell certified by Fraunhofer

ISE. The overall uncertainty of module power measurement is

within ±2%.

Example 1 (c-Si modules): The I-V characteristic of a

crystalline PV module from the indoor flash test under STC

(1000 W/m2, 25◦C) is shown in Fig.2. Both one-diode and

two-diode models are considered for this case study.

1) One-diode model. Firstly, use the last 10 points at OC to

derive a linear fitting: I = kV + p, where k = −0.9131.

Rupp
s ≈ −1/k = 1.0952. Rlow

s = 0. Arbitrarily choose

Rs ∈ [Rlow
s , Rupp

s ], e.g., Rs = 1.0952, and follow the

proposed integral-based linear identification presented in Sec-

tion III-A, Rs converges to Rs = 0.655 after about 30

steps with the proposed binary searching, as shown in Fig.3.

Multiple integrals from (27) are estimated by the numerical

integration presented in Section III-D. It follows from (29) that

θ1 = 1.9891, θ2 = 9.8295, θ3 = 4.9434, θ4 = 8.9631× 10−4.

Thus, a = θ1 = 1.9891 V, IL = θ2/θ1 = 4.9416 A,

Io = θ3 − θ2/θ1 − θ1θ4 = 4.1785 × 10−9 A, and Rsh =
1/θ4 = 1.1157× 103 Ω.

Fig.2 also shows the comparison between the I-V curves

from the real measurement and the one-code model, where the

average absolute error Ē = 1/N
∑N

i=1 |ERR| = 0.0085. The

RMSE is shown in Fig.3, which converges to 1.67% at last

after 35 steps with Tol = 2%.

2) Two-diode model. It is clear to see from Fig.2 that

one-diode model is good enough to represent the whole I-

V curve accurately. This implies that if two-diode model is

applied, Io2 → 0, which will cause a singular matrix in

the identification of Section III-B. To avoid such a potential
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problem, robustness enhancement discussed in Section III-F

will be applied. With m = 2, (32) becomes

y = IL + Io1

(

1− e
Voc−x̃

a1

)

+ Io2

(

1− e
Voc−x̃

a2

)

−
Voc − x̃

Rsh
,

where x̃ = Ṽ − RsI , Ṽ = Voc − V . And its multiple

differentials are

dy

dx̃
=

Io1
a1

e
Voc−x̃

a1 +
Io2
a2

e
Voc−x̃

a2 +
1

Rsh
, (33)

d2y

dx̃2
= −

Io1
a21

e
Voc−x̃

a1 −
Io2
a22

e
Voc−x̃

a2 , (34)

d3y

dx̃3
=

Io1
a31

e
Voc−x̃

a1 +
Io2
a32

e
Voc−x̃

a2 . (35)

(34) and (35) in matrix format are
[

d2y
dx̃2

d3y
dx̃3

]

=

[

−
Io1
a2
1

−
Io2
a2
2

Io1
a3
1

Io2
a3
2

][

e
Voc−x̃

a1

e
Voc−x̃

a2

]

.

Thus,
[

e
Voc−x̃

a1

e
Voc−x̃

a2

]

=

[

−
Io1
a2
1

−
Io2
a2
2

Io1
a3
1

Io2
a3
2

]−1 [
d2y
dx̃2

d3y
dx̃3

]

=





a3
1

Io1 (a2−a1)
a3
1a2

Io1 (a2−a1)

−
a3
2

Io2 (a2−a1)
−

a1a
3
2

Io2 (a2−a1)





[
d2y
dx̃2

d3y
dx̃3

]

.

Substitute it into (33), it yields

a1a2
d3y(t)

dt3
+ (a1 + a2)

d2y(t)

dt2
+

dy(t)

dt
=

u(t)

Rsh
, (36)
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where t = x̃ and u(t) ≡ 0. After Laplace transform, (36)

becomes

a1a2
[
s3Y (s)− y′′(0)− sy′(0)− s2y(0)

]
+ (a1 + a2)×

[
s2Y (s)− y′(0)− sy(0)

]
+ [sY (s)− y(0)] =

U(s)

Rsh
, (37)

where

y(0) = IL + Io1

(

1− e
Voc
a1

)

+ Io2

(

1− e
Voc
a2

)

−
Voc

Rsh
, (38)

y′(0) =
Io1
a1

e
Voc
a1 +

Io2
a2

e
Voc
a2 +

1

Rsh
, (39)

y′′(0) = −
Io1
a21

e
Voc
a1 −

Io2
a2

e
Voc

a2
2 . (40)

Utilize sU(s) = 1, and (37) is equivalent to

a1a2s
3Y (s) + (a1 + a2)s

2Y (s)− a1a2y(0)s
3U(s)−

[a1a2y
′(0) + (a1 + a2)y(0)] s

2U(s)−
U(s)

Rsh
−

[a1a2y
′′(0) + (a1 + a2)y

′(0) + y(0)] sU(s) = −sY (s).

Therefore, the differential equation representation with zero

initial conditions are

a1a2
d3y(t)

dt3
+ (a1 + a2)

d2y(t)

dt2
− a1a2y(0)

d3u(t)

dt3
−

[a1a2y
′(0) + (a1 + a2)y(0)]

d2u(t)

dt2
−

u(t)

Rsh
−

[a1a2y
′′(0) + (a1 + a2)y

′(0) + y(0)]
du(t)

dt
= −

dy(t)

dt
. (41)

Apply triple integral (27) (with n = 3) to (41), we have

a1a2y(t) + (a1 + a2)

∫ (1)

[0,t]

y(τ)− a1a2y(0)u(t)

− [a1a2y
′(0) + (a1 + a2)y(0)]

∫ (1)

[0,t]

u(τ)

− [a1a2y
′′(0) + (a1 + a2)y

′(0) + y(0)]

∫ (2)

[0,t]

u(τ)

−
1

Rsh

∫ (3)

[0,t]

u(τ) = −

∫ (2)

[0,t]

y(τ). (42)

Let γ(t) = −
∫ (2)

[0,t]
y(τ), φ(t) = [y(t),

∫ (1)

[0,t]
y(τ),−u(t),

−
∫ (1)

[0,t]
u(τ),−

∫ (2)

[0,t]
u(τ),−

∫ (3)

[0,t]
u(τ)]T , and

θ :=











θ1
θ2
θ3
θ4
θ5
θ6











=











a1a2
a1 + a2
θ1y(0)

θ1y
′(0) + θ2y(0)

θ1y
′′(0) + θ2y

′(0) + y(0)
1

Rsh











, (43)

then (42) can be rewritten in matrix format of φ(t)T θ = γ(t).
The linear least solution to θ is given by (30). Immediately,

Rsh = 1/θ6, a1,2 = (θ2 ±
√

θ22 − 4θ1)/2, and




θ3
θ4
θ5



 =





θ1 0 0
θ2 θ1 0
1 θ2 θ1









y(0)
y′(0)
y′′(0)



 .

Therefore,




y(0)
y′(0)
y′′(0)



 =





θ1 0 0
θ2 θ1 0
1 θ2 θ1





−1 



θ3
θ4
θ5



 .

It follows from (38)-(40) that





y(0) + Voc

Rsh

y′(0)− 1
Rsh

y′′(0)



 =








1 1− e
Voc
a1 1− e

Voc
a2

0 e
Voc
a1

a1

e
Voc
a2

a2

0 − e
Voc
a1

a2
1

− e
Voc
a2

a2
2












IL
Io1
Io2



 .

Thus,





IL
Io1
Io2



 =








1 1− e
Voc
a1 1− e

Voc
a2

0 e
Voc
a1

a1

e
Voc
a2

a2

0 −
e
Voc
a1

a2
1

−
e
Voc
a2

a2
2








−1





y(0) + Voc

Rsh

y′(0)− 1
Rsh

y′′(0)



 .

In this way, with the same I-V characteristics data as shown

in Fig.2, we got θ1 = 0.6849, θ2 = 2.2356, θ3 = 0.0247,

θ4 = 3.3348, θ5 = 4.9034, θ6 = 0.0010. The two-diode model

parameters are identified as a1 = 1.8691 V, a2 = 0.3664
V, Io1 = 1.5168 × 10−10 A, Io2 = 7.9060 × 10−54 A,

IL = 4.9480 A, Rsh = 955.1229 Ω, and Rs = 0.6845 Ω. The

average absolute error Ē = 0.0080 and RMSE = 1.35%,

both of which are slightly reduced as compared to the one-

diode model result. As expected, Io2 is indeed extremely close

to zero, whereas other parameters are comparable to their

counter parts in one-diode model result.

It should be highlighted that the diode model parameters

derived from the indoor flash test are not constant. Actu-

ally, they are varying with temperature and solar radiation.

Therefore, it is necessary to check the online computability

of the proposed method for PV modules under non-constant

environment, which is demonstrated by the outdoor module

testing as follows.

B. Outdoor module testing

Outdoor module testing (OMT) is usually carried out by

many PV panel manufacturers and solar research institutes for

the module performance evaluation under the real operating

environments. DC parameters including full I-V curves, Voc,

Isc, Vmpp, Impp, Pmpp together with module temperature are

measured and logged every minute. Environmental parameters

including in-plane solar irradiance Gsi, ambient temperature

Tamb, module temperature Tmod, wind speed and wind di-

rection are logged simultaneously with the DC parameters.

Between I-V measurements, electrical energy is maintained

at the module maximum power point (MPP). The uncertainty

of all electrical measured parameters is within ±0.1% for full

scale. With these I-V data in time series, the diode model

parameters can be identified online by the proposed method

and correlated to the environmental factors like irradiance,

temperature, etc.

Fig.4 shows the time series of Gsi, Tamb and Tmod on a

typical day from the OMT testbed of Solar Energy Research

Institute of Singapore (SERIS). The plot is centred around the

solar noon, which was at 13:10 on the 5 August 2010.
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Fig. 4. Environmental factors of a typical day in SERIS’ OMT testbed

By applying the proposed method in Section III, the time-

varying one-diode model parameters IL, Io, a, Rs and Rsh

for the same day are identified, as shown in Fig.5. The

variation of the identified parameters reflects the dynamics

of the PV module under different environmental conditions,

which cannot be seen from the static I-V curves.
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Fig. 5. Identified one-diode model parameters

The relationships between the identified parameters and the

environmental operating conditions are further illustrated in

Fig.6-9. A proportional relationship between IL and irradiance

intensity is observed in Fig.6. It is also apparent from Fig.7

that Io generally shows an increasing trend with rising module

temperature. This also agrees with the theoretical temperature

dependence of Io, as given by Io = BT 3e−Eg/(kT ), where Eg

is the band gap of silicon and B is a temperature independent

constant [13]. Fig.8 illustrates that a generally decreases with

increasing irradiance for Gsi < 300 W/m2 and increases

beyond that, which is as reported in [38]. When irradiance

decreases in Fig.9, the series resistance Rs decreases and

the shunt resistance Rsh increases, which is consistent with

previous reported results [39]. The decrease in Rs is due to

the decreased thermal loss (I2Rs) with decreasing irradiance.

The RMSE of the proposed algorithm in OMT case is
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shown in Fig.10, where the burden of the online calculation

for convergence (iterative steps for Rs until Tol or maximum

cycle is achieved) is presented as well. Among 600 plus I-V
scans during the day, there are only three cases with the RMSE

exceeding the preset 1% Tol when the maximum number (100)

of steps is reached. Even for these three cases, the RMSE

is still below 1.5%. The iterative steps are very stable, and

they are usually less than 30. This indicates that the online

calculation burden of the proposed algorithm is low and the

identification can be done by an industrial PC locally between

two consecutive I-V scan (1 min in our case).
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Fig. 10. RMSE and burden of online calculation

V. COMPARISON WITH OTHER METHODS

As mentioned in the Introduction, the recent progress in

the parameter identification of diode model are mainly from

Laudani et al. [15], [34], and the evolutionary algorithms [29],

[30]. In this section, the comparison of the proposed method

with these two approaches are discussed.

A. Laudani’s method

In [34], two data sets of I-V curves (26 points) are pre-

sented, which are initially proposed in [40] and are commonly

used to test the effectiveness of the extraction algorithms. One

refers to a solar module (Photowatt-PWP 201) at 45◦C and

the other refers to a solar cell (c-Si) at 33◦C. The one-diode

model parameters IL, Io and Rsh are proved to be functions of

Rs and a. So the searching in the two-dimensional parameter

space of Rs and a with the constrained conditions of (2), (3)

and (5) yields Solution A; with the constrained conditions of

(2), (3) and (4) yields Solution B. These two solutions are

then fine tuned as the initial values of some nonlinear least

square for the experimental data, which yields Solution C and

D, respectively.

With the solar module I-V data in [34], the comparison

of the solutions of one-diode model by the propose and

Laudani’s method are shown in TABLE I, where “MAE” is

the mean absolute error and “Step” is the number of iterative

searching cycle before convergence. It is clear to see that the

proposed method is very close to the model parameters values

in Laudani’s results. Although the error is slightly bigger, the

number of iteration steps is less.

The error mainly arises from the numerical integrations

presented in Section III-D and the few I-V data samples

available (26 points only). If more data samples on the I-

V curve are known, the error of the proposed method will be

reduced. To illustrate this point, model parameters from the

solution of Laudani 1D was used to reproduce the whole I-V
curve with the help of (6). The number of samples are selected

to be 50, 100, 200. Based on such samples on the I-V curve

derived from Laudani 1D solution, the RMSE of the proposed

method to the whole I-V and the experimental data are shown

in TABLE II. As expected, the more data samples, the smaller

RMSE. When data samples increased to 100, the RMSE for

the experimental data is already better than the solutions of

Laudani 1A/B and all the other results compared in [34].

TABLE II
RMSE WITH DIFFERENT DATA SAMPLES (MODULE)

Source Solutions RMSE1 RMSE2 Steps

From 50 pts 3.3085×10−4 2.2290×10−3 8

Module3 From 100 pts 8.5583×10−5 2.0939×10−3 13

From 200 pts 2.0177×10−5 2.0874×10−3 12

From 50 pts 3.6098×10−4 9.9881×10−4 8

Cell4 From 100 pts 8.8401×10−5 8.6810×10−4 9

From 200 pts 2.2234×10−5 8.5153×10−4 10

1 for the whole I-V curve 2 for the experimental data in [34]
3 I-V curve is produced from Laudani 1D
4 I-V curve is produced from Laudani 2D

The result comparison for the solar cell I-V data in [34]

is shown in TABLE III. The RMSE of the proposed method

is smaller than the results of Laudani 2A/C, and only slightly

bigger than Laudani 2B/D. When data samples increased to

100, the proposed method already outperformed Laudani 2B,

as shown in TABLE II.

In general, Laudani’s method has many benefits in two

aspects: 1) it utilizes the Lambert W function to convert a

non-concave optimal problem into a concave optimal problem;

2) it utilizes reduced forms to decrease the dimension of

the parameter space from five to two. It can deal with the

I-V data from the data sheet (points at SC, OC, MPP) or

experiment (full I-V curve), and in most of cases, it yields the

best results in terms of RMSE and/or MAE. The deficiencies

of Laudani’s method may be: 1) no unique solutions; 2)

inapplicable to the multi-diode model (m > 1) parameter

identification due to the limitations of Lambert W function;

3) not easy to be implemented and unsuitable for online

parameter identification.

The proposed method further reduces the dimension of the

parameter space to one. It uses linear square other than non-

linear optimal algorithms to derive diode model parameters,

so the drawbacks of nonlinear algorithms are avoided. It can

also be used for multiple-diode model and simple enough to

be implemented as online calculation. The deficiencies is that

it requires the knowledge of the full I-V curve data.

B. Evolution algorithms

As mentioned in the Introduction, evolution algorithms are

very suitable for the search of a global optimal solution.

Recently, two types of evolution algorithms using differential

evolution (DE) [29] and genetic algorithm (GA) [30] yield
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TABLE I
SOLUTION COMPARISON FOR SOLAR MODULE

Solutions IL (A) Io (µA) Rs (Ω) Rsh (kΩ) a (NsnkTc/q) RMSE MAE Steps

The proposed 1.0334262 2.4424001 1.2307473 0.6034037 1.2975122 2.4777×10−3 1.8461×10−3 8

Laudani 1A 1.032173 3.035367 1.218407 0.783516 1.319345 2.1176×10−3 1.6425×10−3 12

Laudani 1B 1.033537 2.825571 1.224053 0.689321 1.312115 2.1547×10−3 1.6060×10−3 10

Laudani 1C 1.0323759 2.5188885 1.2390187 0.7456443 1.3002458 2.0465×10−3 1.6917×10−3 19

Laudani 1D 1.0323759 2.5188848 1.2390187 0.7456431 1.3002456 2.0465×10−3 1.6917×10−3 28

TABLE III
SOLUTION COMPARISON FOR SOLAR CELL

Solutions IL (A) Io (µA) Rs (Ω) Rsh (Ω) a (NsnkTc/q) RMSE MAE Steps

The proposed 0.7609438 0.3456572 3.614233×10−2 49.482205 3.9256187×10−2 1.0548×10−3 8.5202×10−4 8

Laudani 2A 0.764114 3.496×10−3 4.5438×10−2 11.103851 2.9929942×10−2 1.1388×10−2 9.4014×10−3 8

Laudani 2B 0.761060 0.290125 3.6800×10−2 49.973561 3.8784080×10−2 8.8437×10−4 6.9732×10−4 7

Laudani 2C 0.7706871 3.668522×10−3 4.911298×10−2 11.103904 2.997888×10−2 8.9605×10−3 7.2064×10−3 14

Laudani 2D 0.7607884 0.3102482 3.655304×10−2 52.859056 3.8965248×10−2 7.7301×10−4 6.7810×10−4 16

good results for diode model parameter identification. Hence,

it is worthy to compare the proposed method with them.

Since no full I-V curve data are provided in [29], [30], we

do the comparison in an indirect way as follows. Firstly, use

the identified parameters (IL, Io, a, Rs and Rsh) to reconstruct

the I-V curve by (6); Secondly, use that I-V curve data to

identify diode-model parameters with the proposed method.

Since DE and GA are applied to derive a, Rs and Rsh only (IL
and Io are derived by formulas in [6], [32]), we only compare

the results of a, Rs and Rsh. TABLE IV shows the results of

a, Rs and Rsh from the proposed method and DE/GA. It is

clear to see that the differences in between are very minor.

TABLE IV
SOLUTION COMPARISON WITH EVOLUTION ALGORITHMS

Module Solutions a (NsnkTc/q) Rs (Ω) Rsh (Ω)

Shell SM55 Proposed 1.2666 0.3001 2.3165×103

(mono-cSi) DE 1.2665 0.3 2.34×103

Shell S75 Proposed 1.2300 0.2000 1.7834×103

(multi-cSi) DE 1.2295 0.2 1.79×103

Sanyo 215 Proposed 2.1778 0.7821 851.2464

(HIT) GA 2.1780 0.782 852.177

Kyocera 200 Proposed 1.5340 0.3310 882.7933

(multi-cSi) GA 1.5337 0.331 883.925

The result of the two-diode model for the aforementioned

Kyocera module (Kyocera - KC200GT) was also reported in

[30]. It is interesting to comparing this result with ours. If

looking carefully at the comparison shown in TABLE V, the

GA algorithm gives comparable Io1 and Io2 (both in 10−9

A). a1 and a2 are also near to each other. If ignoring the

differences between them, the two-diode can be combined as

one. This implies that GA algorithm actually gives a result of

one-diode model but mathematically divides it into two diodes

format with no physical meaning. That’s a common issue for

the global optimization algorithm like DE and GA, whereas

the proposed method has no such problems.

TABLE V
COMPARISON OF TWO-DIODE MODELS

Parameters GA Proposed

a1 (V) 1.5420 1.4936

a2 (V) 1.9095 0.4944

Rs (Ω) 0.29 0.4095

Rsh (Ω) 480.496 842.8287

Io1 (A) 4.23×10−9 1.6044×10−9

Io2 (A) 9.1478×10−9 2.6559×10−29

MAE 0.02 0.0058

VI. CONCLUSION

A novel method is proposed in this paper to identify all

the one-diode model parameters of PV panels from a single

I-V curve. By utilizing the mapping of transfer function,

the nonlinear fitting problem is converted equivalently to a

linear system identification. Correspondingly, the dimension

of the parameter space is reduced from five to one. Indoor

and outdoor module testing show its effectiveness and online

computability, and its accuracy is also comparable to or better

than the best results from the literature.

APPENDIX A

PROOF OF LEMMA 1

Consider the general case of multi-diode model with

Φ = [φ(t1), φ(t2), · · · , φ(tN )]T := [Φ1,Φ2],

Φ1 =










y(t1)
∫ (1)

[0,t1]
y(τ) · · ·

∫ (m−1)

[0,t1]
y(τ)

y(t2)
∫ (1)

[0,t2]
y(τ) · · ·

∫ (m−1)

[0,t2]
y(τ)

...
...

. . .
...

y(tN)
∫ (1)

[0,tN ] y(τ) · · ·
∫ (m−1)

[0,tN ] y(τ)










:= [φi,j ],
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Φ2 = −










u(t1)
∫ (1)

[0,t1]
u(τ) · · ·

∫ (m+1)

[0,t1]
u(τ)

u(t2)
∫ (1)

[0,t2]
u(τ) · · ·

∫ (m+1)

[0,t2]
u(τ)

...
...

. . .
...

u(tN )
∫ (1)

[0,tN ]
u(τ) · · ·

∫ (m+1)

[0,tN ]
u(τ)










=: [ϕi,l].

Recall from (15) that

y(t) = IL +

m∑

i=1

Ioi −

m∑

i=1

Ioie
t
ai −

t

Rsh
,

and u(t) ≡ 1 by the definition. For i = 1, 2, · · · , N ,

φi,j =

∫ (j−1)

[0,ti]

y(τ) =

IL +
m∑

i=1

Ioi

(j − 1)!
tj−1
i −

tji
j!Rsh

+

j−2
∑

k=0

m∑

l=1

Iola
j−k−1
l

tki
k!

−

j
∑

k=1

Ioka
j−1
k e

ti
ak ,

ϕi,l = −

∫ (l−1)

[0,ti]

u(τ) = −
1

j!
tli,

where j = 1, 2, · · · ,m and l = 1, 2, · · · ,m + 2. After

elementary column operations for Φ, Φ1 → Φ̃1 := [φ̃i,j ] with

φ̃i,j =

j
∑

k=1

Ioka
j−1
k e

ti
ak .

In matrix format,

Φ̃1 =










e
t1
a1 e

t1
a2 · · · e

t1
am

e
t2
a1 e

t2
a2 · · · e

t2
am

...
...

. . .
...

e
tN
a1 e

tN
a2 · · · e

tN
am










︸ ︷︷ ︸

E

×








Io1
Io2

. . .

Iom








︸ ︷︷ ︸

Λ








1 a1 · · · am−1
1

1 a2 · · · am−1
2

...
...

. . .
...

1 am · · · am−1
m








︸ ︷︷ ︸

V ∗

.

Since Λ is diagonal and V ∗ is a standard Vandermonde matrix,

rank(Λ) = rank(V ∗) = m. If t2 − t1 = t3 − t2 = · · · =
tm − tm−1 = Ts > 0, as N ≥ 2m+ 2, the first m row of E

Em =









1 1 · · · 1

e
Ts
a1 e

Ts
a2 · · · e

Ts
am

...
...

. . .
...

(e
Ts
a1 )n−1 (e

Ts
a2 )n−1 · · · (e

Ts
am )m−1









×









e
t1
a1

e
t1
a2

. . .

e
t1
am









,

so rank(E) = rank(Em) = m. Otherwise, it is always

possible to find some ∆T such that ti = ni∆T , ni ∈ N

for i = 1, 2, · · · ,m. Construct matrix

E∗ =









1 1 · · · 1

e
∆T
a1 e

∆T
a2 · · · e

∆T
am

...
...

. . .
...

e
nm∆T

a1 e
nm∆T

a2 · · · e
nm∆T

am









∈ Rnm×n,

and Em is sub-matrix of E∗. Since E∗ is a Vandermonde
matrix with full column rank, rank(E) = rank(Em) =
rank(E∗) = m. So, Φ1 is full column rank, i.e., rank(Φ1) =
m.

Φ2 =








t1 t21 · · · tm+2
1

t2 t22 · · · tm+2
2

...
...

. . .
...

tN t2N · · · tm+2
N








︸ ︷︷ ︸

V2

×











−1
. . .

−1

(m+ 1)!
−1

(m+ 2)!











As N ≥ 2m+2, the first m+2 row of V2 is a Vandermonde

matrix, so rank(Φ2) = rank(V2) = m + 2, i.e., Φ2 is full

column rank. Since Φ = [Φ1,Φ2] with the full column rank

of both Φ1 and Φ2, Φ is also full column rank. N ≥ 2m+ 2
implies that the row number of Φ is no less than the column

number. So, rank(Φ) = 2m + 2 and ΦTΦ is full rank, i.e.,

(ΦTΦ)−1 exists.
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[13] G. H. Yordanov, O.-M. Midtgård, and T. O. Saetre, “Series resistance
determination and further characterization of c-si PV modules,” Renew.

Energ., vol. 46, no. 10, pp. 72–80, 2012.

[14] Y. S. Kim, S.-M. Kang, B. Johnston, and R. Winston, “A novel method
to extract the series resistances of individual cells in a photovoltaic
module,” Sol. Energ. Mat. Sol. C., vol. 115, no. 8, pp. 21–28, 2013.

[15] A. Laudani, F. R. Fulginei, and A. Salvini, “Identification of the one-
diode model for photovoltaic modules from datasheet values,” Sol.

Energy, vol. 108, pp. 432–446, 2014.

[16] S. Lineykin and A. Kuperman, “Issues in modeling amorphous silicon
photovoltaic modules by single-diode equivalent circuit,” IEEE Trans.

Ind. Electron., vol. 61, no. 99, 2014.

[17] Y. A. Mahmoud, W. Xiao, and H. H. Zeineldin, “A parameterization
approach for enhancing PV model accuracy,” IEEE Trans. Ind. Electron.,
vol. 60, no. 12, pp. 5708–5716, 2013.

[18] F. Adamo, F. Attivissimo, A. D. Nisio, and M. Spadavecchia, “Charac-
terization and testing of a tool for photovoltaic panel modeling,” IEEE

Trans. Instrum. Meas., vol. 60, no. 5, pp. 1613–1622, May 2011.

[19] Y. Mahmoud, W. Xiao, and H. H. Zeineldin, “A simple approach to
modeling and simulation of photovoltaic modules,” IEEE Trans. Sustain.

Energy, vol. 3, no. 1, pp. 185–186, Jan. 2012.

[20] S. Lineykin, M. Averbukh, and A. Kuperman, “Five-parameter model
of photovoltaic cell based on STC data,” in 27th IEEE Conv. Electr.

Electron. Eng., Eilat, Israel, Nov. 2012, pp. 1–5.

[21] A. Izadian, A. Pourtaherial, and S. Motahari, “Basic model and govern-
ing equation of solar cells used in power and control applications,” in
IEEE Energy Conv. Congr. Expo., Raleigh, NC, Sep. 2012, pp. 1483–
1488.

[22] M. Al-Rashidi, M. Al-Hajri, K. El-Naggar, and A. Al-Othman, “A new
estimation approach for determining the I-V characteristics of solar
cells,” Sol. Energy, vol. 85, no. 7, pp. 1543–1550, 2011.

[23] H. Qin and J. W. Kimball, “Parameter determination of photovoltaic
cells from field testing data using particle swarm optimization,” in IEEE

PECI, no. 1-4, 2011.

[24] J. J. Soon and K.-S. Low, “Optimizing photovoltaic model parameters
for simulation,” in IEEE 21st ISIE, 2012, pp. 1813–1818.

[25] Y. Li, W. Huang, H. Huang, C. Hewitt, Y. Chen, G. Fang, and D. Carroll,
“Evaluation of methods to extract parameters from current-voltage
characteristics of solar cells,” Sol. Energy, vol. 90, pp. 51–57, Apr. 2013.

[26] K. F. Teng and P. Wu, “PV module characterization using Q-R decom-
position based on the least square method,” IEEE Trans. Ind. Electron.,
vol. 36, no. 1, pp. 71–75, 1989.

[27] H. Park and H. Kim, “PV cell modeling on single-diode equivalent
circuit,” in 39th IEEE IECON, 2013, pp. 1845–1849.

[28] J. Appelbaum, A. Chait, and D. Thompson, “Parameter estimation and
screening of solar cells,” Prog. Photovolt: Res. Appl., vol. 1, no. 2, pp.
93–106, February 1993.

[29] K. Ishaque and Z. Salam, “An improved modeling method to determine
the model parameters of photovoltaic (PV) modules using differential
evolution (DE),” Sol. Energy, vol. 85, pp. 2349–2359, 2011.

[30] M. S. Ismail, M. Moghavvemi, and T. M. I. Mahlia, “Characterization of
pv panel and global optimization of its model parameters using genetic
algorithm,” Energ. Convers. Manage., vol. 73, pp. 10–25, 2013.

[31] W. Xiao, P. R. Dunford, W. G. Palmer, and A. Capel, “Regulation of
photovoltaic voltage,” IEEE Trans. Ind. Electron., vol. 54, no. 3, pp.
1365–1374, 2007.

[32] M. G. Villalva, J. R. Gazoli, and F. E. R., “Comprehensive approach
to modeling and simulation of photovoltaic arrays,” IEEE Trans. Power

Electron., vol. 24, no. 5, pp. 1198–1208, 2009.

[33] J. J. Soon and K.-S. Low, “Photovoltaic model identification using
particle swarm optimization with inverse barrier constraint,” IEEE Trans.

Power Electron., vol. 27, no. 9, pp. 3975–3983, Sep. 2012.

[34] A. Laudani, F. R. Fulginei, and A. Salvini, “High performing extracton
procedure for the one-diode model of a photovoltaic panel from experi-
mental I-V curves by using reduced forms,” Sol. Energy, vol. 103, pp.
316–326, 2014.

[35] F. Ghani, M. Duke, and J. Carson, “Numerical calculation of series and
shunt resistances and diode quality fator of a photovoltaic cell using the
Lambert W -function,” Sol. Energy, vol. 91, pp. 422–431, 2013.

[36] ——, “Numerical calculation of series and shunt resistance of a pho-
tovoltaic cell using the Lambert W -function: Experimental evaluation,”
Sol. Energy, vol. 87, pp. 246–253, 2013.

[37] Q.-G. Wang and Y. Zhang, “Robust identification of continuous systems
with dead-time from step responses,” Automatica, vol. 37, no. 3, pp.
377–390, 2001.

[38] M. Hamdy and R. Call, “The effect of the diode ideality factor on the
experimental determination of series resistance of solar cells,” Sol. Cells,
vol. 20, no. 2, pp. 119–126, 1987.

[39] M. C. Di Piazza and G. Vitale, Photovoltaic Sources: Modeling and

Emulation. Springer, 2012.
[40] T. Easwarkhanthan, J. Bottin, I. Bouhouch, and C. Boutrit, “Nonlinear

minimization algorithm for determining the solar cell parameters with
microcomputers,” Int. J. Solar Energ., vol. 4, pp. 1–12, 1986.

Li Hong Idris Lim (M’14) received her B.Eng.
and Ph.D. degrees in Electrical Engineering from
the National University of Singapore (NUS). She
worked at Vestas Technology R&D from 2008 to
2012. Since 2013, she has been working full-time
as an Assistant Professor at University of Glasgow.
Her research interests include control of wind energy
systems, solar forecasting and system identification,
and smart grid.

Zhen Ye received his B.Eng. and M.Eng. degrees
in electrical engineering from Wuhan University,
China, in 2000 and 2003, respectively. In 2008, he
got his Ph.D. degree in Electrical Engineering from
the National University of Singapore (NUS). After
graduation, he worked in the Solar Energy Research
Institute of Singapore (SERIS) as a research scien-
tist. Since 2011, he worked in Renewable Energy
Corporation (REC) as a principle engineer for the
PV module technology. His research interests in-
clude PID control, system identification, PV system

monitoring, solar power integrity and smart grid.

Jiaying Ye received her Bachelor degree in
microelectronics from Sun-Yat-Sen University in
Guangzhou, China. After graduation, she worked
in Nanyang Technological University in Singapore
as a project officer, studying the resistive switching
property of thin-film materials. In 2010, she was
awarded a PhD scholarship from the NUS Graduate
School for Integrative Sciences and Engineering
(NGS) and is currently a PhD candidate in NGS
and the Solar Energy Research Institute of Singa-
pore (SERIS) at NUS. Her research interest include

indoor characterization of PV modules and outdoor performance analysis for
PV systems.

Dazhi Yang received the B.Eng. and M.Sc. degrees
from Department of Electrical and Computer En-
gineering, National University of Singapore, Singa-
pore, in 2009 and 2012, respectively, where he is
currently working toward his Ph.D. degree. He is
employed full-time by the Solar Energy Research
Institute, Singapore. His research interests include
statistical modeling for solar irradiance, forecasting
methodologies, and environmental data mining.

Hui Du received his Diploma in Mechatronics
Engineering from Nanyang Polytechnic in 2010.
He is currently pursuing Bachelor in Electronics
Engineering from National University of Singapore.
He is also a full-time employee at Solar Energy
Research Institute of Singapore.


