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Abstract 25 

Accurate inventories of grasslands are important for studies of carbon dynamics, biodiversity 26 

conservation and agricultural management. For regions with persistent cloud cover the use of multi-27 

temporal synthetic aperture radar (SAR) data provides an attractive solution for generating up-to-date 28 

inventories of grasslands. This is even more appealing considering the data that will be available from 29 

upcoming missions such as Sentinel-1 and ALOS-2. In this study, the performance of three machine 30 

learning algorithms; Random Forests (RF), Support Vector Machines (SVM) and the relatively 31 

underused Extremely Randomised Trees (ERT) are evaluated for discriminating between grassland 32 

types over two large heterogeneous areas of Ireland using multi-temporal, multi-sensor radar and 33 

ancillary spatial datasets. A detailed accuracy assessment shows the efficacy of the three algorithms to 34 

classify different types of grasslands. Overall accuracies ≥ 88.7% (with kappa coefficient of 0.87) 35 

were achieved for the single frequency classifications and maximum accuracies of 97.9% (kappa 36 

coefficient of 0.98) for the combined frequency classifications. For most datasets, the ERT classifier 37 

outperforms SVM and RF.  38 
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1. Introduction 48 

Detailed knowledge on land cover and land use are key parameters for sustainable planning and 49 

management of resources, and are crucial data components for many aspects of global change studies 50 

(Verburg et al., 2011). Globally, grasslands cover 37% of the total land area (O'Mara, 2012) and are 51 

valuable ecosystems that support a multitude of roles, most importantly food security, biodiversity 52 

conservation and greenhouse gas mitigation. In Ireland, grassland is the dominant land cover, 53 

occupying approximately 60% of the country`s terrestrial area (Eaton et al., 2008), and represents 54 

over 90% of all agricultural land (pasture, grass silage or hay, and rough grazing) (~4,000,000ha). The 55 

dominance of grassland in Ireland stems largely from the favourable climatic conditions that allow for 56 

a prolonged grass growing season (Lafferty et al., 1999). Given their extent, there is considerable 57 

potential to increase carbon sequestration in grasslands through improved land management and 58 

restoration of degraded grasslands (Soussana et al., 2004; O'Mara, 2012). This has a particular 59 

importance for Ireland, given the dominance of grassland and expected trends for intensification of 60 

grassland management through implementation of the Food Harvest 2020 strategy (DAFM, 2011) by 61 

the Irish Government and the abolition of milk quotas across the EU-28 in 2015 (Läpple & Hennessy, 62 

2012). Milk production is expected to increase by 50 per cent by 2020 compared to the 2007-2009 63 

average and beef output by 40 per cent under the Food Harvest 2020 strategy. These are the agri-64 

sectors (dairy and beef) of most importance in relation to GHG emissions (Casey & Holden, 2005, 65 

2006). While these transitions will affect the sequestration and emission processes, they also present 66 

significant implications for biodiversity (Benton et al., 2003; Walker et al., 2004) and water quality. 67 

Intensification and expansion of production, fertiliser use and land improvement (drainage) will 68 

impact surface and groundwater and it is essential that Ireland complies with legislation (Water 69 

Framework Directive (2000/60/EC), Groundwater Directive (2006/118/EC) and Nitrates Directive 70 

(91/676/EEC)) to maintain (and/or restore) good water quality and avoid fines from the European 71 

Commission. 72 

In light of the major changes now undergoing in Irish grassland practices, it is crucial that more 73 

detailed and more precise inventories of grassland are obtained so that sustainable grassland 74 



management can be achieved. Under EU legislation (Decision No 529/2013/EU), mandatory 75 

accounting on greenhouse gas emissions and removals resulting from activities related to grazing land 76 

management is to be phased in between 2013 and 2021. From 2016 to 2018, Member States will be 77 

required to report to the Commission on the inventory systems in place or being developed to estimate 78 

emissions and removals from grazing land management. Collection of such data by traditional means 79 

(e.g. through field work) can be cost prohibitive and resource intensive. The use of earth observation 80 

(EO) data can provide routine coverage over large and remote areas and readily be incorporated into 81 

operational mapping or monitoring programs to provide a cost effective means of replacing or 82 

complementing field data collection. As agricultural areas are characterised by temporal differences 83 

due to plant phenology and farm management (e.g. grazing and mowing activities), the use of a multi-84 

temporal image series is more effective than using a single date acquisition (Ranson & Sun, 1994; 85 

Kasischke et al., 1997; Pierce et al., 1998). Given the difficulty of acquiring multiple acquisitions 86 

throughout a growing season with optical sensors limited by frequent cloud cover, synthetic aperture 87 

radar (SAR) data can be an important alternative, or complementary data source, to provide the best 88 

opportunity for generating a multi-temporal data set as they are almost independent of weather and 89 

illumination conditions, making their use for operational purposes especially appealing. Semi-90 

automatic analysis of these data for land cover applications usually consists of them being classified 91 

into a pre-determined number of individual classes. 92 

A number of different approaches exist for semi-automated classification of EO data (e.g. see Lu 93 

& Weng, 2007 for a comprehensive review). The maximum likelihood classifier (ML) is one of the 94 

most commonly used supervised classification techniques due to its simplicity and implementation in 95 

almost all standard image processing software packages (Waske & Braun, 2009). This technique 96 

assumes a normal Gaussian data distribution and computes the statistical probability of a given pixel 97 

belonging to a particular class. The assumption of a Gaussian distribution is not ideal in the context of 98 

SAR data due to the interference of speckle. Machine learning approaches are non-parametric and 99 

therefore do not rely on any assumption about data distribution. Support Vector Machines (SVM) and 100 

Random Forests (RF) are two of the most sophisticated machine learning approaches available. Both 101 

methods have become increasingly popular and used frequently in land cover classifications using 102 



multi- and hyper-spectral satellite imagery (e.g. Melgani & Bruzzone, 2004; Gislason et al., 2006; 103 

Waske & Braun, 2009; Dalponte et al., 2009; Kavzoglu & Colkesen, 2009; Loosvelt et al., 2012a). 104 

Although these classifiers have produced promising results with optical data, only relatively few 105 

applications to SAR data are known (e.g. Waske & Benediktsson, 2007; Waske & van der Linden, 106 

2008; Waske & Braun, 2009; Walker et al., 2010; Longépé et al., 2011; Loosvelt et al., 2012a; 107 

Rodriguez-Galiano et al., 2012; Deschamps et al., 2012). Similarly, most studies that have applied RF 108 

or SVM using SAR data have focused on relatively small study areas, e.g. Lardeux et al., (2009); 109 

Waske & Braun, (2009), and Loosvelt et al., (2012b) all focused on an area size of 5x5km. The 110 

backscatter and environmental variability associated with different land cover classes rises with 111 

increasing study area size, and therefore the performance of the classifiers strongly depends on the 112 

spatial scale of the study area. Furthermore, most of these studies are concerned with general land 113 

cover classification or crop classification, and relatively few studies focusing on the use of SAR for 114 

grasslands monitoring or parameter retrieval exist (e.g. Hill et al., 1999; Pairman et al., 2008; Smith & 115 

Buckley, 2011; Dusseux et al., 2012; Satalino et al., 2012; Voormansik et al., 2013; Wang et al., 116 

2013). 117 

In this study, the RF and SVM classifiers are applied to multitemporal C & L-band SAR datasets 118 

covering two different regions in Ireland of 1091km
2
 and 1837km

2
 in size. In addition, the use of a 119 

relatively new machine learning classifier - Extremely Randomised Trees (ERT) is also investigated. 120 

ERT has not found widespread application within the EO community to date, and has been used 121 

primarily in computer vision (Moosmann et al., 2008) and bio-medical imaging applications (Marée et 122 

al., 2013). This paper sets out to evaluate their potential for creating grassland inventories over large 123 

heterogeneous areas, making the key distinction between grasslands that are improved, and those that 124 

are semi-improved. Improved grasslands are intensively managed and include pastures and grassland 125 

harvested for hay and silage. They occur across a range of soil and site conditions and usually have 126 

high external inputs of fertiliser and herbicides and disturbance (e.g. reseeding and drainage). 127 

Alternatively, semi-improved grasslands are characterised by relatively low external inputs of 128 

fertiliser and herbicides and low disturbance relative to improved grasslands. They are threatened 129 

largely by the abandonment of all management (and the subsequent reversion to scrub) or the 130 



intensification of management (and a loss of plant species diversity). Their survival is of increasing 131 

concern given the targets set out in Food Harvest 2020 and the decline of rural populations, increased 132 

costs in farming marginal lands and improved off-farm opportunities that are resulting in the 133 

abandonment of marginally productive lands. Some areas may be abandoned as a result of 134 

intensification in other areas (Joyce, 2013). 135 

2. Study Areas & Datasets 136 

2.1 Study sites 137 

The Republic of Ireland has a land area of 70,282km
2
 and is divided into 26 counties for 138 

administrative purposes. The study areas are located in central and north western Ireland, 139 

encompassing the counties of Longford and Sligo respectively (see Fig. 1). Longford has an area of 140 

1091km
2
 and is predominantly lowland, with the highest altitude reaching 278m (Cairn Hill) in the 141 

north of the county. It is a rural county with the second lowest population in Ireland (~36,000 people) 142 

and where pastures are the dominant land cover. The west of the county is dominated by extensive 143 

tracts of peatlands whereas lakelands are found in the south, west and north-east. The south-east 144 

represents the predominantly agricultural land in the county, interspersed with plantations of 145 

deciduous and mixed woodland. The north and northwest is characterised by drumlin topography. 146 

Annual average rainfall is between 900 and 1000mm. Sligo has an area of 1837km
2
 and shares a 147 

substantial part of its border with the North Atlantic Ocean. The county has two distinctive upland 148 

areas; the Dartry mountains to the north of the county and the Ox mountains to the south-west. Due to 149 

its proximity to the ocean, Sligo has a maritime climate with generally low annual temperature 150 

amplitudes and humid conditions. Annual average rainfall varies between 1000-1200mm for the low-151 

lying areas and between 1600-2000mm for the highest mountains in the Dartry and Ox ranges.  152 

2.2 SAR Dataset  153 

A total of 12 ENVISAT ASAR IM scenes, 15 ERS-2 scenes and 12 ALOS PALSAR scenes from 154 

2008 have been acquired for this study. ERS-2 was launched on 20
th
 April 1995 by the European 155 

Space Agency (ESA) and operated at C-band with a single mode (VV polarisation and ~23° incidence 156 



angle) until it was retired on 5
th
 September 2011. ENVISAT, the successor to ERS-2 was launched by 157 

ESA on 1
st
 March 2002 and provided continuous data from a range of sensors until operations ceased 158 

in April 2012. The Advanced Synthetic Aperture Radar (ASAR) instrument operated at C-band and 159 

provided data in various modes with differing spatial resolutions and coverage. In this study, data in 160 

Image Mode (IM) were obtained to coincide with the ERS-2 beam mode. The ALOS satellite was 161 

launched on 19
th
 January 2006 and operated until 12

th
 May 2011. The PALSAR instrument on board 162 

ALOS operated at L-band and provided fully polarimetric capabilities. Table 1 shows the acquisition 163 

dates and associated data product characteristics for both Longford and Sligo. All PALSAR data were 164 

acquired from ascending orbits, ENVISAT ASAR data was acquired from descending orbits and 165 

ERS-2 data acquired from both ascending and descending orbits. The ERS-2 and ENVISAT ASAR 166 

scenes were acquired in VV polarisation at an incidence angle of ~23° and a 100km swath width. For 167 

PALSAR data, there are six scenes per county – two scenes in Fine Beam Single (FBS) mode (HH 168 

polarisation) and four scenes in Fine Beam Dual (HH/HV polarisation). The PALSAR scenes were 169 

acquired with an incidence angle of ~38° and have a swath width of 70km. Two frames were required 170 

to cover each county which results in a total of three separate acquisition dates per county.  171 

2.3 Ancillary data 172 

In addition to the SAR data, various ancillary datasets were used during the classification process. 173 

The Irish Land Parcel Identification System (LPIS), developed by the Irish Department of 174 

Agriculture, Food & the Marine, provides an alphanumeric identification system for all agricultural 175 

parcels receiving Area Aid funding from the European Union (EU). The dataset contains vector 176 

boundaries of the parcels with attribute information including area, crop type and stocking densities. 177 

The 2008 LPIS dataset was used to facilitate the identification of arable lands and improved 178 

grassland. The National Parks and Wildlife Service (NPWS) semi-natural grasslands field survey 179 

dataset for Longford (O’Neill et al., 2009) and Sligo (O’Neill et al., 2010) were used to provide 180 

training data for the semi-improved grassland classes. A total of 193 2m x 2m relevés from 49 sites 181 

(covering an area of 1306ha) in Longford were surveyed for the NPWS field survey. In Sligo, 322 2m 182 

x 2m relevés from 52 sites (area coverage of 1546ha) were surveyed. The Forest Inventory & 183 



Planning System (FIPS), maintained by the Forest Service (Ireland) aided the collection of forest 184 

reference points and further datasets used included the Teagasc-EPA Soils and Subsoils dataset (Fealy 185 

et al., 2009), an Ordnance Survey Ireland (OSi) 10m spatial resolution DEM and OSi 186 

orthophotography. 187 

3. Methodology 188 

3.1 Training Data 189 

Ten landcover classes were considered according to the specific needs of the project: dry humic 190 

semi-improved grassland, dry calcareous semi-improved grassland, wet semi-improved grassland, 191 

reclaimed improved grassland, dry improved grassland, forest, peatland, cropland, water, and 192 

settlement. Table 2 displays these ten classes along with their definitions and the associated number of 193 

training and validation samples per class. They were largely defined according to the classification 194 

scheme developed by the Irish Heritage Council (Fossitt, 2000) and the Intergovernmental Panel on 195 

Climate Change (IPCC) Guidelines for National Greenhouse Gas Inventories (IPCC, 2006). The 196 

dominant species composition and management regime of the grassland classes is detailed in Table 3. 197 

Improved grasslands are typically species-poor and usually dominated by ryegrasses (Lolium perenne, 198 

Lolium multiflorum) and clover (Trifolium repens). They are intensively managed for grazing and/or 199 

cutting and have high external inputs of fertiliser and disturbance (reseeding and biomass removal). 200 

Species composition varies considerably in the semi-improved classes (GSw, GSdc, and GSdh). GSw 201 

usually contains abundant rushes (Juncus spp.) and sedges (Carex spp.), while GSdc and GSdh both 202 

comprise of a wide range of grasses and broadleaved herbs. These grasslands are often unenclosed 203 

and not managed intensively. The mean number of species recorded at each site in Longford was 92 204 

and 117 for Sligo. 205 

A stratified random sampling approach was adopted for the selection of training and validation 206 

data for each class. A 20m x 20m grid was overlaid on the datasets and point values extracted from 207 

the cell centroid locations. User interpretation of OSi orthophotography, Bing Imagery, LPIS and 208 

FIPS data facilitated the distinction of the non-grassland classes, whereas the grassland classes were 209 

distinguished using additional data from the NPWS semi-natural grasslands field survey datasets, 210 



LPIS and the Teagasc/EPA Soil dataset. All samples were selected independently of the SAR data. A 211 

5-fold cross validation was performed to minimise the impact of the training data selection. The 5-212 

fold cross validation partitions the dataset randomly and uses 5-1 folds for training and the remaining 213 

one for validating the classifier. The main advantage is that all the samples are eventually used for 214 

both training and validating the classifier. The same strategy was used for all three classifiers. 215 

3.2 Image Processing 216 

All SAR data were delivered as single look complex (SLC) data products from the European 217 

Space Agency (ESA) and processed using SARscape® software within an ENVI® environment. 218 

Auxiliary orbit and calibration information for each image acquisition was used to generate true 219 

backscattering coefficients (σ
0
). The most recent external calibration files (XCA) along with precise 220 

satellite orbital data (_VOR) provided by the DORIS (Doppler Orbitography and Radiopositioning 221 

Integrated by Satellite) instrument on board ENVISAT were used for the processing of the ASAR 222 

scenes, while ERS PRARE (Precise Range And Range-Rate Equipment) Precise Orbit Products were 223 

used for processing the ERS-2 data. As a first step, the SLC images acquired with similar track and 224 

frames were co-registered. Multi-looking factors of 2 (in range) and 6 (in azimuth) for the PALSAR 225 

FBS data and 1 and 6 for the FBD data were then applied to create 20 x 20m pixels. ERS-2 and 226 

ASAR data were multi-looked by a factor of 1 and 5, and 1 and 6 in range and azimuth respectively. 227 

The multi-looked data were subsequently speckle filtered using a 5x5 kernel size Frost filter and 228 

radiometrically and geometrically calibrated and converted to dB. An OSi 10m spatial resolution 229 

DEM with a vertical accuracy of 0.5m and several ground control points (GCPs) were used to 230 

geometrically correct the SAR scenes to the Irish Transverse Mercator (ITM) projection using a 231 

Range-Doppler approach. 232 

Several texture features derived from the SAR data were investigated to evaluate their 233 

contributions to the classification accuracies. The common Grey Level Co-occurrence Matrix 234 

(GLCM) (Haralick et al., 1973) was applied to all SAR data to extract textural information, as carried 235 

out in studies by Longépé et al. (2011) and Li et al. (2012). Four textural parameters (homogeneity, 236 

contrast, entropy and second moment) were computed using a 3x3 sliding window, and the relation 237 



between neighbouring pixels was considered around the four main directions (0°, 45°, 90° and 135°). 238 

Multi-temporal features (gradient, standard deviation, median, maximum, minimum, span ratio, 239 

maximum increment, span difference, min ratio and max ratio) were also extracted from the time-240 

series intensity data to enable structures and/or temporal changes to be detected.  241 

No terrain distortions were present in the Longford dataset as a result of its low-lying topography. 242 

Conversely, the scenes for Sligo needed to be masked for certain terrain-induced distortions due to a 243 

more varying topography. The total area masked ranged from 0.2 -1.4% of the total county area 244 

depending on acquisition characteristics. These areas were subsequently masked from all the SAR 245 

intensity data and SAR-derived texture and multitemporal measures and excluded from the 246 

classifications.  247 

3.2.1 Grassland phenology  248 

The Normalised Difference Vegetation Index (NDVI) was calculated to provide an approximate 249 

phenological stage for the Level 1 grassland classes at each SAR acquisition date. NDVI is a strong 250 

indicator of the photosynthetic capacity of a canopy and is used in this study as a proxy for the 251 

approximate phenological stage of grasslands throughout 2008. Sixteen day composites of Moderate 252 

Resolution Imaging Spectroradiometer (MODIS) Terra (MOD13Q1) (250m spatial resolution) 253 

acquisitions were used to calculate NDVI values over the study areas. Only pure improved and semi-254 

improved grassland pixels were collected. In total, 124 and 122 pixels were identified for Longford 255 

and 301 and 167 pixels for Sligo for the improved and semi-improved classes respectively. Fig. 2 256 

displays a smoothed time series (Hodrick-Prescott-(HP) filter (Hodrick & Prescott, 1997)) of MODIS 257 

NDVI values for both classes for the 2007 – 2009 period.  258 

3.3 Classifiers 259 

3.3.1 Random Forest 260 

Three supervised classification algorithms; Random Forests (RF), Support Vector Machines 261 

(SVM) and Extremely Randomised Trees (ERT) have been applied to the SAR data on a per-pixel 262 

basis in this study. The RF classifier (Breiman, 2001) is an advanced form of bagging (bootstrap 263 

aggregating) that forms an ensemble of classification and regression tree (CART)-like classifiers 264 



(Breiman et al., 1984). RF can handle high-dimensional datasets, accepts a variety of measurement 265 

scales for both numeric and categorical variables, is less sensitive to noise, can handle many input 266 

variables and does not suffer from overfitting (Rodriguez-Galiano et al., 2012). The algorithm 267 

randomly selects a subset of samples (2/3 of data samples) for the training of each individual decision 268 

tree with the remaining samples (1/3 of data samples) assigned as out-of-bag (oob) samples which are 269 

used to test the classification and estimate the error. For each individual tree, the Gini index (a 270 

measure of class homogeneity) is used to perform the best split of a random set of input features at 271 

each node. Using a majority vote, a final class is assigned from the multiple outputs of all constructed 272 

decision trees. 273 

The algorithm can also provide an estimate of the relative variable importance and allow for a 274 

quantification of the classification probabilities. This is of particular value for studies which involve 275 

multi-source variables, as it allows for the contribution of each of the different source variables to the 276 

classification accuracy to be evaluated (Gislason et al., 2006). By reducing the data dimensionality 277 

(thereby minimising sensitivity to the Hughes phenomenon (Hughes, 1968)) and identifying the 278 

optimum input variables, an enhanced classification performance (in terms of accuracy and 279 

efficiency) may be obtained. To do this, RF switches one input variable while keeping the remaining 280 

variables constant and measures the decrease in accuracy, if any, by means of the oob error estimation 281 

and Gini Index decrease (Breiman, 2001). The RF classifier requires only two input parameters; the 282 

number of trees (N), and the number of variables to split at each node (m). In this study, N was set to 283 

200 and m= √p, where p is the number of predictor variables.  284 

3.3.2 Support Vector Machines 285 

Support Vector Machines are based within the framework of the statistical learning theory 286 

developed by Vapnik (1995) and use the principles of structural risk minimisation (SRM). The aim of 287 

SVMs is to fit an optimal separating hyperplane between different classes by using only the training 288 

samples that lie at the edge of the class distributions (i.e. the so-called support vectors). As the 289 

hyperplane maximises the distance between itself and the two classes, it can generalise accurately on 290 

unknown samples (Foody & Mathur, 2004), and minimises overfitting – a problem common to 291 



classifiers such as neural networks and decision trees. As SVMs were initially developed to perform 292 

binary classifications, various methods such as one-against-all, one-against-one and directed acyclic 293 

graph have been proposed to extend SVMs to multiclass problems (Hsu & Lin, 2002). To separate 294 

classes with non-linear boundaries, kernel functions are used to transform training samples into a 295 

higher dimensional space where linear class separation can be performed (Huang et al., 2002). This 296 

allows SVMs to perform well even when relatively few training samples are available (Pal & Mather, 297 

2005). 298 

In this study, the Radial Basis Function (RBF) kernel and one-against-one strategy were adopted. 299 

The SVM is optimised for appropriate values for C (penalty or regularisation term) and γ (controls the 300 

width of the radial basis function kernel) by a grid search method using cross-validation. The grid 301 

search method tests different pairs of parameters before finally selecting the set with the highest cross 302 

validation accuracy. A full mathematical formulation of the SVM can be found in Vapnik (1995), 303 

Burges (1998), and  Huang et al. (2002) while a more in-depth summary of the use of SVMs in 304 

remote sensing is provided in Mountrakis et al. (2011).  305 

3.3.3 Extremely Randomised Trees 306 

Extremely Randomised Trees or Extra-Trees is a relatively new tree-based ensemble classifier 307 

method, introduced by Geurts et al. (2006) and similar in manner to Random Forests. The main 308 

difference is that Random Forests finds the best split among a random subset of variables when 309 

constructing a tree whereas Extremely Randomised Trees selects a node split randomly and uses the 310 

same input training set to train all individual trees (i.e. no bagging). The primary benefit of increasing 311 

the randomisation is to reduce the variance among trees. Using the full training set rather than a 312 

bootstrap sample minimises the bias. Furthermore, ERT is much faster than Random Forests, as the 313 

computational load of the training stage is simplified as the algorithm doesn`t search exhaustively for 314 

the optimal split as in RF. ERTs have been widely used in biomedical imaging applications but very 315 

few applications to EO data exist (Zou et al., 2010). To the author’s knowledge, this is one of the first 316 

known applications of ERT to multi-temporal SAR data. As with the RF classifier, N was set to 200 317 



and m= √p for the ERT classifications. All three classifications were implemented using the open-318 

source Scikit-learn module (Pedregosa et al., 2011) in Python v2.7.3. 319 

4. Results 320 

4.1. Temporal backscatter analysis 321 

The distribution of backscatter coefficient (σ
0
) values extracted for the training samples 322 

representing the different grassland classes are displayed in Fig.3. The boxes represent the inter-323 

quartile range and the whiskers extend to within 1.5 times the inter-quartile range from the upper and 324 

lower quartiles. The C-band VV polarisation signatures display similar dynamic ranges for 325 

acquisitions in both counties (Fig. 3(a) & (b)), though the overall variation in the distribution of σ
0
 326 

values for each class is higher for the Sligo acquisitions. The difference between median σ
0
 values 327 

varies between classes for all acquisition dates. In general, the GSdh and GSdc classes display the 328 

greatest separability for the Longford dataset, with GSdh σ
0
 values on average 3dB lower than GSdc. 329 

A similar pattern is not observed for all Sligo C-band acquisitions. In general, the autumn and winter 330 

acquisitions display the greatest separation (approximately 2 – 3dB) for the GSdh and GSdc classes. 331 

The GAr class tends to have the highest median σ
0
 values for the C-band Sligo dataset, while the 332 

GSdc class generally has the highest median σ
0
 values for Longford. The degree of overlap between 333 

the classes is stronger for the Sligo acquisitions, although it is not consistent throughout the time 334 

series. 335 

The L-band data display a better separation between the GSw and GAd classes, with median GSw 336 

σ
0
 values approximately 3dB higher than GAd for both HH and HV polarisations. Wet grasslands 337 

typically have a higher soil moisture content compared to improved grasslands which may be 338 

responsible for the increased backscatter. As expected, the HV signals are weaker than the HH but the 339 

variations in median σ
0
 of the grasslands display a similar pattern. As attenuation of microwave 340 

signals is greater in areas with increased canopy cover, the contribution from these scattering 341 

mechanisms is progressively reduced during the vegetation growth stages. This is observed in the 342 

lower median σ
0
 values obtained for the summer L-band HH datasets (Fig.3(c) & (e)) and less clearly 343 

for some of the summer C-band acquisitions (Fig. 3(a) & (b)). The analysis of the temporal 344 



backscatter profiles confirms the possibility to separate between the grassland classes using a 345 

combination of C- and L-band acquisitions and different polarisations. 346 

4.2 Feature Importance 347 

RF has the ability to generate a feature or variable importance ranking which allows for the 348 

reduction of the number of input variables used in the classification process. A RF model with 5000 349 

trees, as suggested by Díaz-Uriarte & De Andres (2006) was used to calculate the importance of the 350 

contribution of each variable to the classifications. The accumulation of all feature scores equals one. 351 

All SAR intensity, SAR-derived and ancillary data features were initially included in the 352 

classifications. In all cases, the GLCM texture measures were found to have little measureable 353 

influence on the classification accuracies and were subsequently removed from any further analysis. 354 

Separate RF models were considered for the three sets of data: those derived from C-band acquisitions 355 

only, those derived from L-band acquisitions only, and those derived from C and L-band acquisitions 356 

combined. The feature importance scores for the C-band, L-band and merged C- and L-band datasets 357 

for both study areas can be seen in Fig. 4. In Fig. 4(a), the first 12 variables are the C-band backscatter 358 

intensities in chronological order, the following 30 variables are the multitemporal features for the 359 

different track and frames (in order - standard deviation, span ratio, span difference, min ratio, 360 

minimum, max ratio, maximum increment, maximum, gradient, median), and the last four are the 361 

soils, sub-soils, elevation and slope ancillary data. A similar structure is adopted for Fig. 4(b)-(f). It is 362 

interesting to note that the ancillary variables; soils, sub-soils, elevation, slope are the most important 363 

variables in each dataset where all SAR and SAR-derived variables are relatively less important. 364 

For the C-band Longford intensity data (Fig. 4 (a)), three acquisitions (20080408, 20080722 and 365 

20080914) stand out as having the highest importance. Interestingly, these are all ASAR acquisitions. 366 

In Sligo, the intensity data with the highest importance are two ERS-2 acquisitions (20080729 and 367 

20080817). Considering the L-band intensity data, the summer acquisitions (20080613 – Longford 368 

and 20080601/20080717 – Sligo) have the highest importance. Due to the low temporal density of 369 

observations, it is more challenging to determine the optimum acquisition timing. The choice of 370 

polarisation also varies according to each study site, where the HH polarisation data has a higher 371 



importance than the HV polarisation data in Sligo (Fig. 4 (d)) and where there is no real difference 372 

between polarisation importance for Longford (Fig. 4 (c)). For both frequencies, the contribution of 373 

the multitemporal minimum, maximum, and median backscatter intensity for both polarisations also 374 

display high importance. In the combined C- and L-band classifications (Fig. 4(e) – (f)), the dominant 375 

influence of the L-band measurements is apparent for both study areas. 376 

From this analysis, the number of input features was subsequently reduced based on the lowest 377 

importance ranking scores and in an effort to minimise data redundancy. A series of RF, SVM and 378 

ERT classifications were carried out to assess the performance of the classifiers based on the reduced 379 

feature inputs until the optimum variables were selected that led to the highest accuracy classifications 380 

(v1 classifications in Table 4). For the final classifications, only the backscatter intensity 381 

measurements and ancillary data variables were included (i.e. all multitemporal-features were 382 

excluded). The importance of the contribution of each feature to the reduced input RF classifications 383 

for the five grassland classes is displayed in Fig.5. For both Longford and Sligo, it is shown that 384 

different variables have the strongest influence for specific classes. Overall, it can be seen that there is 385 

no clear dominance of either C- or L-band intensity data in terms of importance scores that satisfies 386 

all grassland classes. For example, in Longford the C-band intensity measurements have a much 387 

higher importance for dry humic semi-improved grasslands (GSdh), whereas the L-band 388 

measurements have a higher importance for the wet semi-improved grasslands (GSw). In Sligo, the L-389 

band intensity measurements are most important for discriminating between improved (GAd and 390 

GAr) and wet semi-improved grasslands (GSw).  391 

4.3 Classification Accuracy Assessment 392 

Several measures derived from the confusion matrix were used to evaluate the classifier 393 

performance and their associated uncertainties. These included the overall accuracy (OA), user’s 394 

accuracy (UA), producer’s accuracy (PA) (Congalton, 1991; Congalton & Green, 2009) and the 395 

Kappa statistic (κ) (Cohen, 1960). The training and validation of the classifiers was performed on 396 

5202 and 6442 samples from the Longford and Sligo datasets respectively. Two different datasets 397 

were used for the classifications; v0 represents classifications that considered all input variables, and 398 



v1 represents classifications that considered only the backscatter intensity measurements along with 399 

the soils, sub-soils, elevation and slope data (see Table 4). The effect of reducing the number of input 400 

features can be seen across both study areas in all classifications where OA increases of between 0.8 – 401 

5.8% were obtained.   402 

From Table 4, it can be seen that the L-band dataset classifications are only marginally 403 

outperformed by the C-band dataset (generally on the order of ~2%). This is significant given the fact 404 

that the L-band time-series is comprised of just three separate acquisitions for both study areas while 405 

the C-band dataset is made up of 12 and 15 acquisitions for Longford and Sligo respectively. The 406 

positive impact of a synergy between frequencies during classification is clearly demonstrated in 407 

Table 4 where an increase in overall accuracy (average of 1.5%) is observed for each classifier in both 408 

study areas. In all three sets of classifications (C-band, L-band and combined C and L-band), the 409 

Longford results outperform the Sligo results. Notwithstanding this, the final (v1) Sligo classifications 410 

have an average overall accuracy of 91%. In contrast, the Longford datasets produce average 411 

classification accuracies of > 96%. The user`s and producer`s accuracy of individual classes for both 412 

areas were also high, with Longford having considerably lower class standard deviations compared to 413 

Sligo.  414 

The classification output maps in Fig. 6 display the distribution of the different land cover 415 

categories in the two study counties. These maps were created using SAR intensity measurements 416 

only and excluded the ancillary variables. In Sligo, the large-scale effect of the regular rainfall and 417 

resulting high humidity can be observed in the manner in which blanket peat bogs cover the 418 

mountainous regions of the Ox (southwest) and Dartry (north) ranges. It can be seen that the majority 419 

of improved grassland occurs along the coastline and in a central corridor in the county. The extensive 420 

peatlands (raised bogs) in the west of Longford are also clearly distinguished with the majority of 421 

improved grassland appearing to occur in the southern and north eastern parts of the county. Some 422 

areas of confusion are present, namely the mixing of settlement and forest classes due to their similar 423 

temporal backscatter signal, nonetheless the distribution of the different classes appears to have been 424 

captured reasonably well. 425 



4.4 Prediction Probabilities 426 

An important output of the ERT (and RF) classifier is the class probabilities (Eq. 1). This is the 427 

probability p of an observation being classified into class i, where k is the total number of trees in the 428 

ensemble and ki is the total number of trees classifying the observation as class i. 429 

𝑝(𝑖) =  
𝑘𝑖

𝑘
 

This can be of particular use as a measure of quantifying the level of uncertainty in the generated 430 

classification maps (Fig. 6). For example, low probabilities in Fig. 7 represent pixels that are unlikely 431 

to be dry improved or wet semi-improved grasslands while intermediate probabilities indicate 432 

possible confusion between another or more classes. High probabilities indicate pixels that have 433 

limited uncertainty about the assigned class. As can be seen in Fig. 7, areas along the coastline of 434 

Sligo that were classified as improved grasslands have a very high probability of being assigned to the 435 

correct class. The semi-improved grasslands are more noticeable to the northwest and south of the Ox 436 

mountains and towards the east of the county. In Longford, the area dominated by extensive tracts of 437 

commercial peatlands interspersed with vegetation is clearly distinguishable in the south west of the 438 

county with corresponding low probabilities. At the same time, the areas of dry improved grassland 439 

with the highest probabilities are observed in the southwest and east of the county while wet semi-440 

improved grasslands in the centre and northwest of the county have the highest probability of having 441 

been correctly classified. 442 

5. Discussion 443 

5.1 Backscatter analysis 444 

Microwave scattering from grasslands is complex and has been investigated by several model 445 

experiments (Chauhan et al., 1992; Saatchi et al., 1994; Stiles & Sarabandi, 2000; Stiles et al., 2000). 446 

In practice, determining and isolating the scattering mechanisms from grasslands is difficult due to the 447 

various influencing factors. The backscattering coefficient is a function of the radar system 448 

parameters (frequency, polarisation and incidence angle) and of the surface parameters (dielectric and 449 

geometric properties) (Ulaby et al., 1982). Each of these parameters influences the backscatter 450 

(1) 



response from the imaged surface. For vegetated surfaces, penetration depth depends on the moisture, 451 

density and geometric structure of the plants and soil. In general, the longer wavelength L-band signal 452 

(26cm) partly penetrates through the grass canopy and the return signal predominantly contains 453 

information about the underlying soil properties. Shorter wavelength C-band (5.6cm) backscatter is 454 

influenced more by the plant canopy (Stolz & Mauser, 1997; Schieche et al.,1999; Moreau & Le 455 

Toan, 2003). Similarly, the incidence angle and polarisation dependence of radar backscatter is 456 

influenced by the vegetation cover (Skriver et al., 1999). The higher incidence angle of the PALSAR 457 

sensor (~38°) leads to a higher vegetation influence on the backscattered signal, compared to the 458 

steeper 23° incidence angle of ERS-2 and ENVISAT ASAR, which results in the returning signal 459 

having a higher dependence on the dielectric properties of the ground surface. Concerning 460 

polarisation, several studies have also reported stronger backscatter from grasses at VV polarisation, 461 

compared to HH polarisation which interacts more strongly with broad-leaved canopies (Macelloni et 462 

al., 2001; Hill et al., 2005). Changes in the geometric and dielectric properties of the different 463 

grasslands over the calendar year significantly alter the backscatter signal response. For each 464 

acquisition date, the grasslands across the study areas are in various conditions, due to differences in 465 

grazing rotation, grazing intensity, and moisture conditions. As a result, it is not possible to determine 466 

a single wavelength, polarisation and season that are best able to separate the five grassland classes 467 

based on their σ
0
 values.  468 

5.1.1 Soil moisture influence on the backscatter signal 469 

Soil moisture is a significant factor influencing grass growth and the radar backscatter signal from 470 

grasslands (e.g. Hill et al. (1999); Barrett & Petropoulos (2013)). Temporal patterns in soil moisture 471 

impact on the grass growth rate, nutrient uptake and on the length of the grazing season. When the 472 

soil is very wet, grass growth and nutrient uptake is low and it can affect the agronomic management 473 

of the farm (e.g. timing of fertiliser spreading). Soil moisture variations usually follow precipitation 474 

trends. However, they are difficult to determine or predict due to the complex interactions between the 475 

various factors that influence the soil moisture content (e.g. soil texture, topography and vegetation 476 

cover) (Tromp-van Meerveld & McDonnell, 2006). The intensity and frequency of precipitation 477 



events play an important role in determining soil water movement in terms of infiltration and 478 

percolation processes. Changes in the moisture content of the soil can result in large changes in radar 479 

backscatter. The Essential Climate Variable Soil Moisture (ECV SM) product (Liu et al., 2012) 480 

(Wagner et al., 2012) was used in this study to provide an estimate of the soil moisture conditions of 481 

the two study areas on the SAR acquisition dates. For both counties, soil moisture estimates are 482 

averaged over four ECV pixels (0.25 degree spatial resolution) that encompass each county. Figure 8 483 

displays the time series of daily ECV soil moisture values with in situ daily accumulated precipitation 484 

from nearby Met Éireann synoptic meteorological stations. The Mount Dillon and Markree station 485 

data are available only from summer 2008 while observations for the entire year are available from 486 

both the Ballyhaise and Knock Airport stations. The uncertainty range of the soil moisture values 487 

increases dramatically during the summer months. Soil moisture variability  increases strongly during 488 

the vegetative growth period due to increased evapotranspiration and water uptake by plants (Hupet & 489 

Vanclooster, 2002; Illston et al., 2004). No clear relationship between the median C-band backscatter 490 

measurements (Fig.3) and soil moisture on different acquisition dates was observed. This is most 491 

likely due to the C-band signal interacting primarily with the uppermost layer of the grass canopy, 492 

increasing volume scattering and minimising influence from the underlying soil. Loew et al. (2006) 493 

found considerable (C-band VV) backscatter differences between fields with the same soil moisture 494 

content and attributed these to varying biomass of the studied grasslands. Similarly, Schieche et al. 495 

(1999) found the soil water content to have little influence on ERS-1/2 σ
0
 values in the presence of 496 

vegetation, which may help explain why no consistent distinction can be observed between GSw and 497 

GAd that would be as a result of soil moisture differences. For L-band, the GSw class displays a 498 

higher median backscatter value than the other grassland types for both the HH and HV polarisations. 499 

This may be a manifestation of the soil moisture influence on the longer wavelength measurements. It 500 

could also possibly be due to enhanced volume scattering from Juncus spp. and Carex spp., although 501 

previous studies have noted an almost translucent nature of the grass blade-like structures at L-band 502 

(Dobson et al., 1996; Costa & Telmer, 2006).   503 

 504 



5.1.2 Backscatter changes with grassland phenology  505 

The degree to which the backscatter response can be attributed to vegetation or underlying soil 506 

conditions varies throughout the year as the grassland species are in different growth stages (e.g. 507 

flowering, senescence). Composite NDVI values for every 16-day interval between January 2007 and 508 

December 2009 were used to qualitatively analyse the influence of the grassland growth stage on the 509 

radar backscatter return (see Fig. 2). There are marked seasonal variations both within and between 510 

years, mainly due to meteorological factors and management (e.g. fertiliser application, grazing 511 

intensity) (Hurtado-Uria et al., 2013). The typical pattern is low or no growth over the winter months, 512 

due to low temperatures and low levels of solar radiation, with significant growth commencing in 513 

February or March and continuing to peak growth in June. The structure of the sward also depends on 514 

whether it is managed by grazing or cutting, with grazing usually leading to a more varied sward 515 

structure (e.g. due to trampling, dung patches). Improved grasslands generally display a higher NDVI 516 

throughout the year, apart from a period during the summer of 2008 in Longford when the semi-517 

improved grasslands display higher NDVI values. Semi-improved grasslands tend to have a sward at a 518 

range of heights with greater botanical diversity than improved grasslands (see Table 3), with each 519 

species exhibiting a characteristic growth pattern during its seasonal development. Usually, longest 520 

heights are during summer when plants are flowering and setting seed and shortest during autumn or 521 

spring, when most species are germinating. GSDc are typically shorter than GSdh grasslands, but 522 

dominated by similar fine-leaved bent and fescue grasses. Either these grassland types are usually left 523 

fallow or only lightly grazed during the summer as livestock are moved to more productive pastures. 524 

It is possible that there may be a relationship between the L-band backscatter and grass height, as GAr 525 

generally has the lowest median backscatter values of all classes and the smallest grass heights. 526 

Similar results were also observed by Hill et al. (1999). Considering the low number of L-band 527 

acquisitions, it is difficult to investigate thoroughly the temporal variation throughout the growing 528 

season. A general decrease in backscatter strength is observed for the L-band HH acquisitions over 529 

the three dates. An increased vegetation biomass attenuates the backscatter signal and similar results 530 

have been observed by Dubois et al. (1995) and Rombach & Mauser (1997). To explore 531 

comprehensively the effect of grassland growth stage on the radar signal return, further investigations 532 



are needed which focus at the field-scale, with study fields grouped by growth stage and 533 

complemented with in situ biophysical measurements of the grass canopy. 534 

5.2 Feature Importance 535 

The varying importance of the ancillary data on the different classes is interesting to note. For 536 

example, in Longford the soils and sub-soils have a dominant influence in the classification of dry 537 

calcareous semi-improved grasslands (given their usual confinement to limestone areas and alkaline 538 

soils). Similarly, the high importance of elevation is expected as these grasslands are largely confined 539 

to the slopes of esker ridges and moraines in the midlands (Fossitt, 2000). As found by Rodriguez-540 

Galiano et al. (2012), it can be observed that elevation is most important for those classes whose 541 

spatial distribution is conditioned by relief (e.g. dry improved grasslands are mostly located in 542 

lowland areas and dry semi-improved humic grassland mainly occurs in upland areas). It is not as 543 

important for wet semi-improved grasslands as these are usually found on flat terrain in both upland 544 

and lowland areas. The sensitivity of the C-band intensity measurements to phenological differences 545 

in terms of the importance scores can be observed for improved grasslands (GAd) in both Longford 546 

and Sligo where the spring acquisitions have a higher importance than non-spring acquisitions.  547 

5.3 Accuracy Assessment 548 

The observed increases in classification accuracy when both frequencies are combined are 549 

consistent with the results of Lardeux et al. (2009) and Turkar et al. (2012). In all three sets of 550 

classifications (C-band, L-band and combined C and L-band), the Longford results outperform the 551 

Sligo results. This may be due to several factors; Sligo has a much larger area and a landscape with 552 

increased topographical variation when compared to Longford. In addition, there are some areas with 553 

bare rock outcrops and coastal areas which cause some confusion, although these are almost 554 

exclusively within the non-grassland classes. In future studies, it may be worthwhile including an 555 

additional ‘other land’ class to take these areas into account.  556 

Not surprisingly, the cover types with high intra-class variability (i.e. grasslands) were the most 557 

difficult to reliably classify as grasslands form a continuum of types and there is confusion between 558 

class boundaries. A similar observation was made by Waske & Braun (2009) using multi-temporal C-559 



band SAR data with a RF classifier. These misclassifications were expected given their similar 560 

backscatter profiles and the heterogeneous nature of the Longford and Sligo landscapes. Clear-cut 561 

boundaries between the different classes are not readily apparent and thereby contribute to the 562 

confusion between classes. For the Sligo dataset, the majority of misclassifications occur between the 563 

GSdc and GSdh classes, while in Longford, the GAr class is the most difficult to reliably classify. It is 564 

observed that the accuracies also vary considerably depending on the classifier used. The increased 565 

performance of the ERT classifier is observed across all datasets for both study areas. The OA 566 

accuracies for the ERT classifier increase by 2% and 3% for the Longford and Sligo datasets 567 

respectively when the multitemporal texture measures are excluded from the classification. The ERT 568 

class-specific accuracies are less variable (lower standard deviations) for the final classifications 569 

compared to the other classifiers. There is also a more discernible increase in SVM accuracy after the 570 

variable exclusion when compared to the improvement in accuracy of the RF and ERT classifiers. 571 

5.4 Comparison of different classification results with and without ancillary datasets 572 

To quantitatively assess the influence of the ancillary datasets on the classification accuracies, a 573 

number of classification permutations were carried out (see Table 5). Classifications were performed 574 

using all radar and ancillary data (a), all data without soils (b), all data without elevation (c), and radar 575 

intensities only (d). When the C-and L-band datasets are analysed separately, the differences in 576 

accuracies (OA and κ) after the ancillary data are excluded from the classifications are considerably 577 

larger than when the frequencies are combined. For Longford, there are small differences (3.6 - 5%) 578 

between the complete dataset and the radar only dataset for the three classifiers. The differences for 579 

the same datasets for Sligo are larger at between 7.9 and 9.3%. A much higher decrease is observed 580 

for the L-band than the C-band classifications when the ancillary data are excluded. This may be 581 

explained by the fewer radar acquisitions that make up the L-band dataset compared to the C-band. 582 

For all classification scenarios, the ERT classifier outperforms SVM and RF. In addition to the above, 583 

the classifiers were run using only the ancillary variables (soils and elevation) as input. The ancillary 584 

data results (see Table 5) outperform the separate C- and L-band radar only (d) results for both 585 



Longford and Sligo. The combined C-and L-band radar intensities produce higher accuracies than 586 

using the ancillary data alone. 587 

These findings show that combining radar datasets with ancillary data significantly improves the 588 

accuracy of distinguishing grasslands. Similar findings were found in the case of wetlands (Corcoran 589 

et al., 2013; Marti-Cardona et al., 2013). To further improve grassland classifications, the combination 590 

of optical with SAR and ancillary datasets may result in increased accuracies (Hill et al., 2005; Bagan 591 

et al., 2012; Smith & Buckley, 2011) although some studies (Price et al., 2002; Dusseux et al., 2012) 592 

have found a combined approach unsuccessful in yielding more accurate results. This would have 593 

obvious limitations; especially from an operational context as consistent and systematic cloud-free 594 

optical imagery may not be available for specific areas on a yearly basis. In addition, the extra effort 595 

(in terms of additional optical image processing and analysis) and cost may not be worthwhile in 596 

practice, as the findings from this study have shown that both single-frequency and multi-frequency 597 

multi-temporal SAR and ancillary data are capable of providing high classification accuracies in the 598 

absence of optical data. 599 

6. Conclusion 600 

SAR data are less frequently used in land-cover classification studies than optical data, yet they 601 

can be an important alternative or complementary data source for areas with persistent cloud cover. In 602 

Earth Observation and with SAR data in particular, we are usually faced with high-dimensional 603 

datasets. More sophisticated classifiers are needed to deal with such data, and machine learning 604 

algorithms such as SVM and RF are among the most effective methods currently available. In this 605 

study we have presented one of the first known applications of the Extremely Randomised Trees 606 

(ERT) algorithm for grassland discrimination using SAR data. The results provide for the first time 607 

fine spatial resolution land cover classifications for two counties in Ireland, showing the spatial 608 

distribution of different grassland classes based on the integration of multi-temporal, multi-sensor C- 609 

and L-band SAR and ancillary soils and elevation data. All three algorithms produce high 610 

classification accuracies for both study areas. The best results are achieved when both frequencies are 611 

used in the classifications, agreeing with previous studies which have highlighted the limitations of 612 



using single polarisation and frequency data (Ferrazzoli et al., 1999; Blaes et al., 2005). An almost 613 

consistent, although at times moderate, superiority of ERT over RF and SVMs was observed for all 614 

datasets. Consistent with the results of Loosvelt et al. (2012b), a decrease in the number of variables 615 

led to a strong reduction in the data dimensionality and a more parsimonious dataset with increased 616 

overall accuracies. Overall, the high accuracies are very encouraging and the presented approach has 617 

demonstrated comparable results for two different large and heterogeneous areas. This is an important 618 

aspect in terms of the operational viability of the approach in being applied on a national scale across 619 

all counties in Ireland. If carried out nationally on an annual basis, the classifications could contribute 620 

to future assessments of Ireland`s greenhouse gas (GHG) inventory for the (extended) Kyoto protocol 621 

(2013-2020), EU reporting and other national assessment requirements. This will be critical for 622 

monitoring the impacts of achieving the productivity and environmental sustainability targets as set 623 

out in Food Harvest 2020 and the Green Low-Carbon Agri-Environmental Scheme (GLAS) (DAFM, 624 

2014) (introduced as part of the Rural Development Plan 2014-2020 that aims to work within the 625 

framework of key EU Directives and national and international targets for preserving grassland 626 

habitats and low input pastures) respectively. 627 

Radar (and optical) EO technology will undoubtedly become an integral part of grassland resource 628 

management within the next decade. The availability of multi-temporal and multi-configuration C- 629 

and L-band data will increase with Sentinel-1A/B, and future planned SAR missions such as the 630 

Radarsat Constellation and ALOS PALSAR-2. The forthcoming availability of S-band data 631 

(NovaSAR-S) will present further opportunities, in addition to those already presented by X-band 632 

sensors such as TerraSAR-X and COSMO-SkyMed. These datasets will be invaluable for future 633 

studies where further research on the effect of specific management practices (e.g. cutting and 634 

grazing, drainage) on the backscatter response is required. Ideally, dedicated field studies coincident 635 

with the time of image acquisition are needed in order to fully understand and profile the scattering 636 

mechanisms caused by different grassland conditions (e.g. density, height, moisture content) under 637 

observation. 638 
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List of Figure Captions 943 

 944 

Figure 1 Location of the study counties of Longford and Sligo in the Republic of Ireland (shaded). 945 

The blue markers indicate the locations of the Irish Meteorological Service (Met Éireann) synoptic 946 

stations, where MK=Markree, KA=Knock Airport, MD=Mt Dillon, and BH=Ballyhaise. 947 

 948 

Figure 2 MODIS NDVI time series for improved (green) and semi-improved (red) grasslands in a) 949 

Longford, and b) Sligo over a three year period from January 2007 to December 2009. There are 23 950 

MODIS datasets per year and error bars represent 1 standard deviation. The data has been smoothed 951 

using the Hodrick-Prescott-(HP) filter. 952 

 953 

Figure 3 Temporal C- and L-band backscatter profiles of the grassland classes for Longford and 954 

Sligo. The boxes represent the lower (25
th
 percentile) and upper (75

th
 percentile) quartile values of the 955 

data with a black line at the median. The whiskers extend to the minimum and maximum values of the 956 

data (excluding outliers). 957 

 958 

Figure 4 Feature importance scores of the backscatter intensities, SAR-derived multi-temporal 959 

features, and ancillary data sources for C-band (a-b), L-band (c-d), and combined C- & L-band (e-f) 960 

datasets for Longford and Sligo. 961 

 962 

Figure 5 Feature importance scores of the individual grassland classes for the combined C- and L-963 

band datasets for Longford (left) and Sligo (right). For Longford, the first 12 features are the C-band 964 

backscatter intensities (shaded), next three the L-band HH backscatter intensities followed by the two 965 

L-band HV backscatter intensities (dotted) and the four ancillary variables (diagonal hatch); soils, 966 

subsoils, elevation and slope. For Sligo, the first 15 features are the C-band backscatter intensities 967 

(shaded), next three the L-band HH backscatter intensities followed by the two L-band HV 968 

backscatter intensities (dotted) and the four ancillary variables (diagonal hatch); soils, subsoils, 969 

elevation and slope. 970 



Figure 6 Classification results of the ERT classifier as applied to the C- and L-band SAR and 971 

ancillary dataset for Sligo (left) and Longford (right). 972 

 973 

Figure 7 ERT Classification probabilities of dry improved and wet semi-improved grassland for Sligo 974 

and Longford. Low probabilities are shown in white with high probabilities in black. 975 

 976 

Figure 8 Time series of daily ECV soil moisture values (solid lines) and error range (shaded) 977 

covering the two counties  (Longford (a-b); Sligo (c-d)) with in situ daily accumulated precipitation 978 

from nearby Met Éireann synoptic meteorological stations.  All SAR acquisition dates are marked 979 

with blue crosses. 980 

 981 
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 988 
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 991 

 992 
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 994 

 995 

 996 

 997 

 998 



 999 

Table 1 SAR data characteristics 1000 

Sensor Date λ θ Polarisation Pass Track Frame 

Longford        

ERS-2 2008-03-23 5.6cm 23° VV D 80 2525 

ERS-2 2008-03-27 5.6cm 23° VV A 144 1076 

ASAR 2008-04-08 5.6cm 23° VV D 309 2526 

ERS-2 2008-05-01 5.6cm 23° VV A 144 1076 

ASAR 2008-06-17 5.6cm 23° VV D 309 2526 

ERS-2 2008-07-10 5.6cm 23° VV A 144 1076 

ASAR 2008-07-22 5.6cm 23° VV D 309 2526 

ERS-2 2008-08-10 5.6cm 23° VV D 80 2525 

ERS-2 2008-08-14 5.6cm 23° VV A 144 1076 

ERS-2 2008-08-26 5.6cm 23° VV D 309 2522 

ASAR 2008-09-14 5.6cm 23° VV D 80 2524 

ERS-2 2008-11-23 5.6cm 23° VV D 80 2525 

PALSAR FBS 2008-01-27 23.6cm 38° HH A 1 1060/1070 

PALSAR FBD 2008-04-28 23.6cm 38° HH/HV A 1 1060/1070 

PALSAR FBD 2008-06-13 23.6cm 38° HH/HV A 1 1060/1070 

        

Sligo        

ERS-2 2008-02-01 5.6cm 23° VV D 352 2512 

ERS-2 2008-03-23 5.6cm 23° VV D 80 2514 

ASAR 2008-04-11 5.6cm 23° VV D 352 2511 

ASAR 2008-07-09 5.6cm 23° VV D 123 2509 

ASAR 2008-07-25 5.6cm 23° VV D 352 2511 

ERS-2 2008-07-29 5.6cm 23° VV A 416 1086 

ERS-2 2008-08-10 5.6cm 23° VV D 80 2514 

ERS-2 2008-08-17 5.6cm 23° VV A 187 1084 

ERS-2 2008-08-29 5.6cm 23° VV D 352 2512 

ASAR 2008-09-14 5.6cm 23° VV D 80 2513 

ASAR 2008-09-17 5.6cm 23° VV D 123 2509 

ASAR 2008-10-03 5.6cm 23° VV D 352 2511 

ASAR 2008-10-19 5.6cm 23° VV D 80 2506 

ERS-2 2008-11-23 5.6cm 23° VV D 80 2514 

ASAR 2008-12-31 5.6cm 23° VV D 123 2509 

PALSAR FBS 2008-03-01 23.6cm 38° HH A 3 1070/1080 

PALSAR FBD 2008-06-01 23.6cm 38° HH/HV A 3 1070/1080 

PALSAR FBD 2008-07-17 23.6cm 38° HH/HV A 3 1070/1080 
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 1011 

Table 2 Classes and associated number of training samples 1012 

Level 0 Level 1 Level 2 Level 3 Description #Longford #Sligo 

Grassland 

Improved 

Grassland 

[GA] 

 

Dry [GAd]  

Grassland on well drained soils 

– no vegetative indicators of 

wetness 

362 1180 

Reclaimed 

[GAr] 
 

Highly managed pasture over 

peats or heavy gleys 
303 539 

 

Semi-

improved 

grassland 

[GS] 

Wet [GSw]  

Grassland on poorly drained 

soils, low management, rushes 

and/or sedges often present 

320 597 

Dry [GSd] 

Humid 

[GSdh] 

Semi-improved dry grassland 

over acid soils 
229 191 

Calcareous 

[GSdc] 

Semi-improved dry grassland 

over basic soils/limestone karst 
242 393 

Forest    Areas dominated by trees and 

woody vegetation (minimum 

20% canopy closure and area of 

0.5ha) 

843 1023 

Settlement    All developed land, including 

transportation infrastructure and 

human settlements 

379 631 

Water    Includes all bodies of 

permanent fresh and saltwater. 
785 612 

Peatland    Raised bogs, blanket bogs and 

cutover bog 
1280 1111 

Cropland    Arable and tillage land 459 165 

    Total 5202 6442 
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 1028 

Table 3 Grassland Descriptions. 1029 

Grassland 

Class 

Species Composition                            

(common name – botanical name) 

Management Regime Approximate 

Height Range 

GA Dry 

GA 

Reclaimed 

Perennial ryegrass (Lolium perenne) 

White Clover (Trifolium repens) 

Timothy (Phleum pratense) 

Italian ryegrass (Lolium multiflorum) 

Meadow Fescue (Festuca pratensis) 

Meadow foxtail (Alopecurus pratensis)  

Dandelions (Taraxacum spp.)  

Nettle (Urtica dioica)  

Thistle (Cirsium arvense) 

Intensively managed – 

typically reseeded 

frequently, heavily 

fertilised and grazed or 

cut for silage. Generally 

high stocking densities. 

3 - 20cm  

(post grazing - ) 

pre-grazing) 

GS Wet Soft rush (Juncus effuses) 

Sharp-flowered rush (Juncus acutiflorus) 

Hard rush (Juncus inflexus) 

Glaucous sedge (Carex flacca) 

Hairy sedge (Carex hirta) 

Yorkshire-fog (Holcus lanatus) 

Creeping Bent (Agrostis stolonifera) 

Creeping Buttercup (Ranunculus repens) 

Pointed spear-moss (Calliergonella cuspidate) 

Purple moor grass (Molinia caerulea) 

Ragged robin (Lychnis flos-cuculi) 

Meadowsweet (Filipendula ulmaria)  

Devil`s Bit Scabious (Succisa pratensis) 

Extensively managed - 

Not intensively 

fertilised, seasonal 

grazing regime 

(depending on the 

conservation status), 

low stocking rates. 

10 - 50cm 

GSd Humid Bents (Agrostis spp.) 

Fescues (Festuca spp.) 

Sweet vernal-grass (Anthoxanthum odoratum) 

Wavy hair grass (Deschampsia flexuosa) 

Mat grass (Nardus stricta) 

Extensively managed 

 

10 – 80cm 

GSd 

Calcareous 

Rigwort plantain (Plantago lanceolata) 

Cocksfoot (Dactylis glomerata) 

Bents (Agrostis spp.) 

Meadow grasses (Poa spp.) 

Timothy (Phleum pratense) 

Fescues (Festuca spp.) 

Red Clover (Trifolium pratense) 

Blue moor grass (Sesleria caerulea) 

Downy Oat-grass (Avenula pubescens) 

Yellow oat-grass (Trisetum flavescens) 

Quaking grass (Briza media) 

Extensively managed 

 

10 – 60cm 

 1030 

 1031 

 1032 

 1033 

 1034 

 1035 

 1036 

 1037 



Table 4 C-, L-, and combined C/L-band classification results for Longford and Sligo (RF=Random Forest, SVM=Support Vector Machines, ERT= Extremely 

Randomised Trees, PA=producer`s accuracy, UA=user`s accuracy).v0 indicates the initial classification where all input variables were included, v1 indicates 

the classification after the least important variables were excluded. 

 Class Longford Sligo 

  v0_ld v1_ld v0_so v1_so 

   RF SVM ERT RF SVM ERT RF SVM ERT RF SVM ERT 

   PA UA PA UA PA UA PA UA PA UA PA UA PA UA PA UA PA UA PA UA PA UA PA UA 

C-band GSdh 0.92 0.96 0.88 0.89 0.93 0.97 0.94 0.99 0.93 0.95 0.96 0.99 0.87 0.62 0.70 0.68 0.84 0.68 0.84 0.70 0.70 0.76 0.83 0.73 

 GSdc 0.97 0.97 0.93 0.96 0.93 0.98 1.00 0.98 1.00 0.98 1.00 0.99 0.82 0.55 0.70 0.63 0.85 0.63 0.83 0.68 0.68 0.73 0.84 0.75 

 GAd 0.92 0.95 0.89 0.86 0.94 0.93 0.94 0.96 0.95 0.92 0.97 0.97 0.80 0.94 0.79 0.87 0.83 0.94 0.85 0.93 0.85 0.85 0.87 0.93 

 GAr 0.90 0.83 0.81 0.77 0.91 0.83 0.93 0.86 0.92 0.89 0.94 0.91 0.80 0.78 0.79 0.70 0.83 0.79 0.83 0.86 0.83 0.76 0.86 0.89 

 GSw 0.92 0.82 0.85 0.75 0.91 0.83 0.94 0.88 0.94 0.86 0.96 0.93 0.82 0.71 0.74 0.70 0.83 0.75 0.86 0.78 0.80 0.73 0.89 0.81 

 OA 95.7% 93.7% 95.7% 96.9% 97.1% 97.9% 88.9% 86.6% 90.1% 91.6% 88.7% 93.1% 

 Kappa  0.95 0.93 0.95 0.96 0.97 0.98 0.87 0.84 0.89 0.90 0.87 0.92 

L-band GSdh 0.87 0.74 0.74 0.72 0.90 0.76 0.92 0.90 0.85 0.85 0.93 0.92 0.79 0.51 0.60 0.56 0.78 0.52 0.78 0.62 0.70 0.70 0.80 0.66 

 GSdc 0.89 0.95 0.83 0.79 0.85 0.95 0.96 0.98 0.94 0.93 0.97 0.98 0.65 0.46 0.50 0.49 0.72 0.43 0.74 0.59 0.68 0.66 0.80 0.63 

 GAd 0.91 0.85 0.79 0.77 0.91 0.87 0.95 0.92 0.93 0.90 0.95 0.94 0.79 0.91 0.80 0.83 0.77 0.92 0.83 0.92 0.85 0.85 0.84 0.92 

 GAr 0.86 0.65 0.66 0.50 0.89 0.64 0.87 0.72 0.77 0.70 0.92 0.75 0.83 0.80 0.72 0.74 0.82 0.78 0.84 0.85 0.83 0.81 0.85 0.87 

 GSw 0.81 0.70 0.69 0.55 0.82 0.69 0.91 0.82 0.85 0.72 0.91 0.82 0.69 0.70 0.64 0.56 0.72 0.71 0.77 0.74 0.76 0.74 0.80 0.79 

 OA 92.4% 87.7% 92.6% 95.3% 93.5% 95.8% 87.4% 83.8% 87.4% 90.0% 89.2% 91.4% 

 Kappa  0.91 0.86 0.91 0.94 0.92 0.95 0.85 0.81 0.85 0.88 0.87 0.90 

C/L-band GSdh 0.96 0.94 0.90 0.89 0.98 0.96 0.96 0.97 0.98 0.96 0.97 0.99 0.87 0.58 0.72 0.69 0.89 0.67 0.85 0.69 0.76 0.76 0.84 0.73 

 GSdc 0.96 0.98 0.91 0.95 0.98 0.98 1.00 0.99 0.99 0.94 1.00 0.99 0.76 0.51 0.57 0.61 0.83 0.59 0.82 0.63 0.77 0.75 0.85 0.73 

 GAd 0.95 0.95 0.92 0.84 0.96 0.96 0.96 0.96 0.98 0.94 0.98 0.97 0.80 0.93 0.84 0.84 0.82 0.94 0.84 0.94 0.89 0.89 0.87 0.94 

 GAr 0.91 0.86 0.81 0.80 0.93 0.89 0.95 0.89 0.93 0.93 0.96 0.91 0.87 0.79 0.78 0.79 0.88 0.80 0.89 0.86 0.88 0.86 0.92 0.90 

 GSw 0.91 0.87 0.87 0.83 0.94 0.90 0.95 0.92 0.96 0.92 0.96 0.95 0.76 0.76 0.73 0.67 0.82 0.82 0.83 0.81 0.83 0.83 0.89 0.85 

 OA 97.2% 95.3% 97.9% 98.0% 97.9% 98.7% 89.9% 88.0% 91.6% 92.4% 92.5% 94.1% 

 Kappa  0.97 0.94 0.97 0.98 0.98 0.98 0.88 0.86 0.90 0.91 0.91 0.93 

 

 

 



 

Table 5 Comparison of different classification results with and without ancillary datasets 

 Longford Sligo 

 RF SVM ERT RF SVM ERT 

 OA κ OA κ OA κ OA κ OA κ OA κ 

C-band             

a) All Data 96.9% 0.96 97.1% 0.97 97.9% 0.98 91.6% 0.90 88.7% 0.87 93.1% 0.92 

b) No Soils 94.8% 0.94 91.5% 0.90 95.8% 0.95 87.8% 0.86 84.4% 0.82 89.4% 0.88 

c) No Elevation 93.5% 0.92 93.9% 0.93 93.9% 0.93 88.3% 0.86 89.9% 0.88 90.3% 0.89 

d) Radar only 87.2% 0.85 83.3% 0.80 88.5% 0.87 76.4% 0.73 76.7% 0.73 77.9% 0.74 

L-band             

a) All Data 95.3% 0.94 93.5% 0.92 95.8% 0.95 90.0% 0.88 89.2% 0.87 91.4% 0.90 

b) No Soils 89.4% 0.87 80.2% 0.77 89.8% 0.88 82.5% 0.80 69.7% 0.65 83.1% 0.80 

c) No Elevation 88.3% 0.86 86.1% 0.83 89.0% 0.87 86.0% 83.8 83.3% 0.81 86.8% 0.85 

d) Radar only 76.2% 0.72 57.3% 0.49 76.9% 0.73 69.8% 0.65 54.4% 0.46 69.7% 0.64 

C/L-band             

a) All Data 98.0% 0.98 97.9% 0.98 98.7% 0.98 92.4% 0.91 92.5% 0.91 94.1% 0.93 

b) No Soils 96.9% 0.96 96.9% 0.96 97.5% 0.97 89.1% 0.87 88.2% 0.86 91.2% 0.90 

c) No Elevation 96.7% 0.96 97.0% 0.96 97.4% 0.97 90.7% 0.89 91.8% 0.90 92.7% 0.92 

d) Radar only 93.7% 0.93 92.9% 0.92 95.1% 0.94 83.1% 0.80 84.6% 0.82 86.1% 0.84 

Ancillary Data             

Soils & Elevation 88.5% 0.86 84.4% 0.81 87.3% 0.85 82.1% 0.79 78.3% 0.75 81.2% 0.78 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure 4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure 5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure 6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure 7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure 8 

 

 

 


