B Universit
of Glasgovz

Nabi, S. W., and Vanderbauwhede, W. (2016) A Fast and Accurate Cost
Model for FPGA Design Space Exploration in HPC Applications. In: 30th
IEEE International Parallel & Distributed Processing Symposium, Chicago,
IL, USA, 23-27 May 2016, (doi:10.1109/IPDPSW.2016.155)

This is the author’s final accepted version.

There may be differences between this version and the published version.
You are advised to consult the publisher’s version if you wish to cite from
it.

http://eprints.gla.ac.uk/117338/

Deposited on: 28 April 2017

Enlighten — Research publications by members of the University of Glasgow
http://eprints.gla.ac.uk

http://dx.doi.org/10.1109/IPDPSW.2016.155
http://eprints.gla.ac.uk/117338/
http://eprints.gla.ac.uk/117338/
http://eprints.gla.ac.uk/
http://eprints.gla.ac.uk/

A Fast and Accurate Cost Model for FPGA Design
Space Exploration in HPC Applications

Syed Waqar Nabi
School of Computing Science
University of Glasgow, Glasgow G12 8QQ
syed.nabi@glasgow.ac.uk

Abstract—Heterogeneous High-Performance = Computing
(HPC) platforms present a significant programming challenge,
especially because the key users of HPC resources are scientists,
not parallel programmers. We contend that compiler technology
has to evolve to automatically create the best program variant
by transforming a given original program. We have developed a
novel methodology based on type transformations for generating
correct-by-construction design variants, and an associated
light-weight cost model for evaluating these variants for
implementation on FPGAs. In this paper we present a key
enabler of our approach, the cost model. We discuss how we
are able to quickly derive accurate estimates of performance
and resource-utilization from the design’s representation in our
intermediate language. We show results confirming the accuracy
of our cost model by testing it on three different scientific
kernels. We conclude with a case-study that compares a solution
generated by our framework with one from a conventional
high-level synthesis tool, showing better performance and
power-efficiency using our cost model based approach.

I. INTRODUCTION

Higher logic capacity and maturing High-level Synthesis
(HLS) tools are pushing FPGAs into the mainstream of hetero-
geneous High-Performance Computing (HPC) and Big Data.
FPGAs allow configuration to a custom design at fine granu-
larity. The advantage of being able to customize the circuit for
the application comes with the challenge of finding and pro-
gramming the best architecture for that kernel. HLS tools like
Maxeler[1], Altera-OpenCL[2] and Xilinx SDAccel[3] have
raised the abstraction of design entry considerably. Parallel
programmers with domain expertise are however still needed
to fine-tune the application for performance and efficiency on
the target FPGA device.

We contend that the design flow for HPC needs to evolve
beyond current HLS approaches to address this productivity
gap. Our proposition is that the design entry should be at
a higher-abstraction, and the task of generating architecture
specific parallel code should be done by the compilers. Such
a design-entry point would be truly performance-portable, and
accessible to programmers who do not have FPGA and parallel
programming expertise. This observation of a requirement for
a higher abstraction design-entry is not novel. For example,
researchers have proposed algorithmic skeletons to separate
algorithm from architecture-specific parallel programming[4].
SparkCL[5] brings increasingly diverse architectures, including
FPGAs, into the familiar Apache Spark framework.

Our proposal however is to allow design-entry at a more
fundamental and generic abstraction, inspired by functional

Wim Vanderbauwhede
School of Computing Science
University of Glasgow, Glasgow G12 8QQ
wim.vanderbauwhede @ glasgow.ac.uk

languages with expressive type systems like Haskell' or Idris.
The resultant flow, which we call the TyTra flow, is based on
type-based program transformations. as shown in Figure 1.
The design-entry is at a pure software, functional abstraction,
and we leave the task of variant generation and tuning to the
compiler. Program variants are generated using type transfor-
mations and translated to the TyTra intermediate language. The
compiler costs the variants and emits HDL code. The HDL
kernel-code is integrated with an existing HLS framework.

High-level Functional
Language e.g. Idris
[baseline]

Apply type-tranformations)
to generate program variants

\ 7 2 L4

HLL HLL e HLL
variant-1 variant-2 variant-N

PR e e ST
H TyTra-IR TyTra-IR s TyTra-IR

H variant-1 variant-2 variant-N

'

; v Y v
. I Cost-model I
'

'

'

'

'

'

'

'

'

'

'

Selected
Variant-X

Code-
Generator

Kernel in HDL

HLS Framework| | =< _.---""~
Integration -
(Solution '

Fig. 1. The TyTra design flow. Program variants are generated from a baseline
functional description using type transformations and translated to the TyTra-
IR. The compiler costs the variants and emits HDL code. The HDL kernel-code
is integrated with an HLS framework. The dotted line marks the stages that
are currently automated.

The focus of this paper is our cost model. It is a key
enabler of design-flow, allowing us to quickly evaluate the
large number of design variants that can be generated when we
apply type transformations. We discuss how we move from an
Intermediate Representation (IR) of a kernel’s design variant
to an estimate of its performance, resource utilization and
memory bandwidth, as shown in Figure 2. Our cost model also
exposes the performance limiting parameter, allowing targeted
optimization and opening the route to a feedback path in our
compiler flow with automated, targeted tuning of designs.

Thttp://www.haskell.org
Zhttp://www.idris-lang.org/

Device-specific
costing parameters

1 -

One-time input

for each unique \ 2
FPGA target

(Benchmark Experiments)

TyTra-IR code
Target description

Cost Model

Perf' estimate

Fig. 2. The cost model use-case. A one-time set of benchmark experiments are
carried out for each FPGA target. The cost model requires target description
and the IR for the design, emitting estimates.

By showing how quickly and accurately we can evaluate
a design variant, we argue that our approach has tremendous
potential to lead to a compiler that automatically creates and
evaluates design variants for an HPC kernel, potentially saving
days if not weeks of programming effort. We also show results
of integrating HDL code generated by our compiler with a
commercial HLS tool to show that we are able to create
working solutions on an FPGA device, and that by exploring
the design-space in our flow, we are able to exceed the
performance achievable by the baseline HLS implementation.

There is considerable work that deals with high-level
programming of FPGAs, including compiler optimizations and
design-space exploration. Such approaches raise the abstrac-
tion of the design-entry from HDL to typically a C-type
language, and apply various optimizations to generate an HDL
solution. Our observation is that most solutions have one or
more of these limitations that distinguish our work from them:
(1) design entry is in a custom high-level language, that never-
theless is not a pure software language and requires knowledge
of target hardware and the programming framework([1], [2],
[6]), (2) compiler optimizations are limited to improving the
overall architecture already specified by the programmer, with
no real architectural exploration([1], [2], [6], [7]), (3) solutions
are based on a creating soft-microprocessors on the FPGA and
not optimized for HPC([7], [8]), (4) the exploration requires
evaluation of variants that take a prohibitively long amount of
time[6], or (5) the flow is limited to very specific application
domain e.g. for image-processing or DSP applications[9]. The
Geometry of Synthesis project[10] is similar with its design
entry in a functional paradigm and generation of RTL code
for FPGAs, but does not include automatic generation and
evaluation of architectural design variants as envisioned in our
project. The work described in [11] on extending the roof-line
analysis for FPGAs is quite relevant and something we are
looking into for a more useful representation our cost-model,
but the parallels do not extend beyond this aspect. A flow
with high-level, pure software design-entry in the functional
paradigm, that can apply safe transformations to generate
variants automatically, and quickly evaluate them to achieve
architectural optimizations, is to the best of our knowledge an
entirely novel proposition.

II. GENERATING VARIANTS THROUGH TYPE
TRANSFORMATIONS

We demonstrate how a program can be rewritten in a high-
level functional language that facilitates generation of different,

correct-by-construction instances of that program through type
transformations. Each program instance will have a different
performance related to its degree of parallelism, and a different
cost. Through our cost model we can then select the best suited
instance in a guided optimisation search.

Exemplar: Successive Over-Relaxation (SOR)

We consider an SOR kernel, taken from the code for
the Large Eddy Simulator, an experimental weather simulator
[12]. The kernel iteratively solves the Poisson equation for
the pressure. The main computation is a stencil over the
neighbouring cells (which is inherently parallel).

We express the algorithm in a functional language. Func-
tional languages can express higher-order functions i.e. func-
tions that take functions as arguments and can return functions.
They support partial application of a function, and have strong
type safety. These features make them suitable as a high-
level design-entry point, and for generating safe or correct-by-
construction program variants through type transformations.
We use a dependently-typed functional language Idris because
the type transformations require dependent types which is
intrinsically possible in Idris[13]. This feature is crucial for
our purpose of generating program variants by reshaping data
and ensuring correctness through type safety. The syntax is
very similar to that of Haskell.

The baseline implementation of the SOR kernel in Idris is:
pPs = map Pp_sor pps

pps is a function that will take the original vectors p,
rhs, cn* and return a single new vector equal to size of the
3D matrix im.jm.km. Each elements of this vector is a tuple
consisting of all terms required to compute the SOR, i.e. the
pressure p at a given point, and its 6 neighbouring cardinal
points, the weight coefficients cn* and the rhs term for a given
point.

~ p_sor computes the new value for the pressure for a given
input tuple from pps against each input pressure point:

p_sor pt = reltmp + p
where
(p_i_pos,...,p,rhs) = pt
reltmp = omega * (cnl * (
cn2l x p_i_pos + cn2s % p_i_neg
+ cn3l x p_Jj_pos + cn3s x p_Jj_neg
+ cn4l » p_k _pos + cnd4s x p_k _neg) - rhs) - p

The function map performs computations on the vector
without using explicit iterators. Here, map applies p_sor to
every element of the vector pps in turn, resulting in the new
pressure vector ps of size im.jm.km.

Our purpose is to generate variants by transforming the
types of the functions making up the program and inferring
the program transformations from the type transformation. The
details and proofs of the type transformations are available
in [14]. In brief, we reshape the vector in an order and size
preserving manner and infer the corresponding program that
produces the same result. Each reshaped vector in a variant
translates to a different arrangement of streams, over which

different parallelism patterns can be applied. We then use our
cost model to choose the best design.
As an illustration, assume that the type of the 1D-vector is

t (i.e. an arbitrary type) and its size im.jm.km, which we can
transform into e.g. a 2-D vector with sizes im.jm and km:

—--1D vector
—-—transformed 2D vector

: Vect (imxJjmxkm) t
Vect km (Vect imxjm t)

pps
ppst:

Resulting in a corresponding change in the program:

PS = map p_Sor pps —--original program

ppst= reshapeTo km pps —--reshaping data
pst = mapP?" (mapP'P® p_sor) ppst —--new program

where map p_sor is an example of partial application.
Because ppst is a vector of vectors, the outer map takes a
vector and applies the function map p_sor to this vector. This
transformation results in a reshaping of the original streams
into parallel lanes of streams, implying a configuration of
parallel kernel pipelines in the FPGA. Such a transformation
is visualized in Figure 3.

output = map;,. kernel func inputlD —l

1D vector of size (im.jm.km)

= @), 1O

Kernel Pipeline on FPGA
input2D = reshapeTo N inputlD

output = map,,, (Mapp;p. kernel func) inputZD—t

1D vector of size (im.jm.km) /N

i OO | D

Kernel Pipeline on FPGA

.
1D vector of size (im.jm.km) /N

i @@ﬂgﬂﬁﬂ - | @

Kernel Pipeline on FPGA
Fig. 3. Using type-transformations like reshapeTo, a baseline program which
represents processing all im. jm.km items in a single pipeline fashion (top)
is converted to a program that represents N concurrent pipelines, each now
processing (im. jm.km) /N elements. (The actual SOR kernel pipeline not
shown for simplicity. It is illustrated in Figure 13.)

N instances

Note the metadata information (pipe, par) in the map
superscripts, indicating pipeline parallelism over the inner
map, and thread-parallelism on the outer-map. By applying
different combinations of parallelism keywords pipe, par and
seq, and reshaping along different dimensions, it can be seen
that the design-space grows very quickly even on the basis of a
single basic reshape transformation. Developing a structured,
accurate and fast evaluation approach is a key challenge of our
approach.

III. MODELS OF ABSTRACTION IN THE TYTRA
FRAMEWORK

In general, we have adopted the models as defined in
the OpenCL standard[15] wherever possible. While the TyTra
flow is not intrinsically dependant on OpenCL, adopting its
ecosystem is useful in creating a framework that is convenient

for us and familiar to the community. We have defined the
following models:

1) Platform Model: We have used OpenCL abstractions for
FPGA-specific architectural elements. This is similar to the
approach taken by the commercial OpenCL-FPGA solutions.
The platform model, along with the memory model described
next, is shown in Figure 4. The Compute Unit is the unit of
execution for a kernel. The Processing Element is the custom
datapath unit created for a kernel, and may be considered
equivalent to a pipeline lane, which may be replicated for
thread-parallelism. The stream-control block is transparent to
the programmer and the compiler IR, but an integral part of the
platform architecture as it translates between random memory
access and a pure streaming domain.

2) Memory Hierarchy Model: As with the platform model,
we adopt the OpenCL abstractions to describe the memory
hierarchy on the FPGA, as shown in Figure 4. The number
specified against each level provides us a convenient way of
specifying the hierarchy in our TyTra-IR.

Global (7)/ Constant Memory (5)
(DRAM)

Local Memory (2)
(On-chip Block RAMs)

]

Stream Control

Processing Element | Private Memary
(Kernel Pipeline) (Registers) (2])

n Compute Unit
Compute Device (FPGA)

OpenCL APl

Fig. 4. The TyTra platform and memory model. Both these models map
OpenCL abstractions to the FPGA architecture.

3) Execution model: The execution model too is adopted
from the OpenCL standard, using terms like kernel, work-
item, work-group, NDRange, global-size and kernel-instance.
Interested readers are referred to the OpenCL standard[15] for
definition of these terms. The term kernel-instance however is
of special interest, as our throughput measure is defined with
reference to it. It may be understood as the combination of
a kernel (i.e. the function being executed on the device) and
the entire index-space (i.e. NDRange) over which it executes.
Hence execution of a kernel-instance means the execution of
the kernel for all elements (work-items) of the index-space
(NDRange).

4) Design-Space Model: FPGAs offer a much more flexi-
ble design-space than CPUs or GPUs. For an automatic design-
space exploration framework like TyTra, defining it formally

was a requirement. The key differentiating feature of concern
is the type and extent of parallelism available in the design,
based on which we developed the model as shown in Figure 5.
E.g. a C2 configuration is a pipelined implementation of the
kernel on the FPGA. The other horizontal axis indicates the
degree of parallelism achieved by replicating the pipeline lane.
A configuration in the xy-plane (C1) will thus have multiple
threads of execution, each with pipeline parallelism. We expect
Cl to be the preferable route for most small to medium
sized kernels. For cases where a kernel may have too many
instructions to fit entirely on the available FPGA resources as
a pipeline, various configuration options are shown along the
vertical axis.

Degree of
Re-use

€4 Scalar Instruction Processor
C5 Vector Instruction Processor
€6 Run-time Reconfiguration

C2 Medium-grained
parallelism by pipelining
loop iterations

CO Anywhere in
the design space

C3 Medium-grained
(vectorization of loops)
or Loarse-grained

o, Pipeline
~ Parallelism

C1 Replicated pipeline lanes (xy-
““““ i plane). fine-grainedparallelism
(ILP) presumed in this plane

The ‘compute-wall” limits the maximum
pipeling and/or thread parallelism

Thread
Parallelism

Fig. 5. The TyTra-FPGA Design Space Abstraction

5) Memory Execution Model: The need for defining a
memory-execution model arose in response to the observation
that a typical CPU-host-FPGA-device application can have
different forms of execution with respect data movement
across the memory-hierarchy as multiple kernel-instances are
executed. This type effects the performance significantly, and
hence our cost model needs to take this into account.

We have defined three forms of memory-execution sce-
narios, which can be understood with reference to Figure 6.
Form-A is where every kernel-instance requires all the data in
the NDRange to be transported between the host and device-
DRAM. A form-B execution is where the data is moved to and
from the global-memory only once by the host. The iterations
in a kernel-instance then access the data from the global-
memory. A form-C is a special case where the data needed for
the NDRange is small enough to fit inside the local-memory,
i.e. the on-chip block-RAMs of the FPGA. In such a case, all
iteration of the kernel-instance will always access data from
the on-chip local-memory. We expect this model to evolve to
take into account tiling an index space such that it can lie on
a finer-grained spectrum between these three main types.

6) Streaming Data Pattern Model: The TyTra Compute
Units work with streams of data, and streaming from the
global-memory is equivalent to looping over an array. Since
the pattern of index-access has a significant impact on the
sustained bandwidth (see V-C), there has to be a model that
specifies this pattern explicitly, which can then be expressed
in the IR description, and costed accordingly. Our prototype

Activity —_— P Form A
— - =P [FomB [. == = .. —_——
= = = P | Fomc /__:_____\\ -~ ~
Kemel Pipeline / /‘" - \, \
Executi
cution / , X \
- = |- -
________ \
Deviee-DRAM | | | N
PN . \ | |
Device 4 - }I l! :
[— o A4==F
o pPE————1 T -
DeviceDRMM |[— - - — -+ — i — s — s — o — .- —
Fig. 6. The three forms of execution defined based on how the memory-

hierarchy is traversed across multiple kernel-instance iterations. The through-
put expressions developed later are different for each of the three forms.

model currently considers two patterns: contiguous access, and
strided access with constant strides.

IV. EXPRESSING DESIGNS IN THE TYTRA INTERMEDIATE
REPRESENTATION LANGUAGE

The high-level description of the application kernel as
described in section II is a pure software paradigm, and not
directly cost-able. Generating and then costing HDL code on
the other hand is too time-consuming. Our approach is to
define an Intermediate Representation (IR) language, which
we call the TyTra-IR. With reference to Figure 1, the TyTra-
IR captures the design variants generated by the front-end
type-transformations, and these variants are costed by parsing
the IR. The IR has semantics that can express the platform,
memory, execution, design-space and streaming data-pattern
models described in the previous section.

The TyTra-IR is currently used to express (and cost) the
device-side code only, and models all computations on a
dataflow machine rather than a Von-Neumann architecture.
Our approach for providing an API to access the FPGA
configuration generated from a TyTra-IR description, is to
encapsulate the generated HDL code as a kernel of a com-
mercially available HLS framework. This enables the use of
memory controllers and peripheral logic generated by the HLS
framework, as well as being able to make use of its APIL
Xilinx, Altera, and Maxeler provide routes to integrating HDL
code into their HLS frameworks, and Xilinx and Altera provide
OpenCL compatible API.

In terms of syntax, the TyTra-IR is strongly and statically
typed, and all computations are expressed using Static Single
Assignments (SSA). It is based on the LLVM-IR, with exten-
sions for parallelism suitable for an FPGA target. This gives
us a baseline for designing our language, and leaves the route
open to explore LLVM optimizations, as e.g. the LegUp [7]
tool does.

The TyTra-IR code for a design has two components.
The Manage-IR and the Compute-IR. The motivation behind
dividing TyTra-IR into two components is to separate the
pure dataflow architecture operating on data streams, from the
control and peripheral logic that creates these streams.

The Manage-IR has semantics to instantiates memory-
objects which is abstraction for any entity that can be the
source or sink for a stream. In most cases, a memory object’s

equivalent in a software description would be an array in main
memory. It also has stream-objects, connecting a streaming
port in the processing element to a memory-object.

The compute-IR describes the processing element(s), which
by default is a streaming datapath implementation of the
kernel. A design is constructed by creating a hierarchy of IR
Sfunctions, which may be considered equivalent to modules in
an HDL like Verilog. However, these functions are described
at a much higher abstraction than HDL, with a keyword
specifying the parallelism pattern to use in this function.
These keywords are: pipe (pipeline parallelism), par (thread
parallelism), seq (sequential execution) and comb (a custom
combinatorial block). By using different parent-child and peer-
peer combinations of functions of these four types, we can
practically capture the entire design-space of the FPGA that
was described in Figure 5.

The currently supported set of configurations are those
suited for HPC applications, and are shown in Figure 7.

;1. Pipeline with ;3. Coarse-grained

combinatorial blocks pipeline
pipe { pipe {
instr pipeA()
instr pipeB ()
combaA () NS

-3

\
\
|
|
|
|
|
|
;2. Data-parallel | ;4. Data-parallel
pipelines | Coarse-grained pipeline
par { | par {
pipea() | pipeTop()
pipeaA() | pipeTop ()
el | P |
| ;jwhere
| pipeTop{
| pipea()
| pipeB ()
| Lo}

Fig. 7. Configurations currently supported by the TyTra compiler.

The TyTra compiler parses the IR description of a design-
variant expressed using these parallelism constructs, and ex-
tracts the architecture from it. As an example, Figure 8 shows
the configuration tree created for a coarse-grained pipeline
where one of the peer kernels uses a combinatorial function
(i.e. a single-cycle custom combinatorial block).

V. ANALYTICAL AND EMPIRICAL COST MODELS FOR
EVALUATING DESIGN VARIANTS IN THE TYTRA FLOW

We have developed a prototype compiler that can parse
TyTra-IR and emit various cost and performance estimates,
as shown in Figure 23. Our cost models have both analytical
and empirical elements, the latter requiring one to run a set of
benchmark experiments for every new FPGA target platform.
We will describe both elements of our cost models against the
backdrop of the abstractions developed in section III.

A. Resource-Utilization Cost Model

Our observation is that the regularity of FPGA fabric allows
some very simple first or second order expressions to be built
up for most primitive instructions based on a few experiments.
As an example, consider the trend-line for LUT requirements
against bit-width for integer division shown in Figure 9. It was

3The compiler can also emit synthesizeable HDL code for the kernel
pipeline.

Fig. 8. A typical configuration generated by the TyTra compiler showing
a coarse-grained pipeline where one of the peer kernels uses a custom
combinatorial function

generated from three-data points (18, 32 and 64 bits) from
synthesis experiment on a Stratix-V device. We can now use
it for polynomial interpolation, e.g., for 24-bits, and get an
estimate of 654 ALUTs, which compares favourably with the
actual usage of 652 ALUTs.

A multiplier requires two different kinds of resources: DSP-
elements and ALUTs. Both these resources show a piece-
wise-linear behaviour with respect to the bit-size, with clearly
identifiable points of discontinuity, also shown in Figure 9.
This results in a relatively trivial expression that we use in the
cost-model. Other IR instructions have similar or simpler ex-
pressions that we can use to estimate their resource-utilization.
We thus calculate the overall resource-cost of the design by
accumulating the cost of individual IR instructions and the
structural information implied in the type of each IR function.

80

I I
—o-mul-ALUTs
70 | +-div-ALUTSs [x100] / re
| ~#—-mul-DSP elements N 7
60 - - - Poly. (div-ALUTs [x100]) 1

6
50 - ’ ,,,,,,, n
| x243.7%-10.6 | -
,,,,, s S
w40 - ’ L (<]
'5 = 4 m
= 30 -] o
< o~ — A 3 n
20 - NN]- B4 , (=]

A—h -
10 ¢ & & ._[A o 1
Y 1
0 o= o co—o—0 0
0 10 20 30 40 50 60 70
Bit-width

Fig. 9. Deriving cost expressions for ALUTs used in unsigned integer division
(see polynomial trend-line), and ALUTs and DSP-elements used in unsigned
integer multiplication, on a Stratix-V device.

B. Throughput Cost Model

An estimate of the performance of a design variant de-
scribed in the TyTra-IR is essential to TyTra flow. This estimate
can be expected to be the main differentiating parameter when
choosing from multiple variants. The other estimates would
typically only be used to confirm whether or not a particular
design variant is valid, based on the limits of FPGA resources
and IO bandwidth.

We have described a performance measure called the EKIT
(Effective Kernel-Instance Throughput) for comparing how
fast a kernel executes across different design points, with
“kernel-instance” used as defined in the OpenCL standard.
Measuring throughput at this granularity allows us to reason
at a coarse enough level to take into account parameters like
memory latencies and throughput for different kind of data
access patterns, as well as dynamic reconfiguration penalty
if applicable. With the models developed as described in
section III, a cost function for the throughput can now be
developed.

Table I lists all the parameters that make up the expression
for EKIT described later, their key dependence (program,
target-hardware, design-variant), and with a description of how
we expect to evaluate them in the TyTra compiler.

Param’| Description Key Evaluation
Dependence Method

Hpp The host-device peak | Target device Architecture
bandwidth description

PH Scaling factor, host- | Target device & Empirical data
device bandwidth design-variant

GpB The device DRAM | Target device Architecture
peak bandwidth. description

PH Scaling factor, host- | Target device & Empirical data
device bandwidth design-variant

Ngs Global-size of work- | Kernel Parsing IR
items in NDRange

Nw pr| Words per tuple per | Kernel Parsing IR
work-item

Ngkr Number of times | Kernel Parsing IR
kernel-instance
executed over all
N¢gg work-items

Nogy Maximum offset in a | Kernel Parsing IR
stream

Kpp Pipeline depth of ker- | Design-variant Parsing IR
nel

Fp Device’s operating | Design-variant Parsing IR
frequency

Nro Cycles per instruction | Design-variant Parsing IR

Ny Instructions per PE Design-variant Parsing IR

KN Number of parallel | Design-variant Parsing IR
kernel lanes

Dy Degree of vectoriza- | Design-variant Parsing IR
tion per lane

TABLE L THE PARAMETERS THAT MAKE UP THE EXPRESSIONS FOR

EKIT GIVEN ALONG WITH THEIR KEY DEPENDENCE AND THE WAY THEY

ARE EVALUATED IN THE TYTRA COMPILER.

The kernel-instance throughput is equal to the number of
kernel-instance repetitions N7, divided by the time taken to
execute all the kernel-instances. The EKIT expressions are
developed separately for the three types of implementations
as described in the memory-execution model in III.

Form A: The total time taken to execute all kernel-
instances, T k1, is composed of four elements, i.e. the times

to: Dtransfer data between host and device DRAM, 2)fill
offset stream buffers until the first work-item can be processed,
3)fill the kernel pipeline with work-items and 4)execute all
work-items on the device. The last element depends on either
the external memory bandwidth, or the maximum throughput
achievable on the device pipeline at its operating frequency.
The smaller of the two becomes the limiting factor and
determines the overall throughput. The resulting expression
for form-A is Equation 1:

Ngg - N N,y K
(GS W PT 1 Bep

Hpp - pn Gpe-pc Fbp
Ngs - Nwpr Ngs-Nwpr - Nro - Ni

Gps - pc Fp-Knr - Dy

EKIT, =1+

max(

ey

Form B: With reference to Figure 6, in form-B memory-
access scenarios the data, once available in the device DRAMs,
is always accessed from the DRAM for all kernel-instance
iterations. We expect this to be the form for most real scientific
applications, which are generally too large to fit the entire
kernel-instance on the device (so not form-C), and not so large
that the kernel-instance cannot fit on the (increasingly large)
DRAMs available on HPC PCle boards (so not form-A). The
expression for type-B implementations can be derived very
simply from Equation 1 by scaling down the contribution of
host-device transfer by a factor of N, which is the number
of times the kernel-instance repeats.

Ngs - N Norr K
EKITy = 1+(—cs Nwer 17 PD
Nkr-Hpp-pnu Gpp-pc Fp
Ngs - Nwpr Ngs-Nwpr - Nro - Ny
max(

GpB - pc Fp-Knr - Dy

€3

Form C: Since form-C programs are those where the
kernel-instance data remains on the device throughout the
Ny iterations, the overall performance is always compute-
bound. This implies that the expression for form-C is simply a
specialized form of the one for form-B with the max function
replaced by its second argument only, that is, the limiting factor
in a compute-bound scenario.

Ngs - Nwpr Noyy Kpp

Nwuy -Hpp-pa GpB - pc Ip
Ngs - Nwpr - Nro 'Nz)

Fp-Knr-Dy

EKITe =1+ (n

3

C. Sustained Stream Bandwidth

A significant variable in the throughput expressions is the
bandwidth to the host or the device-DRAM. While the peak
bandwidth can easily be read off the data-sheets, the sustained
bandwidth for various streams in a particular design varies with
the access-pattern and size. We performed a set of experiments
by extending the stream benchmark[16] to OpenCL, based
on the work done in [17] for GPUs, but in our case using
SDAccel[3] for FPGAs. Specifically, we tested the effect of

having the data streams access data contiguously and in a
strided manner, and changing the size of the streams and the
strides. We have currently only tested fixed-stride for non-
contiguous patterns, but our experiments have shown that there
is little difference in sustained bandwidth between fixed-stride
and true random access. The results are shown in Figure 10.
Note how the contiguity of data access has an up to two-orders-
of-magnitude impact on the sustained bandwidth. Also note
the considerable effect of stream-size on sustained bandwidth
for contiguous access especially up to 1000x 1000 elements,
after which it plateaus. These trends highlight the importance
of taking into account the factors effecting the sustained
bandwidth for any realistic cost models. We have incorporated
this empirical model into our compiler, and expect to further
develop this streaming benchmark for FPGAs.

7.0
61 6.2 6.2 6.3
g 60 55 "
@ * —+Contiguous
< >0 -=-Strided
z
3 4.0 4x
°
c
330
E 24
£20
© 17
g 12
a 1.0
0.3
0.0
0.04 0.07 0.07 0.07 0.07 0.07 0.07
1000 2000 3000 4000 5000 6000
Global-Size-0 / Stride (for strided access)

Fig. 10. Developing an empirical model of sustained bandwidth’s dependency
on data size and contiguity of data. The horizontal axis represents the size of
one dimension of a square 2D array. In case of strided access, this is equal
to the stride as well. Results are based on Alpha-Data’s ADM-PCIE-7V3
board with a Xilinx Virtex 7 device. It is important to note that these are
baseline figures for the target device, without using any vendor-recommended
optimizations.

VI. USING THE COST MODEL

We have developed a back-end compiler that accepts a
design variant in TyTra-IR, costs it and, if needed, generates
the HDL code for it, as shown in Figure 11. We hand-coded
some design variants of the SOR kernel generated by type-
transformations as discussed in II. Figure 12 shows the TyTra-
IR for a the baseline configuration which is a single kernel-
pipeline. The Manage-IR which declares the memory and
stream objects is not shown.

Note the creation of offsets of input stream p in lines
6-9, which create streams for the six neighbouring elements
of p. These offset streams, together with the input streams
shown in lines 2—4 form the input tuple that is fed into the
datapath pipeline described in lines 10-15. Figure 13 shows
the kernel’s realization as a pipeline. The same SOR example
can be expressed in the IR to represent thread-parallelism
by adding multiple lanes, corresponding to a reshaped data
along e.g four rows, by encapsulating multiple instances of
the kernel-pipeline function shown in Figure 12 into a top-level
function of type par, and creating multiple stream objects to
service each of these parallel kernel-pipelines. This is shown
in page 8.

TyTra Manage-IR &
Cost-model for [
mem's and streams

Parse: Memory objects, Stream objects
Accumulate: Resource estimates

v

Parse: Functions recursively, and SSA
instr's, implied offset buffers and counters
Accumulate: costs

TyTra Compute-IR &
Cost-model for SSA N
instructions, offset
buffers and counters

Throughput Analyze: functions and determine conf'n
Cost-model Estimate: throughput for conf'n type
Tyggfez,nlr_?t')tr';:/ -)lImport: primitive cores used

Generate: custom combinational blocks
described by "comb" functions

\2

—_ | Generate core-compute(s):

Template for Pipeline Nj Schedule SSA instructions
Core-Compute | |- Create data and control delay lines

- Connect functional units in a pipeline

Generate Core(s):
- control-logic for streams
- buffers for stream-offsets

12

Generate: Compute unit(s), with on-chip
memories and core(s) and
Configuration include file for design

Template for Custom
Combinational Blocks

Template for Core & N
Offset buffers

Fig. 11. The TyTra back-end compiler flow, showing the estimation flow
(blue/first three stages) and code generation flow (yellow). The starting point
for this subset of the entire flow is the TyTra-IR description representing
a particular design variant, ending in the generation of synthesizeable HDL
which can then be integrated with a HLS framework.

1 ***x* COMPUTE-IR ***%*
2 @main.p = addrSpace(12) uils,
3 I"istream", !"CONT", !0, !"strobj_p"
4 ;...[more inputs]...
5 define void @f0(...args...) pipe {
6 ;stream offsets
7 uil8 %pipl=uil8 %p, !offset, !+1
8 uil8 %pknl=uil8 %p, !offset, !-ND1*ND2
9 ;...[more stream offsets]...
10 ;datapath instructions
11 uil8 %1 = mul uil8 %p_i pl, %cn2l
12 uil8 %2 = mul uil8 %p_1i_nl, %cn2s
13 ;.. [more instructions]...
14 ;reduction operation on global variable
15 uil8 @sorErrAcc=add uil8 %sorErr, %sorErrAcc
16 }
17 define void @main () {
18 call @f0(..args...) pipe }
Fig. 12. Abbreviated TyTra-IR code for the SOR kernel configured as a

single pipeline lane.

A. Evaluating TyTra-IR Design Variants using the cost model

We use the high-level reshapeTo function to generate vari-
ants of the program by reshaping the data, which means we can
take a single stream of size N and transform it into L streams of
size %, where L is the number of concurrent lanes of execution
in the corresponding design variant. Figure 15 shows evalua-
tion of variants thus generated. For maximum performance,
we would like as many lanes of execution as the resources
on the FPGA allow, or until we saturate the IO bandwidth. If
data is transported between the host and device (form-A), then
beyond 4 lanes, we encounter the host communication wall. If
all the data is made available in the device’s global (on-board)

Offset Buffers

|

- I rhs | cnl cn2l/cn2s/ cn3l/cn3s/ cndl cnds

Stream Control

‘ i‘ \é
J
v

)
v
J
v
)
v
)
v

QL <D< <<
e e O e e S e S e S

sorError_Accumulator

Stream Control

l SorError

l p_new

Fig. 13. Illustration of the pipelined datapath of the SOR kernel generated
by our compiler. Only pass-through pipeline buffers are shown; all functional
units have pipeline buffers as well. The blocks at edges refer to on-chip
memory for each data.

1 ; ***% COMPUTE-IR ***x*
2 @main.p0 = addrSpace(12) uils,
3 I"istream", !"CONT", !0, !"strobj_p"
4 @main.pl =
5 @main.p2 =
6 @main.p3 = ...
7 ;...[other inputs]...
8 define void @f0(...args...) pipe {...}
9 define void @fl (...args...) par {
10 call @f0(...args...) pipe
11 call @f0(...args...) pipe
12 call @f0(...args...) pipe
13 call @f0(...args...) pipe }
14 define void @main () {
15 call @efl(..args...) par }
Fig. 14. Abbreviated TyTra-IR code for the SOR kernel configured with

multiple pipelines lanes corresponding to reshaped data.

memory (form-B) then the communication wall moves to about
16 lanes. We encounter the computation-wall at six lanes,
where we run out of LUTSs on the FPGA. However, we can see
other resources are underutilized, and some sort of resource-
balancing can lead to further performance improvement.

We would like to highlight here that the estimator is very
fast: the current implementation, although written in Perl, takes
only 0.3 seconds to evaluate one variant. This is more than
200x faster than e.g. the preliminary estimates generated by
SDAccel which takes close to 70 seconds. We expect that for
larger designs the relative performance would be even better.

B. Accuracy of the cost model

Preliminary results on relatively small but realistic scien-
tific kernels have been very encouraging. We evaluated the esti-
mated vs actual utilization of resources, as well as throughput
measured in terms of cycles-per-kernel-instance in Table II.

350 180

T
/* 5 T

g
9 4w
g 300 / £ 9
3 | Computation wall | / 140 a
n ~
2 250 ! / /] 2
& I / / 120 S
g Communication wall / / A]
S 200 | (Host-streams) /]
2 / v 100 o
8 / o
:._; 150 // A C ication wall 80 g-
=) V (DRAM-streams) °
) 60 P
8 <
£ 100]
8 / L a0 %
& 50 7 [C]
/ : 20 s
ﬂ w

o ¥ $ o
[} 2 4 6 8 10 12 14 16 18
Number of lanes of kernel's execution pipeline
=f=Regs =fr=Aluts «==é=BloCkRAM ===DSPs =@=GMem-BW e=pm=Host-BW ==@==EWGT
Fig. 15. Evaluation of variants for the SOR kernel generated by changing

the number of kernel-pipelines (16 data points and 10 kernel iterations).

[Kernel [ALUT| REG [BRAM[DSP | CPWI]
.| Estimated 391 1305 328K | 12 262.3K
Hotspot (Rodinia) —rr 08 [1363 | 27K | 12 262.1K
% error 4 4.2 0.3 0 0.07
.. | Estimated 408 1496 | 0 26 111
LavaMD (Rodiniaj— oy 385 1557 | 0 23 75
% error 6 39 0 13 34
SOR Estimated 528 534 5418 | 0 292
Actual 534 575 5400 | O 308
% error 1.1 7.1 0.3 0 52
TABLE II. THE ESTIMATED VS ACTUAL PERFORMANCE AND

UTILIZATION OF RESOURCES, THE FORMER MEASURED IN TERMS OF
CYCLES-PER-KERNEL-INSTANCE (CPKI), FOR THREE SCIENTIFIC
KERNELS. PERCENTAGE ERRORS ALSO SHOWN.

We tested the cost model by evaluating the integer version
of kernels from three HPC scientific applications: 1) The
successive over-relaxation kernel from the LES weather model
that has been discussed earlier; 2) The hotspot benchmark
from the Rodinia HPC benchmark suite[18], used to estimate
processor temperature based on an architectural floorplan and
simulated power measurements; 3) The lavaMD molecular
dynamics application also from Rodinia, which calculates
particle potential and relocation due to mutual forces between
particles within a large 3D space Since these kernels were
compute-bound, so the off-chip stream cost model developed
in V-C did not come into play.

These results confirm our observation that an IR con-
strained at an appropriate abstraction will allow quick esti-
mates of cost and performance that are accurate enough to
make design decisions.

VII. CASE STUDY: A TYTRA GENERATED SOLUTION VS
A COMMERCIAL HLS SOLUTION

A working solution using an FPGA accelerator requires
a “base platform” design on the FPGA to deal with off-chip
input/output and other peripheral functions, as well as an API
for accessing the FPGA accelerator. Our approach in creating
working solutions with our flow is to use a commercially
available HLS solution — Maxeler — and insert the HDL code
generated for the design by our back-end compiler into that
framework. We have demonstrated a prototype solution using
the Maxeler HLS flow, which allows one insertion of custom

HDL in their otherwise high-level design entry language MaxJ.
Maxeler is an HLS design tool for FPGAs, and provides
a Java meta-programming model for describing computation
kernels and connecting data streams between them. Integrating
custom code with Maxeler requires a wrapper kernel written
in its kernel language MaxJ for the custom HDL module.
Currently, we create the MaxJ wrapper kernel manually for
each design, but generating them in our compiler is expected
to be a relatively trivial engineering task. Figure 16 illustrates
our setup.

CPU

Maxeler APl and Drivers

CPU1/0

FPGA

Kernel Pipeline

DRAM I/0

DRAM

Device Global Memar

Fig. 16. The Maxeler-TyBEC integrated solution. The black dotted line
identifies what is programmed using the Maxeler HLS tool. The solid/red
line identifies the logic programmed with TyTra generated code. The overlap
indicates that stream generation from on-chip Block-RAMs may be done by
either in our flow.

Our setup is a Maxeler desktop solution, with an intel-
i7 quad-core processor at 1.6GHz, and 32 GB RAM. The
FPGA board is a Maxeler Maia DFE, which contains an Altera
Stratix-V-GSDS8 device with 695K Logic Elements. The host-
device communication is over PCle-gen2-x8.

For performance comparison, we have collected the run-
time of the SOR kernel’s three different implementations
(Figure 17). The baseline is a simple Fortan-based CPU im-
plementation (cpu) compiled with gcc —02. The first FPGA
implementation is using only the Maxeler flow (fpga-maxlJ),
which incorporates pipeline parallelism automatically extracted
by the Maxeler compiler. The second FPGA implementation
(fpga-tytra) is the design variant generated by the TyTra
back-end compiler, based on a high type-transformation that
introduced thread-parallelism (4 lanes) in addition to pipeline
parallelism. We collected results for different dimensions of the
input 3D arrays, i.e. im, jm, km, ranging from 24 elements
along each dimension (55 KB) to 194 elements (57 MB). We
fixed the value of nmaxp, the number of times the SOR kernel

Oocpu
i — I0fpga-maxJ |
I 0fpga-tytra
5 6 I
Q
N
S s5f |
=
5
g4l -
Q
£ 3| .
=
=
XM o9l N
il Il 1L
T T T T T
24 48 96 144 192

im, jm, km

Fig. 17. Runtime of the SOR kernel for different sizes of grid, normalized
against the CPU-only solution. The figures are for 1000 iterations of the kernel.

is called for each run, at 1000. *

Apart from the smallest grid-size, fpga-tytra consistently
outperforms fpga-maxJ as well as cpu, showing up to 3.9x
and 2.6x improvement over fpga-maxJ and cpu respectively.
At small grid-sizes though, the overhead of handling multiple
streams per input and output array dominates and we have
relatively less improvement or even a decrease in performance.
In general, FPGA solutions tend to perform much better than
CPU at large dimensions.

An interesting thing to note for comparison against the
baseline CPU performance is that at the typical grid-size where
this kernel is used in weather models (around 100 elements
/ dimension), the fpga-maxJ version is slower than cpu, but
fpga-tytra is 2.75x faster. These performance results clearly
indicate that an straightforward implementation of a kernel
using an HLS tool may not fully exploit the parallelism and
performance achievable on an FPGA device.

For the energy figures, we used the actual power consump-
tion of the host+device node on a power-meter. For a fair
comparison, we noted the increase in power from the idle
CPU power, for both CPU-only and CPU-FPGA solutions.
As shown in Figure 18, FPGAs very quickly overtake CPU-
only solutions, and fpga-tytra solution shows up to 11x and
2.9x power-efficiency improvement over cpu and fpga-maxJ
respectively. The energy comparison further demonstrates the
utility of adopting FPGAs in general for scientific kernels,
and specifically our approach of using type transformations
for finding the best design variant.

VIII. CONCLUSION

FPGAs are increasingly being used in HPC for scientific
kernels. While the typical route to implementation is the use of
HLS tools like Maxeler or OpenCL, we have shown that such
tools may not necessarily fully expose the parallelism in the
FPGA in a straightforward manner. Tuning designs to exploit
the available FPGA resources on these HLS tools is possible

40ur results show that the relative performance and energy consumption
results hold across different values of nmaxp — the number of times the SOR
kernel repeats — and changes only with changing grid-size.

M Oocpu
[0 fpga-maxJ
0 0fpga-tytra ||

15}

Delta Energy Consumption (Normalized)
—
I
1
|
|
|
|
|

0.5 i
0 T T % T %
24 48 96 144 192
im, jm, km
Fig. 18. Increase from idle energy-consumption, for calculating the SOR

kernel for different sizes of grid, normalized against the CPU-only solution.
The figures are for 1000 iterations of the kernel.

but still requires considerable effort and expertise. We have
shown an original flow that has a high-level design entry in
a functional language, generates and evaluates design variants
using a cost model on an intermediate description of the kernel,
and then emits HDL code. We developed abstractions used
to create a structured cost model, and then described our
empirical and analytical cost models to estimate the utilization
of various resources on the FPGA, the sustained bandwidth
to the FPGA for a specific data patterns, and the overall
throughput achievable. The accuracy of the cost model was
shown across three kernels: a kernel from the LES weather
simulator, and two kernels from the Rodinia benchmark. A
case study based on the successive over-relaxation kernel was
used to demonstrate the high-level type transformations. It was
also used to give an illustration of a working solution based
on HDL code generated from our compiler, shown to perform
better than the baseline Maxeler HLS solution.

We are currently in the process of automating the gen-
eration of design variants from the high-level code. We are
also testing the cost-model and code-generator with larger and
more complex kernels. Once complete, this will provide us
with a solution which has a high abstraction design-entry, and
in addition will automatically converge on the best design
variant from a single high-level description of the algorithm in
a functional language. Eventually, we plan to evolve our flow
to include legacy code written in languages typically used for
scientific computing like Fortran or C.

Acknowledgement: The authors acknowledge the sup-
port of the EPSRC for the TyTra project (EP/L0O0058X/1).

REFERENCES

[1] O. Pell and V. Averbukh, “Maximum performance computing with
dataflow engines,” Computing in Science Engineering, vol. 14, no. 4,
pp. 98-103, July 2012.

(2]

(3]

(4]

(5]

(6]

(71

(8]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

T. Czajkowski, U. Aydonat, D. Denisenko, J. Freeman, M. Kinsner,
D. Neto, J. Wong, P. Yiannacouras, and D. Singh, “From opencl to
high-performance hardware on FPGAs,” in Field Programmable Logic
and Applications (FPL), 2012 22nd International Conference on, Aug
2012, pp. 531-534.

“The Xilinx SDAccel Development Environment,” 2014.
[Online]. Available: http://www.xilinx.com/publications/prod_mktg/
sdx/sdaccel-backgrounder.pdf

M. Cole, “Bringing skeletons out of the closet: a pragmatic manifesto
for skeletal parallel programming,” Parallel Computing, vol. 30, no. 3,
pp. 389 — 406, 2004.

O. Segal, P. Colangelo, N. Nasiri, Z. Qian, and M. Margala, “Sparkcl:
A unified programming framework for accelerators on heterogeneous
clusters,” CoRR, vol. abs/1505.01120, 2015.

J. e. a. Keinert, “Systemcodesigner;an automatic esl synthesis approach
by design space exploration and behavioral synthesis for streaming
applications,” ACM Trans. Des. Autom. Electron. Syst., vol. 14, no. 1,
pp. 1:1-1:23, Jan. 2009.

A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, J. H.
Anderson, S. Brown, and T. Czajkowski, “Legup: High-level synthesis
for FPGA-based processor/accelerator systems,” in Proceedings of the
19th ACM/SIGDA International Symposium on FPGAs, ser. FPGA ’11.
New York, NY, USA: ACM, 2011, pp. 33-36.

K. Keutzer, K. Ravindran, N. Satish, and Y. Jin, “An automated explo-
ration framework for fpga-based soft multiprocessor systems,” in Hard-
ware/Software Codesign and System Synthesis, 2005. CODES+ISSS
’05. Third IEEE/ACM/IFIP International Conference on, Sept 2005,
pp. 273-278.

M. Kaul, R. Vemuri, S. Govindarajan, and I. Ouaiss, “An automated
temporal partitioning and loop fission approach for fpga based reconfig-
urable synthesis of dsp applications,” in Proceedings of the 36th Annual
ACM/IEEE Design Automation Conference, ser. DAC ’99. New York,
NY, USA: ACM, 1999, pp. 616-622.

D. B. Thomas, S. T. Fleming, G. A. Constantinides, and D. R. Ghica,
“Transparent linking of compiled software and synthesized hardware,”
in Design, Automation Test in Europe Conference Exhibition (DATE),
2015, March 2015, pp. 1084-1089.

B. da Silva, A. Braeken, E. H. D‘Hollander, and A. Touhafi, “Per-
formance modeling for FPGAs: Extending the roofline model with
high-level synthesis tools,” International Journal of Reconfigurable
Computing, 2013.

C.-H. Moeng, “A large-eddy-simulation model for the study of planetary
boundary-layer turbulence,” J. Atmos. Sci., vol. 41, pp. 2052-2062,
1984.

E. Brady, “Idris, a general-purpose dependently typed programming
language: Design and implementation,” Journal of Functional Program-
ming, vol. 23, pp. 552-593, 2013.

W. Vanderbauwhede, “Inferring Program Transformations from Type
Transformations for Partitioning of Ordered Sets,” 2015. [Online].
Available: http://arxiv.org/abs/1504.05372

“The OpenCL Specification,” 2015.
/Iwww.khronos.org/registry/cl/

[Online]. Available: https:

J. D. McCalpin, “Memory bandwidth and machine balance in current
high performance computers,” IEEE Computer Society Technical Com-
mittee on Computer Architecture (TCCA) Newsletter, pp. 19-25, Dec.
1995.

T. Deakin and S. Mclntosh-Smith, “Gpu-stream: Benchmarking the
achievable memory bandwidth of graphics processing units,” in
IEEE/ACM SuperComputing, Austin, United States, 2015.

S. Che, M. Boyer, J. Meng, D. Tarjan, J. Sheaffer, S.-H. Lee, and

K. Skadron, “Rodinia: A benchmark suite for heterogeneous comput-
ing,” in Workload Characterization, 2009. IISWC 2009. IEEE Interna-

tional Symposium on, Oct 2009, pp. 44-54.

