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Abstract: 1 

Background: CTX0E03 is an immortalised human neural stem cell line, developed for 2 

allogeneic therapy (CTX-DP). Dose-dependent improvement in sensorimotor function 3 

in rats implanted with CTX-DP four weeks after middle cerebral artery occlusion 4 

stroke prompted investigation of the safety and tolerability of intra-cerebral 5 

implantation of CTX-DP in stroke patients. 6 

Methods: In an open label, single site, ascending dose study (ClinicalTrials.gov, 7 

NCT01151124),male patients (aged≥60years) with stable disability (National Institutes 8 

of Health Stroke Scale [NIHSS] ≥6 and modified Rankin Scale [mRS] 2-4) after 9 

ischaemic stroke 6-60 months previously were implanted with single doses of 2, 5, 10 10 

or 20 million cells by stereotaxic ipsilateral putamen injection. Clinical and brain 11 

imaging data were collected over 2 years. The primary endpoint was safety (adverse 12 

events and neurological change).   13 

Findings: Eleven male patients (mean age 69 years; range 60-82) received CTX-DP. 14 

Median (IQR) pre-implantation NIHSS was 7 (6, 8) and mean (±SD) time from stroke 15 

29±14 months. Three had sub-cortical-only and 7 had right hemisphere infarcts. Up to 16 

2 years after implantation, no immunological or cell-related adverse events were 17 

observed. Other adverse events were related to the procedure or comorbidities. 18 

Hyperintensity around injection tracts on magnetic resonance imaging T2W-FLAIR was 19 

observed in 5 patients. At 2 years, range of improvement (median) in NIHSS was 0 to 5 20 

(2) points. 21 

Interpretation: In single intracerebral doses of up to 20 million cells, no cell-related 22 

adverse events were observed in over 24 months. Neurological function was improved 23 

at 24 months. Observations support further investigation of CTX-DP in stroke. 24 

Funding: ReNeuron Limited 25 

 26 

 27 

Abstract: 250 words. Body of paper: 3437 words.28 
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Introduction: 29 

Stroke is the most common cause of adult neurologic disability worldwide, with an 30 

incidence of approximately 795,000 and 152,000 people per year in the USA and UK, 31 

respectively. Incidence, prevalence and disability-adjusted life-years lost are 32 

predicted to rise further with population ageing.1 Stroke has profound effects on 33 

patients and their carers alike, with an enormous economic burden to society. In the 34 

UK stroke care accounts for 5% of total healthcare costs, approximately £8.9 billion 35 

per year in direct and indirect costs.2 Among survivors, dependence in activities of 36 

daily living 3 months after onset varies from 16.2%3 to 19.2%4 . Stroke rehabilitative 37 

approaches aid functional recovery and brain reorganisation5 but the effects of 38 

rehabilitation decrease with time after the event6 and a “plateau” of recovery from 39 

stroke is observed with the first weeks to months, indicating limited endogenous 40 

recovery capacity. 41 

At a tissue level, the capacity of the brain for neurogenesis and angiogenesis suggests 42 

that it may be possible to enhance endogenous recovery processes.7 Pharmacological 43 

attempts to stimulate repair have to date not improved clinical outcomes, although 44 

several agents remain under investigation.8 Cell-based therapies offer the potential to 45 

enhance brain repair, offering a more dynamic biological response to a diverse and 46 

changing environment in the injured brain than can be achieved with drug therapy.9 47 

Studies of cell therapies in animal models of disease have identified effects on cell 48 

differentiation, immunomodulation, inflammation and stimulation of endogenous 49 

repair processes such as angiogenesis and neurogenesis. Functional improvements in 50 

experimental stroke animal models treated with human neural stem cells (hNSCs) 51 

support the potential of this therapeutic strategy. Intracerebral delivery of stem 52 

cells, the preferred route in animal stroke studies of neural stem cells, has the 53 

advantages of controlled dosing, and improved cell delivery and survival over 54 

intravenous (IV) or intra-arterial (IA) routes that have been preferred in studies of 55 

mesenchymal stromal or related tissue-derived cell populations.10   56 

In rat middle cerebral artery obstruction (MCAo) models, CTX0E03 cells injected 4 57 

weeks after MCAo, showed a dose11 and implantation site12 dependent improvement in 58 

behavioural outcome measures along with histological evidence of increased host 59 

striatal angiogenesis13 and neurogenesis.14 Together with preclinical evidence 60 
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supporting long-term safety, pharmacodynamic interactions, pharmacokinetic bio-61 

distribution and toxicology data formed the basis for a first-in-human clinical trial.     62 

We report the results of Pilot Investigation of Stem Cells in Stroke (PISCES), a phase-1 63 

dose escalation trial undertaken to investigate the safety and feasibility of intra-64 

cerebral stereotactic implantation of CTX-DP in patients with chronic stable ischaemic 65 

stroke.    66 

Methods: 67 

Patients 68 

Patients with stable neurological deficits and moderate to severe disability (defined 69 

by National Institutes of Health Stroke Scale15 (NIHSS) ≥6 and modified Rankin Scale16 70 

(mRS) of 2-4) resulting from a first ischaemic stroke 6 months to 5 years previously 71 

were recruited. All patients gave fully informed consent. Patients were identified 72 

through referral from rehabilitation services or self-referral triggered by media 73 

awareness. Male patients only were recruited in order to minimise any chance of 74 

exposure to Tamoxifen, a minor metabolite of which is the ligand for the modified c-75 

myc growth factor gene (c-mycERTAM) governing replication of CTX0E03 cells (detailed 76 

under “CTX0E03 Human neural stem cells”) and the “first-in-man” stage of novel 77 

investigation. Full inclusion and exclusion criteria are listed in Table 3 in 78 

supplementary information. 79 

Trial Design 80 

PISCES was a phase-1, open-label, single centre, dose-escalation trial of intra-81 

cerebral stereotactic implantation of CTX0E03 hNSCs. The study was approved by the 82 

United Kingdom Medicines and Healthcare Products Regulatory Agency (MHRA), and 83 

National Research Ethics Service (NRES) [previously Gene Therapy Advisory Committee 84 

(GTAC)]. The study was registered with ClinicalTrials.gov, number NCT01151124. 85 

European Union and MHRA guidelines pertaining to Advanced Therapy Investigational 86 

Medical Products (ATIMP) were adhered to.17 Eligible patients were recruited and in a 87 

sequential ascending dose design, 3 cohorts of 3 patients each received a single 88 

implantation of 2, 5 and 10 million CTX0E03 hNSC (40, 100 and 200 μL volume 89 

respectively) with a final cohort of 2 patients receiving 20 million cells (400 μL). The 90 

final sample size of 11 subjects was decided after interruption of cell manufacture to 91 
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changes in ownership of a contracted manufacturing site, following MHRA consultation 92 

and presentation of safety data. Consistent fulfilment of inclusion criteria and clinical 93 

stability were confirmed at three visits from two months before stereotactic 94 

implantation of CTX0E03 hNSC under general anaesthesia. Regular follow-up over 2 95 

years included clinical and imaging data acquired at days 1 (D1), 2 (D2), 7 (D7) and 96 

months 1 (M1), 3 (M3), 6 (M6), 12 (M12), 24 (M24) along with interspersed telephone 97 

visits at days 14 (D14), 21 (D21) and months 2 (M2), 9 (M9) and 18 (M18). Adverse 98 

events were documented and reviewed. The primary endpoint was safety including 99 

adverse events, neurological deterioration or mortality. Secondary endpoints included 100 

functional change at D1, D2, D7 and M1, M3, M6, M12, M24, post implantation. 101 

Study Oversight and Independent Review 102 

An independent data and safety monitoring committee (DSMC) comprising of stroke, 103 

imaging and neurosurgical experts reviewed clinical and imaging data. The DSMC 104 

reviewed the M1 data for the first subject at each dose level before proceeding to 105 

subsequent subjects and M3 data after the last subject of each cohort before 106 

recommending escalation of the cell dose. 107 

Clinical Assessments 108 

Assessments covered neurological impairment (NIHSS)15, disability (mRS)16, spasticity 109 

(modified Ashworth scale)18, activities of daily living (Barthel Index, BI)19 and health-110 

related quality of life (EuroQoL, EQ-5D)20. General physical examination and vital 111 

signs were recorded at each visit. Blood analyses included allo-antibodies, blood 112 

count, infective markers, renal and liver function.  113 

CTX0E03 hNSC manufacture and delivery 114 

The human Neural Stem Cell line CTX0E0321 was clonally derived from human foetal 115 

cortical neuro-epithelial cells following retroviral insertion of a conditional 116 

immortalisation transgene, c-mycERTAM.  The transgene generates a MycER fusion 117 

protein that acts as a growth promoter in the cells under the control of 4-hydroxy 118 

tamoxifen (4-OHT) and confers phenotypic and genotypic stability of the CTX0E03 119 

cells through long term expansion culture. Myc dependent cell replication is curtailed 120 

by removing 4-OHT in cultures. The hNSCs were obtained by early expansion of a 121 

single isolation from a 12 week foetal cortical neuro-epithelium. The CTX0E03 cell 122 
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line has undergone cell expansion and banking and long term storage in liquid 123 

nitrogen in accordance with Good Manufacturing Practice (cGMP).  CTX-DP is 124 

manufactured under GMP from cryopreserved CTX0E03 cells as an Advanced Therapy 125 

Investigational Medicinal Product (ATIMP) intended for allogeneic treatment.22 The 126 

CTX-DP is aseptically manufactured as a colourless, opaque, slightly viscous 127 

suspension composed of CTX0E03 cells at a concentration of 5x104 cells/μL. The 128 

diluent, ‘HTS-FRS (Biolife Solutions, Bothell, USA)’ is made up of ions, buffers, 129 

impermeants, colloid, metabolites and an antioxidant. The final formulation is devoid 130 

of 4-OHT and growth factors, restoring the cells’ capability to differentiate. For every 131 

treated subject, CTX-DP was manufactured in a commercial GMP facility on the day of 132 

the surgery, transported to the hospital pharmacy under strict temperature control 133 

(2-8 0C) and implanted intra-cerebrally within 3 hours of transfer to room 134 

temperature in the operating theatre. Cell implantation was targeted to the putamen 135 

ipsilateral to the infarct since this was equivalent to the site of implantation in rodent 136 

studies, and in addition there is prior clinical experience confirming the safety of this 137 

approach for similar volumes of cells. 138 

Surgical Procedure 139 

Patients were reviewed by the study neurosurgeon at a pre-admission visit for 140 

discussion. Patients were admitted a day before surgery for clinical assessments, 141 

surgical consent and anaesthetic review. On the day of surgery, following a qualified 142 

person’s quality approval of the CTX-DP, patients underwent CT head under general 143 

anaesthesia with a Leksell Stereotactic frame fitted (Elekta Instruments, Sweden). 144 

The operating surgeon identified suitable targets and trajectories within the basal 145 

ganglia of the affected side using pre-operatively acquired magnetic resonance 146 

imaging (MRI) (T1weighted 3D). These images were then fused with the stereotactic 147 

CT dataset using BrainLab iStereotaxy software and co-ordinates for the targets and 148 

entry points generated. A single 15mm burr-hole situated according to the calculated 149 

co-ordinates was fashioned using a craniotome. The first 2 cohorts (2 x106 & 5 x106 150 

dose) had a single injection tract to deliver cells. The 3rd (10x106 dose) and 4th (20 151 

x106 dose) cohort required 2 and 4 tracts respectively. A maximum of 100μL was 152 

delivered per tract at the rate of 5μL/min in 20uL boluses at each of 5 points 153 

separated by 1mm along the tract. A sterile stainless steel implantation cannula 154 

(inner diameter= 0.35mm, outer diameter= 0.9mm, length= 235mm; manufactured 155 

and CE marked as a Class III medical device by ReNeuron, based on a design described 156 
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by Kondziolka et al23) with a luer hub was mounted within a Backlund injection needle 157 

(Elekta, Sweden) and attached to a 250μL Hamilton syringe (CE marked by ReNeuron 158 

as a sterile, class I medical device). Operative times (first incision to last stitch) 159 

ranged from 50 to 140 minutes. Patients were observed in the recovery ward until 160 

fully awake and stable physiologically before being returned to a neurosurgical ward. 161 

Brain Imaging  162 

Brain MRI was performed on a 3-Tesla GE-Signa-Excite-HDxt (General Electric, 163 

Milwaukee, USA) scanner. The protocol for structural brain imaging included T1W 164 

sagittal FLAIR (Time to Echo (TE) 8.5ms, Time to repetition (TR) 2.5s, Inversion time 165 

(TI) 920ms), T1W IR-FSPGR 3-dimensional  (TE1.5ms, TR7.2ms, TI500ms), T2W PROP 166 

Fast Spin Echo (TR5s,TE109.2ms), T2* gradient echo (TE22ms, TR670ms, flip angle 167 

10º) and T2W FLAIR (TE140ms, TR10s, TI2250ms, slice thickness 5mm, slice gap 168 

1.5mm) sequences. These were acquired at day -56, day -21, M1, M3, M12 and M24. 169 

Additional T1w 3D post gadolinium and T2w 3-dimensional FLAIR (TE128.3ms, 170 

TR6000ms, TI1857ms) were acquired after January 2014 following scanner software 171 

upgrade. An experienced neuroradiologist reviewed all images.  172 

Diffusion tensor imaging (DTI) was acquired at multiple (D-21, M1 and M12) time 173 

points to measure longitudinal change in fractional anisotropy (FA), a surrogate 174 

marker of white matter integrity, around the needle tracts. One acquisition of DTI 175 

images (TR11s, TE87.1ms, matrix 128x128, FOV240, 1.8x1.8x5 mm voxels, 34 176 

directions with b values 0 and 1000 s/mm) was collected. DTI pre-processing and 177 

region-of-interest analyses are included in supplementary information. 178 

Immunological Monitoring 179 

Patients did not receive any immunosuppressive therapy. Venous blood was obtained 180 

for analysis of HLA Class I and II antibodies against CTX0E03 pre-treatment and at M1, 181 

M3, M6, M12 and M24. Allo-antibody positive patients were excluded prior to 182 

implantation. 183 

Statistical Analysis 184 

Adverse events and change in NIHSS neurological function were recorded. Functional 185 

outcome data are reported as either median and interquartile range (Q1, Q3) or mean 186 
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and standard deviation (SD). All statistics were done using SAS v9.3, Microsoft Excel 187 

2010 and Minitab 16.  Change in FA on DTI is reported using the Cohen’s d effect size.  188 

Role of Funding Source 189 

The sponsors of the study contributed to study design but had no role in patient 190 

selection, recruitment, data collection, follow-up and imaging analysis. They 191 

reviewed the trial report before submission for publication. All authors had full access 192 

to the data. The responsibility for submission was that of the corresponding author, 193 

agreed by the DSMC chair. 194 

Results: 195 

Thirteen male patients were recruited between September 2010 and January 2013, of 196 

whom 2 were, excluded pre-implantation, one due to a seizure, and the other for the 197 

presence of a possible allo-antibody. Eleven received CTX-DP. This report covers the 198 

period up to median follow-up post implantation of 44 months (range 33 to 60 199 

months), with the last recruited patient completing 33 months. Baseline 200 

demographics and stroke characteristics are listed in Table 1. A lesion overlap map 201 

showing the distribution of cerebral infarcts is shown in figure 2. Individual scans are 202 

available in the web-appendix (figure 9).     203 

Adverse Events 204 

All patients were discharged home on day 2 after surgery. Serious adverse events 205 

(SAE) are summarised in Table 2 (non-serious adverse events are described in table 4 206 

in the web-appendix). All SAEs were related to the neurosurgical procedure, or to 207 

incidental or known medical conditions. One new ischaemic stroke, an occipital 208 

infarct not present on day -56 or day -21 brain imaging, was noticed retrospectively 209 

on the pre-surgical CT, but identified clinically only after new visual symptoms were 210 

described by the subject some weeks later. A superficial malignant melanoma 211 

occurred in one subject with chronic sun exposure history. No event was considered 212 

attributable to CTX-DP.         213 

Screening for cellular rejection 214 

All CTX-DP implanted patients were HLA negative before and after intervention.  215 
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Functional Outcome Measures 216 

Individual patient data showing changes in NIHSS, Ashworth arm and leg scores, 217 

Barthel Index, and EQ-5D over time are shown in Figure 3: all functional measures 218 

change from baseline (figure 6) and median change by dose cohort (figure 7) are 219 

available in online web-appendix. Pre-operative neurological deficits and spasticity 220 

were stable in all patients. After CTX-DP implantation, improvements over time were 221 

noted in NIHSS, summated Ashworth scores for arm and leg and Barthel Index. 222 

Disability as measured by modified Rankin scale at 1 year, was unchanged in 7/11 223 

patients and improved by 1 grade in 4 patients and at 2 years, was unchanged in 224 

7/11, worsened by 2 grades in 1/11 and improved by 1 grade in 3/11 patients. 225 

Patient-reported overall health state as measured by the visual analogue sub-score of 226 

the EQ-5D improved by median 18 (-5, 30) at 12 months compared to baseline.    227 

Brain Imaging 228 

Qualitative: Five patients (P2, P3, P4, P7 and P9) showed hyper-intensity around the 229 

needle injection tract on T2w FLAIR images. Hyper-intensity was first seen at M1 and 230 

persisted at M24 (figure 4a). Two further patients (P1 and P8) had subtle increase in 231 

pre-existing peri-infarct white matter T2w FLAIR hyper-intensity between M1 and M12 232 

(figure 4b). No changes were seen in the remainder of the patients. No clinical 233 

association with these changes was observed. The DSMC’s qualitative safety review of 234 

all scans concluded no significant increase in T2w hyper-intensities over time.     235 

Quantitative: Mean FA on an axial ROI was reduced at 1 month (post implantation) 236 

compared to baseline since voxels within the injection tract contributed zero values. 237 

At month 12 compared to month 1, four patients (P2, P4, P7, P9) showed reduced FA 238 

in 17/28 sampled slices (n=4) and increased FA in 9/28 slices (figure 5). All slices 239 

showed reduced FA in 1 patient (P3). In 4/9 slices increased FA was closer to putamen 240 

and 5/9 slices were closer to cortex. 241 

Discussion: 242 

This “first-in-man” study offers preliminary data on the feasibility, tolerability and 243 

cell-related safety of stereotactic intra-cerebral injection of the genetically modified 244 

human neural stem cell line CTX0E03-DP in patients with chronic ischaemic stroke.   245 
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We observed 4 asymptomatic procedural SAEs in 4 of 11 patients, consistent with 246 

safety data for brain stereotactic procedures generally.24 Unlike previous trials in 247 

stroke of teratocarcinoma-derived neuronal cells 25,26 and foetal porcine cells27, we 248 

did not observe any post-operative seizures. In one patient a seizure event, 10 months 249 

after implantation, was likely precipitated by alcohol withdrawal. Superficial 250 

melanoma was diagnosed on histology (pT1a N0 M0)28 in 1 patient, 6 months after 251 

elective excision of a painful mole that had been present in a sun-exposed region 252 

(pinna) for >10 years. This patient had previously been prescribed antimetabolite skin 253 

creams for sun-related skin injury. The majority of other adverse events were due to 254 

systemic co-morbidities including falls and elective procedures that required hospital 255 

admissions. This profile is expected in disabled stroke survivors with multiple 256 

comorbidities.29    257 

Hyper-intensity on T2 weighted FLAIR MRI was observed around the needle tract in 5 258 

patients at some point during the follow-up period. In general, this may be 259 

attributable to various causes including localised inflammation, graft-host reaction, 260 

gliosis or dysmyelinosis. Studies of longitudinal imaging in patients following 261 

stereotactic procedures for functional reasons are lacking, so it is unclear whether 262 

this imaging feature is related specifically to cell injection. Increased FA after cell 263 

implantation as was observed in several axial slices along the tract has been related 264 

to increased myelination in some conditions, 30, 31 suggesting potential improvement 265 

in microstructural white matter. Planned post-mortem pathological studies may in 266 

time offer additional data to characterise this finding.   267 

In animal models, stem cells of various kinds are associated with better neurological 268 

outcomes after focal brain ischaemia. Human neural stem cells have neural cell 269 

differentiation potential in addition to paracrine effects, and have most commonly 270 

been developed as allogeneic therapy, giving the potential flexibility of implantation 271 

in acute or sub-acute periods without dependence on successful cell harvest, 272 

extracorporeal cell expansion in a laboratory from days to weeks and uncertain dosing 273 

inherent in autologous cell therapies. Stereotactic intracranial injection ensures 274 

delivery of the intended cell dose to the target site adjacent to the ischaemic 275 

damage, replicating the conditions of animal studies of CTX-DP and offering a strategy 276 

more likely to yield proof-of-concept for cell therapy than less invasive routes. IV or 277 

IA administration might be safer, but animal data indicate that these routes result in 278 
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negligible cell engraftment in the brain10 and are therefore reliant on diffuse 279 

paracrine or even peripherally mediated therapeutic effects.32 280 

Exploratory indices of efficacy were secondary end-points. Given small patient 281 

numbers, a heterogeneous population, and the open-label, single arm design, no 282 

reliable conclusions can be drawn about the effects of cell implantation on 283 

neurological or functional change. It was notable, however, that despite selection of 284 

chronic, stable patients at late stages after stroke, the majority of participants 285 

showed some improvement across several indices of function, including in 4 286 

individuals (median 32.5 months since stroke; range 21-51) moving across a modified 287 

Rankin Scale threshold. Whether attributable to cell implantation or to other factors, 288 

such as engagement with trial evaluations and increased generic medical input, 289 

change in this population suggests that trials of intervention at late stages of stroke, 290 

when recovery is not generally believed to be attainable, may be worthwhile. 291 

Anecdotal accounts described reduced spasticity, minor return of finger movement at 292 

phalangeal joints, improved visual perception and better bed-to-chair transfers, and 293 

are supported by changes in spasticity, health-related quality of life, activities of 294 

daily living and neurological impairment. 295 

The NIHSS score was selected as an objective tool for identifying post-implantation 296 

deterioration. Other indices of neurological function are likely to offer better 297 

sensitivity to neurological functional change in future trials. Given the early nature of 298 

stem cell research with no reproductive toxicology evidence available for stem cells 299 

of other origin or CTX neural stem cells in particular which have used a Tamoxifen 300 

analogue receptor33 for in-vitro control of cell number replication, only males were 301 

considered for this stage of trial. However, together with no preclinical evidence of 302 

in-vivo cell cycle switching observed and safety data from PISCES, future studies will 303 

not be limited to male patients only. 304 

Patients were not administered immunosuppressive drugs since non clinical studies of 305 

CTX0E03 found no evidence of cell survival and efficacy requiring immunosuppression, 306 

in vitro studies for MHC-DR and MHC-ABC showed low protein expression for CTX0E03 307 

and to minimise the risk of post-stroke infections which are independently associated 308 

with poor outcome. 309 
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The putamen was chosen for implantation based on preclinical data as the closest 310 

intact subcortical neuronal cluster and preferable to white matter injections that can 311 

cause pressure-related further axonal injury. Dose selection was extrapolated by 312 

scaling up from efficacious doses in rats and an ascending dose design selected to 313 

allow cautious dose increments after safety review. Inclusion of appropriate 314 

concurrent controls and measures to ensure blinding will be essential for future 315 

efficacy-focussed investigations. The value of including control groups in early phase 316 

clinical investigations involving invasive procedures in small numbers of severely 317 

disabled subjects is debated. A non-operated control group, although considered, was 318 

not pursued as it was thought unlikely to provide valid control data, especially given 319 

stroke lesion heterogeneity and small patient numbers. A placebo surgery control 320 

group raises ethical concerns about exposure to surgical and anaesthesia risks, and 321 

may be unacceptable to patients.34  322 

Limitations: A small sample size by design limits the number of patients being 323 

exposed to each dose level, particularly only two patients receiving the highest dose 324 

due to cell production issues. Any adverse events of low incidence may not therefore 325 

have been identified. Safety was assessed over a 2 year period, but it is conceivable 326 

that longer term safety issues might occur, and lifelong surveillance is being 327 

undertaken. The open label design and lack of control subjects mean that exploratory 328 

efficacy data should be regarded with extreme caution. It is possible to exclude the 329 

possibility that any neurological change over time might result from stereotaxic 330 

injection rather than cell implantation, although such effects have not been observed 331 

in animal models with placebo injection. 332 

In conclusion, we observed no adverse events after treating 11 chronic stroke patients 333 

with intracerebral implantation of CTX hNSC and the longitudinal clinical observations 334 

suggest that this novel cell therapy for ischaemic stroke is feasible, safe and would 335 

warrant a larger, phase 2 trial. 336 

Panel: Research in Context 337 

Systematic Review: We searched the PubMed database from inception to March 16, 338 

2016 for articles published in any language, with the search terms “neural stem 339 

cells”, “ischaemic stroke” and “clinical trial or study”, excluding articles concerning  340 

mesenchymal stem cells, bone marrow derived cells, animal studies and non-341 
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ischaemic stroke. We found no studies that have investigated intracranial delivery of 342 

neural stem cells alone. One study35 compared and reported intra-cisternal delivery of 343 

a combination of human foetal neural stem progenitor cells of unspecified origin and 344 

MSCs with IV MSCs alone in 6 patients between 1 week and 2 years after stroke. 345 

Intracranial delivery of autologous cells in stroke has been reported for 346 

teratocarcinoma-derived cells.26 There are several published and on-going studies 347 

investigating IV delivery of autologous MSCs which have several differences compared 348 

to NSCs including timing, mechanism of action and delivery.   349 

Interpretation: Our study is the first report of the intracranial administration of 350 

human neural stem cells in chronic ischaemic stroke patients. These results are a 351 

significant addition to the current literature because of the novel potential treatment 352 

for stroke patients, however further research in carefully selected patients is needed. 353 
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Table 1: Baseline demographic data 

Patient Dose of 
cells 

Age 
(years) 

Months 
since 
stroke 

Infarct 
Hemisphere; 
Vascular 
territory 

Risk Factors NIHSS  mRS  BI  

P1 2 
million 

68 14 Left Cortical, 
MCA 

Smoking, high cholesterol 8 4 12 

P2 82 21 Right 
subcortical, 
MCA 

Smoking, hypertension, family 
history stroke & diabetes 

9 4 10 

P3 78 51 Left 
Subcortical, 
MCA 

Smoking, family history 
diabetes 

6 4 11 

P4 5 
million 

75 32 Right cortical, 
PCA 

Smoking, hypertension, h/o 
myocardial infarction 

6 3 14 

P5 69 33 Right 
Cortical, MCA 
&ACA 

Smoking, hypertension, high 
cholesterol, diabetes mellitus 

10 4 9 

P6 61 12 Right 
Cortical, MCA 

Smoking, high cholesterol, 
family history of stroke & 
diabetes 

8 4 12 

P7 10 
million 

64 14 Left Cortical, 
MCA 

Smoking, high cholesterol, 
atrial fibrillation 

7 2 16 

P8 68 46 Right 
Subcortical, 
MCA 

Hypertension, family history 
of stroke 

8 3 14 

P9 60 18 Left Cortical, 
MCA 

Smoking, hypertension, 
diabetes mellitus 

7 3 13 

P10 20 
million 

61 36 Right 
Cortical, MCA 

Smoking, peripheral vascular 
disease, alcohol excess 

6 3 15 

P11 71 44 Right 
Cortical, MCA 

Smoking, angina, atrial 
fibrillation 

7 3 12 

Median 
(Q1, Q3) 

 68 
(61, 
75) 

32 (14, 
44) 

  7 (6, 
8) 

3(3, 
4) 

12 
(11, 
14) 

MCA= Middle Cerebral Artery; NIHSS= National Institute of Health Stroke Scale; mRS= modified Rankin Scale; BI= Barthel Index 

Table 2: Serious Adverse Events 

Event Cohort Time after surgery 
(months) 

Attributed Cause SUSAR 

1 month Peri-operative 
Extradural Haematoma (asymptomatic) 1 1 Procedure Yes 
Subdural haematoma (asymptomatic) 1  1 Procedure and 

anticoagulant use 
Yes 

Right Occipital infarct (pre-surgical onset) 3 0 Withholding anti-platelets 
prior to surgery 

- 

From 1 to 6 months 
Cystoscopy - Elective surveillance procedure 1 6 Hospitalisation - 
Minor bleed at the burr hole on MRI (2subjects) 1 & 2 1 Procedure - 
Malignant melanoma – Left Ear Pinna 3 6 Pre-stroke high risk - 
6 months and beyond 
Diverticulitis – flare up   1 7 Pre-stroke risk - 
Hematemesis 1 8 Pre-stroke risk - 
Perforated sigmoid diverticulum 1 16 Pre-stroke risk - 
Colonoscopy for altered bowel 2 8 Pre-stroke risk - 
Seizure 3 10 Alcohol withdrawal - 
Alcohol withdrawal syndrome 3 12 Regular alcohol use - 
Collapse – Low Sodium 3 18 Acute on chronic 

hyponatremia 
- 

Gastroenteritis 3 23 Infection - 
Community acquired pneumonia 4 11 General infection risk - 
SUSAR= Sudden Unexpected Serious Adverse Reaction; MRI= Magnetic Resonance Imaging 
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Figure 1: Trial Patient Flow 
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Figure 2: Spectrum of Ischaemic lesions of all 11 subjects 
(overlapped) 
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Figure 3: Functional Outcome Measures of all patients. 

3a  3b  3c
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 3d  3e   

Line plots of all individual patients at D-56 (left) and M12 or M24 (right) for each figure is shown. 3a. NIHSS measures neurologic deficits. 3b. Arm spasticity 
measured using Ashworth scale. 3c. Leg spasticity measured using Ashworth scale. 3d. Barthel Index measures activities of daily living. 3e. EQ-5D Visual Analogue 
Scores measures the patient reported overall health state.  
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Figure 4:  

a  

b      

7a. Hyper-intensity around injection tract in T2W FLAIR sequences in 5 patients (P2, P3, P4, P7, P9) with injection tract distinct from the lesion or pre-existing 

gliosis (representative axial cut) 7b. In 2 patients (P1 & P8) increased peri-infarct white matter hyper-intensity is seen at M24 for P1 and M12 for P8. 
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Figure 5: Line plot of change in Cohen’s d values of different axial brain slices (S1 to S9) from month 1 (M1) to month 12 (M12) compared to baseline (BL) for 

patients P2 (5a), P4 (5b), P7 (5c) and P9 (5d). The bar graph illustrates the post intervention change between the months M1 and M12. 

a  b                                                

c  d  
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