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The sky is the limit: reconstructing physical geography from an aerial 1 

perspective  2 

Abstract 3 

In an era of rapid geographical data acquisition, interpretations of remote sensing products 4 

are an integral part of many undergraduate geography degree schemes but there are fewer 5 

opportunities for collection and processing of primary remote sensing data. Unmanned 6 

Aerial Vehicles (UAVs) provide a relatively inexpensive opportunity to introduce the 7 

principles and practice of airborne remote sensing into fieldcourses, enabling students to 8 

learn about image acquisition, data processing and interpretation of derived products. Two 9 

case studies illustrate how a low cost “DJI Phantom Vision+” UAV can be used by students to 10 

acquire images that can be processed using Structure-from-Motion photogrammetry 11 

software. Results from a student questionnaire and analysis of assessed student reports 12 

showed that using UAVs enhanced student engagement and equipped them with data 13 

processing skills. The derivation of bespoke orthophotos and Digital Elevation Models has 14 

the potential to provide students with opportunities to gain insight into various remote 15 

sensing data quality issues, although additional training is required to maximise this 16 

potential. Recognition of the successes and limitations of this teaching intervention provides 17 

scope for improving future UAV exercises. UAVs are enabling both a reconstruction of how 18 

we measure the Earth’s surface and a reconstruction of how students do fieldwork. 19 

Keywords 20 
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Introduction 23 

A key attribute of geography graduates is an ability to acquire, represent and interpret 24 

spatial data (e.g. maps, aerial photographs, satellite imagery), and to use these data to 25 

interpret the physical and human aspects of landscapes. Over the last decade, the quality 26 

and availability of aerial photographs and satellite imagery has rapidly increased following 27 

the release of virtual globes such as Google Earth (Tooth, 2006, 2013), and these have 28 

provided invaluable resources for learning and teaching in geography in schools and higher 29 

education (Tooth, 2015). In physical geography, such resources have been supplemented by 30 

increased open access to high resolution (metre and sub-metre in the horizontal, with c. 0.1 31 

m vertical accuracy) three-dimensional Digital Elevation Models (DEMs). For example, LiDAR 32 

data is available via OpenTopography in the USA (www.opentopography.org; Krishnan et al., 33 

2011) and via the UK Government Data portal in England (https://data.gov.uk/). 34 

Furthermore, the development of Unmanned Aerial Vehicles (UAVs) now enable scientists 35 

and environmental managers to acquire high-resolution aerial imagery (Anderson and 36 

Gaston, 2013; Carrivick et al., 2103; Eisenbeiss et al. 2011; Hugenholtz et al., 2012; Marris, 37 

2013; Turner et al., 2016), and Structure-from-Motion (SfM) photogrammetry (James and 38 

Robson, 2012; Micheletti et al., 2015; Westoby et al., 2012) enables orthophoto and DEM 39 

production from a projected two-dimensional motion field that is generated from a set of 40 

images. Coupling these data acquisition and processing technologies together thus provides 41 

opportunities to generate high resolution digital topographic datasets (Lucieer et al., 2014; 42 

Tamminga et al., 2015; Tonkin et al., 2014; Woodget et al., 2014; Westoby et al., 2015) that 43 

are generally lower in cost for areas less than c. 1 km2 than datasets derived from manned 44 

aircraft surveys (Glennie et al., 2013; Lillesand et al., 2015). Physical geographers, and in 45 
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particular geomorphologists, are at the forefront of these technical developments and 46 

applications (Passalacqua et al., 2015; Tarolli, 2014). In the social sciences, research is being 47 

directed towards examining the use of UAVs in a range of applications, including military 48 

(Greene, 2015; Shaw, 2013) and civilian (Culver, 2014; Finn and Wright, 2012), while 49 

Birtchnell and Gibson (2015) describe an exercise to explore the reactions of human 50 

geography students to using UAVs. Yet within university geography departments, the 51 

principles and practices of primary UAV image acquisition and associated data processing 52 

have not been widely transferred to the undergraduate curriculum (Jordan, 2015), despite 53 

the transformative potential for enhancing student understanding of the nature, rates and 54 

drivers of landscape changes. 55 

Following a brief review of the role of technology in physical geography student fieldwork, 56 

the aim of this paper is to summarise a teaching procedure whereby students can use a low-57 

cost UAV and off-the-shelf SfM software to produce an accurate, high-resolution 58 

orthophoto and DEM. We present the teaching and learning procedure adopted during two 59 

case studies undertaken during a physical geography fieldcourse; one is an instructor-led 60 

exercise whilst the other is from an independent student group project. We evaluate the 61 

outcomes by considering: (i) the results from a questionnaire that was completed after the 62 

first case study; (ii) the level of engagement with the technology that was achieved in the 63 

second case study; and (iii) our own reflections on student learning. 64 

Physical geography fieldwork and technology 65 

Teaching students in the field is of paramount importance for inherently field-based 66 

disciplines such as physical geography (Fisher, 2001). In the UK’s quality code for higher 67 

education (QAA, 2014), fieldwork is described as a characteristic and essential element of 68 
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undergraduate geography degrees. Abundant pedagogical research also suggests that not 69 

only are students motivated by fieldwork (e.g. Fuller et al., 2003) but learn more outside 70 

than in the classroom (Salvage et al., 2004), particularly because experiential learning in the 71 

field also leads to deep learning (Auer, 2008).  72 

Fuller et al. (2006) note that students like using technical equipment in the field, designing 73 

their own research projects, and analysing data. Nevertheless, despite some notable 74 

exceptions, there are relatively few assessments of teaching and learning when using 75 

instruments or other technologies during undergraduate fieldwork (FitzPatrick et al., 2012; 76 

Fuller and France, 2016; France et al., 2016; Welsh and France, 2012; Welsh et al., 2012; 77 

Welsh et al., 2015). In part, this may be because instruments are not being regularly 78 

deployed during fieldwork teaching. Indeed, in a survey of undergraduate fieldwork 79 

practitioners, Welsh et al. (2013) found that technology tends to be used before and after 80 

fieldwork, but was least used during fieldwork. For those who were using technology in the 81 

field, the four most commonly used types of hardware were digital cameras, GPS, 82 

smartphones and phones. This situation contrasts with the use of electronic sensors and 83 

data recording through remote sensing and digital storage in contemporary physical 84 

geography field-based research (Church, 2013) and applied environmental management. A 85 

gap is thus emerging between data acquisition and remote sensing in research and the 86 

applied environmental workplace, and what is being taught at the undergraduate level. In 87 

the UK, ‘technology use’ (e.g. UAVs) in field contexts has even been identified as part of a 88 

more general fieldwork “skills gap” by graduate employers in the environmental sector 89 

(Natural Environment Research Council, 2012). Embedding more technologically-enhanced 90 

learning (JISC, 2011) into geography fieldwork, especially those approaches based around 91 
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remote sensing, therefore may make a contribution not only to student engagement and 92 

learning but also to improving graduate job prospects. Against this backdrop, we undertook 93 

an investigation of teaching and learning outcomes based on coupling geomorphological 94 

fieldwork with remote sensing technologies.  95 

Context, exercise development and evaluation 96 

All geography undergraduate students at Aberystwyth attend a residential fieldcourse 97 

during Semester 2 of their second year. In 2015, two of the authors (RDW and MG) led a 98 

fieldcourse to the South Island, New Zealand (Figure 1a), which lasted 10 days and focused 99 

upon the themes of fluvial geomorphology, glaciology and natural hazards. Additionally, the 100 

long-haul fieldcourse is also intended to engender lifelong experiences, and deep learning 101 

(Robson 2002) through a focused independent research project at the end of the course. 102 

During the first eight days, the eleven registered students visit a range of fluvial and glacial 103 

landscapes and develop practical field skills in geomorphological mapping, sediment analysis 104 

and stream gauging. Students use a range of instruments and technologies including 105 

handheld GPS, Real Time Kinematic GPS (RTK-GPS), UAVs, interpretation of SPOT satellite 106 

imagery, and dilution gauging of river flow. In the final two days, students apply the skills 107 

that they have developed to an independent group project of their choice. 108 

Case study 1: Braidplain planform 109 

The first use of UAVs during the fieldcourse was for an exercise on mapping braidplain 110 

planform. This exercise takes place on a reach of the Rees River (Figure 1B) where 111 

morphological change has been investigated by the lead author (e.g. Williams et al., 2014; 112 

Williams et al., 2015), thus enabling research-led teaching. Channels actively erode and 113 
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deposit sediment, and therefore migrate across the braidplain during high flows. This 114 

dynamism provides opportunities for students to analyse how the channels change, by 115 

comparing archived aerial imagery to surveys carried out during the fieldtrip. In previous 116 

fieldcourses, this exercise had involved students walking along channel edges and using a 117 

handheld GPS to record channel positions. However, we recognised that a teaching 118 

intervention could be made to enable students to learn how to acquire images using a UAV. 119 

The fieldwork featured two tasks. Initially, students distributed plastic targets across the 120 

braidplain and surveyed the centre of each target using an RTK-GPS system (Uren and Price, 121 

2006) to obtain a coordinate with c. 0.01 m accuracy. Next, students were given an 122 

explanation of the technical components of a “DJI Phantom 2 Vision+” UAV (cost of £965 in 123 

2014) and a demonstration of its controls (Figure 2). In brief, this UAV is a quadcopter with a 124 

14 megapixel camera supported by a three axis gimbal stabiliser. The UAV is operated using 125 

a remote control and the camera is operated through the DJI Vision smartphone app, which 126 

also gives the operator a live feed from the camera. Each student learnt to fly the UAV and 127 

acquire images, at 4 s intervals, from a height of approximately 100 m above the braidplain. 128 

Flight speed was adjusted to ensure a minimum of five overlapping images for each pixel of 129 

the orthomosaic. Aber et al. (2010) outline standard formulae for calculating photographic 130 

scale and resolution, which can be used to plan the image coverage and ground sample 131 

distance that can be achieved for a particular flight duration. Before flying, students were 132 

briefed on the Civil Aviation Authority of New Zealand’s rules for the use of Remotely 133 

Piloted Aircraft Systems. 134 

In the evening, while the students observed, the lead author used Pix4D SfM processing 135 

software to produce orthophotos and DEMs of the 0.15 km2 study area (Figure 3). After 136 
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image processing was complete, the students were asked to complete an anonymous 137 

questionnaire (Table 1) that asked what they thought they had learnt from the exercise as a 138 

whole, the links they could make to other undergraduate modules, whether they enjoyed 139 

the exercise, and what they thought could be improved. 140 

Case study 2: Glacial lake outburst flood topography 141 

Three students decided to use the UAV for their independent group project, which aimed to 142 

reconstruct the channel morphology and peak discharge of the 1913 Mueller Glacier lake 143 

outburst flood (GLOF) at Kea Point (Figure 1c). The students’ objectives were to describe the 144 

outburst flood channel by generating a topographic map and to quantify peak discharges 145 

using empirical relations similar to the methods of Kershaw et al. (2005). The procedure was 146 

similar to that employed for the first case study, with the students initially laying out 50 147 

ground targets across the study area and each target location being surveyed using an RTK-148 

GPS system. Set up of the GPS base station was supervised by a staff instructor prior to 149 

target emplacement but flying of the UAV was undertaken by students once all targets were 150 

placed. To complement the UAV data, the size of 50 transported sediment clasts was 151 

measured to provide additional information for input into empirical peak flow calculations. 152 

After data collection, and once back in the UK, the students were supervised in the 153 

production of an orthophoto and DEM using SfM processing software (Figure 4).  The 154 

students then calculated cross-sectional area of the GLOF channel using the SfM-derived 155 

DEM. 156 

Results 157 

Case study 1: Braidplain planform 158 
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Nine out of eleven students answered the survey. Table 1 summarises the results and lists 159 

example responses to the qualitative questions. Overall, the results show that students 160 

were engaged with the use of technology in the field. The first question asked students what 161 

they learnt from the exercise. Most students stated they learnt how to fly a UAV and they 162 

learnt how to use an RTK-GPS system (Table 1). The second question asked students to list 163 

whether they thought that anything they learnt linked to other modules they were taking. 164 

While the students on the fieldcourse could be following a variety of module combinations, 165 

this question was designed to give an indication of the broader connections that students 166 

could identify. All students listed at least two other second year modules. Two students 167 

listed the third year dissertation module, indicating that some students were also thinking 168 

about future research projects (Table 1). The third question asked each student whether 169 

they enjoyed the fieldwork and to explain their answer. All nine students answered yes. The 170 

explanations (Table 1) suggest that students were engaged with the use of fieldwork 171 

technology. The fourth question asked what could be improved. In common with answers to 172 

the third question, which demonstrated enthusiasm for the UAV technology, seven out of 173 

nine students responded by saying that they’d like to spend more time flying the UAV. One 174 

respondent commented that they would like to use the UAV to monitor other 175 

environments, such as glacial landscapes. In their answers to the final question, which asked 176 

students to make any other comments, students commented both on their engagement 177 

with the exercise and their broader experiences (Table 1). 178 

In addition to the student survey, the exercise was also reviewed by an independent 179 

member of the fieldwork teaching team as part of Aberystwyth University’s Peer 180 

Observation of Teaching procedure. Their comments also provide a useful evaluation of 181 
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student learning and engagement during the field exercise: “The exercise engaged all 182 

students at several levels, even to the point that they were extremely keen to lay out 183 

targets across the floodplain to act as points of ground truthing - normally a somewhat 184 

mundane task. This innovative class appealed to several learning modes, including tactile, 185 

visual and audible.” This review therefore reinforces the results from the student 186 

questionnaire and illustrates how technology can be deployed during fieldwork to engage 187 

students. 188 

The main drawback to the first case study was that whilst students were engaged with 189 

collecting field data, there was not an opportunity for students to process the data 190 

themselves. This was due to a lack of laptop processing capacity in the field camp, which 191 

meant that students had to be shown how to process the data by the lead author. As a 192 

result, the responses to the survey focused upon data collection rather than processing. 193 

Case study 2: Glacial lake outburst flood topography 194 

Since each student’s independently-written project report was part of their fieldcourse 195 

assessment, evaluation of the skills they gained through using the UAV and associated data 196 

processing software could be made by reviewing the assessed work. All three students 197 

processed the image dataset (299 photos) to produce an orthophoto and DEM of the 0.13 198 

km2 study area (Figure 4). The DEM enabled calculation of the cross-sectional area of the 199 

GLOF channel, which was subsequently used as an input to slope-area methods to estimate 200 

peak discharge through the channel. The students’ reports demonstrated a clear 201 

understanding of the application of the technology-based results, linked these results with 202 

the more conventional clast analysis data effectively, and showed how the results could 203 

provide insight into flood-related landscape dynamics. However, the students did not 204 
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acknowledge the uncertainties involved in collection and post-processing of imagery (e.g. 205 

positioning of targets, spatial overlap of photos over the study area), an omission that was 206 

particularly evident in their discussion sections.  To address this omission in future exercises, 207 

it may be appropriate to provide training before embarking on data collection in the field, 208 

and then hold a supervised, student-led workshop on post-processing following the first 209 

data collection exercise.  By doing this, students would gain a greater insight into the data 210 

collection and processing, uncertainties in these methods, and ways in which they can be 211 

overcome. Complementing use of such technologies in the field with technical skill 212 

development in class-based work would further students’ understanding of methods whilst 213 

undertaking fieldwork, and get them thinking more deeply about the post-processing that is 214 

involved to achieve the final data product. In addition, they would also gain a greater 215 

understanding of appropriate uses of these technologies and the extent of their application 216 

in other aspects of the curriculum.  217 

Reflection and discussion 218 

The two case studies on the application of UAVs to acquire aerial imagery provide examples 219 

of how technologically-enhanced learning can be achieved during fieldwork. Student 220 

comments in the questionnaire that was completed as part of the first case study (Table 1) 221 

illustrate that they engaged in the exercise and enjoyed the research-led nature of the 222 

activity. However, higher-level cognitive skills were only developed by those students who 223 

applied the techniques they had learnt during the first field exercise to develop an 224 

independent group project that applied the technology. Through their independent project 225 

reports, this small group of students demonstrated that they were synthesising information 226 

gained from their geomorphological- and technological-based training to address a specific 227 
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research question associated with deriving a topographic model.  This model was then used 228 

to extract information (e.g. cross sections) for input into empirical formulae to estimate 229 

peak discharge during an outburst event. 230 

In the student questionnaire, almost all students identified that they had learnt new skills 231 

through flying the UAV and using an RTK-GPS system to survey the ground targets. The 232 

exercise is similar to that described by Sander (2014), who developed an exercise for 233 

students to use a digital camera mounted on a kite to acquire imagery. Whilst a UAV cannot 234 

be used on wet and windy days, it is generally more versatile than a kite across a range of 235 

environments and seasons. Although Birtchnell and Gibson (2015) describe a UAV 236 

demonstration to students, they did not provide students with the opportunity to acquire 237 

data. Giving students control of the UAV and the experience of placing and surveying targets 238 

presents opportunities for learning about the principles and practice of remote sensing, 239 

ranging from georeferencing, acquiring imagery, photogrammetry and image analysis. It also 240 

maintains an environment – associated with more traditional forms of fieldwork – where 241 

students can work in small groups to solve problems. In the first case study, students did not 242 

have the opportunity to process their data due to limited processing capacity; this could be 243 

addressed by designing practicals where students process lower resolution images or fewer 244 

images and thus a smaller geographical extent. Issues associated with data quality, such as 245 

the optimum target layout and the application of the output orthophoto and DEM to 246 

investigate particular physical geography research questions, can also be explored by 247 

students, and there are also social science applications (Birtchnell and Gibson, 2015). 248 

Students who were engaged in processing the imagery and target locations through their 249 

independent projects extended and deepened their learning. They also gained additional 250 
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skills in processing large datasets. This indicates that learning is most effective when 251 

technology that is used in the field is also supported by broader engagement with 252 

processing software immediately after data acquisition, and in classroom practicals before 253 

and/or after fieldwork. Such knowledge is likely to equip students with the skills needed for 254 

future careers that are closely related to geography, such as in applied environmental 255 

management. 256 

Conclusion 257 

Over the last decade, the vastly enhanced availability of aerial photography and satellite 258 

imagery has been invaluable for teaching and learning in geography, particularly by 259 

providing new perspectives to advance students’ perceptions of physical and human 260 

phenomena on the Earth’s surface (Tooth, 2013, 2015).  Nonetheless, a lack of connection 261 

commonly exists between use of remote sensing products and the associated principles and 262 

practices of remote sensing data collection and analysis in field contexts.  In a fieldcourse in 263 

New Zealand, we attempted to address this disconnect. During fieldwork, all students 264 

gained skills in using UAVs and associated electronic instrumentation that is commonly used 265 

in research and applied environmental practice, as well as knowledge about the production 266 

of orthophotos and DEMs. Students who were involved with processing imagery for their 267 

independent group research projects deepened their learning. They also gained additional 268 

knowledge and skills by processing the large dataset, and applying the technology to 269 

address a specific research question about landform configuration and flood discharge 270 

reconstruction. Reflections on the field exercises indicate that an additional processing 271 

component could be embedded into pre- or post-fieldwork classes to maximise the 272 

opportunity for learning and further analysis of the derived products. This will increase 273 
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career opportunities for geography graduates and more broadly will contribute towards 274 

realising visions of a Digital World, one in which increasing numbers of people are engaged 275 

in exploring and learning about the Earth using geospatial technologies (Goodchild, 2012; 276 

Craglia et al., 2012).  277 
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Table 1 Questions from the survey that was given to the eleven students after case study 1. 287 

Nine students completed the survey. 288 

Number Question Summary of responses 
1 What did you learn 

from the exercise? 
How to fly a UAV: identified by eight students 
How to use RTK-GPS: identified by seven students 
The laws surrounding UAV flight: identified by one student 
How to place ground targets: identified by one student 
How to post-process the data and produce a DEM: identified by one 
student 

2 Did anything you 
learn from the 
exercise relate to 
other modules you 
are taking? If so, 
which ones? 

All responses listed least two other second year modules, including 
catchment systems, research skills, sedimentary environments, GIS, 
geohazards and remote sensing. Two responses listed the third year 
dissertation module. 

3 Did you enjoy the 
fieldwork? Please 
explain your answer 

Nine out of nine responses replied “yes”. Examples of explanations 
include: (i) “it was interesting because I was able to actively engage 
in cutting edge research”; (ii) “it was much easier to learn seeing 
processes in action and make learning more interesting”; (iii) “the 
session [was] interactive and the topic and technology was 
exciting”; and (iv) “it was interesting to see the method behind map 
production and aerial photography” 

4 What could be 
improved? 

More time flying the UAV: identified by seven students 
Using the UAV in other landscapes (e.g. glacial): identified by one 
student 

5 Do you have any 
further comments? 

Example responses include: i) “I really enjoyed all aspects of the 
fieldwork, have learnt loads and find it helpful being able to ask 
questions all of the time”; ii) “I made a new friend”; and iii) “I 
enjoyed it and learnt a lot” 

  289 
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 290 

Figure 1 (A) The location of the two case study sites in New Zealand, (B) The Rees River 291 

braidplain. Oblique image taken using the UAV described in this paper. (C) Mueller Glacier 292 

outburst flood valley, showing a student using RTK-GPS.  293 
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 294 

Figure 2 Fieldwork procedure for students to acquire aerial images: (A) RTK-GPS survey of a 295 

ground target; (B) Operation of the remote control for a DJI Phantom UAV. Note that these 296 

photographs were taken during undergraduate fieldwork in the UK rather than during the 297 

New Zealand fieldtrip but they illustrate the same procedure. 298 
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 299 

Figure 3 (A) Orthophoto and (B) Digital Elevation Model of the braided Rees River, New 300 

Zealand (flow direction from top right to lower left). The maps were produced using images 301 

acquired from a “DJI Phantom 2 Vision+” UAV and Structure-from-Motion photogrammetry, 302 

processed using Pix4D software. Artefacts, such as the bridge decking on lower left and the 303 

errors in derivation of bed levels along some wet channels on centre right of the image, 304 

could form the focus of discussion about DEM editing tools. Underlying aerial photography 305 

has been made available by Otago Regional Council. 306 
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 307 

Figure 4 (A) Orthophoto and (B) Digital Elevation Model of a valley formed by a glacial lake 308 

outburst flood at Kea Point, New Zealand (flow direction from top left to lower right). The 309 

maps were produced using images acquired from a “DJI Phantom Vision+” UAV and 310 

Structure-from-Motion photogrammetry, processed using Pix4D software. Underlying aerial 311 

photography has been made available by Environment Canterbury through ArcGIS Open 312 

Data, licensed under a Creative Commons Attribution 3.0 New Zealand License.  313 

 314 
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