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Abstract—We focus on Internet of Things (Io0T) environments
where sensing and computing devices (nodes) are responsible
to observe, reason, report and react to a specific phenomenon.
Each node (e.g., an unmanned vehicle or an autonomous
device) captures context from data streams and reasons on
the presence of an event. We propose a distributed predictive
analytics scheme for localized context reasoning under uncer-
tainty. Such reasoning is achieved through a contextualized,
knowledge-driven clustering process, where the clusters of
nodes are formed according to their belief on the presence of
the phenomenon. Each cluster enhances its localized opinion
about the presence of an event through consensus realized
under the principles of Fuzzy Logic (FL). The proposed FL-
driven consensus process is further enhanced with semantics
adopting Type-2 Fuzzy Sets to handle the uncertainty related
to the identification of an event. We provide a comprehensive
experimental evaluation and comparison assessment with other
schemes over real data and report on the benefits stemmed
from its adoption in IoT environments.

Index Terms—Distributed predictive event analytics, data
streams, knowledge-centric clustering, Type-2 Fuzzy Logic.

1. Introduction

In IoT environments, objects transfer contextual knowl-
edge to the network without human intervention. Such envi-
ronments involve a Wireless Sensor Network (WSN), which
consists of distributed wireless nodes (sensors) capable of
sensing (observing) and reasoning about the occurrence of
phenomena. Each node has sensing and computation capa-
bilities for inferring localized knowledge. The fundamental
requirement is the autonomous nature of nodes to perform
sensing & inference, and disseminate localized inferred
knowledge to their neighbors, or to a centralized information
processing system, e.g., a concentrator.

Many critical IoT applications have been implemented
on top of contextual data streams captured by (WSN) nodes.
There are two main orientations: (i) nodes apply a dis-
tributed decision making mechanism to, locally, infer events;

(i) nodes send their measurements to a concentrator that,
consequently, performs the inference process. Such events
are related to e.g., security issues or violations of pre-defined
constraints. As an example, in security applications, a mon-
itoring infrastructure is imperative by adopting a centralized
architecture which applies an efficient mechanism to derive
alerts when specific criteria are satisfied [18], [30]. Another
application domain is environmental monitoring [11], [15].

We propose a mechanism for distributed, localized
contextual event reasoning involving (i) context predic-
tion (adopting time-series forecasting), (ii) context infer-
ence (adopting Fuzzy Logic (FL)-based inference), and (iii)
knowledge-centric clustering for disseminating pieces of
knowledge among nodes and concentrators. Our mechanism
builds on top of streaming contextual data and provides im-
mediate inference to any identified abnormality, hereinafter
referred to as event. A distributed clustering scheme groups
nodes according to their contextualized view on the presence
of an event. These groups are formed to further monitor
and reason about the event and the concentrator forms a
contextual map of the presence of inferred events.

Our mechanism combines both: localized context infer-
ence and nodes clustering. We introduce distributed event
reasoning over the compactness of clusters concerning their
recent opinion about an event. With the term compactness,
we characterize the unanimity of the members of each
cluster about the event. The rationale is to infer an event
by minimizing the false alarms that could affect decision
making, i.e., unsuitable decisions of handling a hazardous
phenomenon. The technical contributions of our paper are:

o localized contextual event inference in light of min-
imizing the rate of false alerts;

o distributed event inference based on knowledge-
centric nodes clustering;

o combination of (i) localized context prediction and
(i) localized context inference through FL for han-
dling the uncertainty in describing events;

o sensitivity analysis of our mechanism and compar-
ative assessment with: the Single Sensor Alerting



(SSA), the Average Measurements Alerting (AMA),
the Simple Prediction Model (SPM), the Moving
Average Model (MAM) and the centralized model
discussed in [19], [20].

The paper is organized as follows: Section 2 reports
on prior work, while Section 3 presents our rationale.
Sections 4 and 5 introduce the localized context inference
and the knowledge-centric clustering, respectively. Section
6 presents experimental evaluation and comprehensive com-
parison assessment. Section 7 concludes our paper by giving
future research directions.

2. Related Work

Context monitoring and inference support the develop-
ment of IoT applications [11]. An analysis on architectural
solutions and a case study on distributed context inference
for environmental monitoring is discussed in [5]. IoT de-
vices are utilized to (i) monitor a specific area and (ii)
deliver the captured contextual data to a central system
[15]. The authors in [24] present a context monitoring
framework involving computing aggregate methodologies.
In [23], a WSN application for air quality monitoring in
indoor environments is proposed. A concentrator collects
contextual data from nodes equipped with a set of sensors.
In [9], the authors present a framework for inference of
forest fire events based on vision-enabled nodes. The authors
in [18] present a mechanism for home monitoring based
on the received signal strength of nodes. In [30], a WSN
application for the surveillance of critical areas is proposed.
Such a system focuses on ensuring integrity and authenticity
of the generated alerts. In [4], a WSN-based framework
is proposed for inferring hazardous underground materials.
The focus of [16] is on large scale WSN deployments
oriented to provide a monitoring and inference mechanism
that aims at localized decisions. In [22], the authors present
another distributed monitoring algorithm that aims to min-
imize false alerts. An hierarchical architecture that allows
distributed context monitoring is proposed in [7]. DRAGON
[17] is another inference model which is able to handle all
types of events. It employs two physics metaphors: event
center of mass, and node momentum. In [25], a model
for the virtual representation of event sources is proposed.
Events are modelled as internet resources accessible by any
application, following an IoT approach. The goal of [26] is
to propose a machine learning model for the identification
of rule patterns adopted for inference. In [2], the authors
present an event identification algorithm that takes into
account the correlation among the sensed attributes and the
spatio-temporal correlations with similar attributes measured
by neighboring nodes. A general framework is discussed in
[36]. The framework enables a flexible number of sensor
nodes to dynamically collaborate in detecting and delivering
any specified event. The authors in [38] propose an event
detection model defined by a data fusion model. Events can
be detected by computing data fusion probabilities on top of
a genetic algorithm. In [1], a distributed algorithm to detect

dynamic phenomena is proposed. Sensors self-organize into
disjoint groups by first electing a few of them to be group
leaders. Each group of sensors detect phenomena locally.

In context inference, reasoning over the principles of
FL is a useful technique for delivering high quality results.
The model in [10] predicts the peak particle velocity of
ground vibration levels adopting FL-based inference. The
FL-based context reasoning model in [29] estimates the
radiation levels in the air. The adoption of the FL aims
to handle missing values. The FL-based context fusion
model presented in [32] reduces the uncertainty and false-
positives within the process of fault detection. In [13], a
FL-based inference system (Type-2 FL system) is proposed
for ambient intelligence environments. Such a system learns
the users’ behavior in light of being adapted on users’
profiles. In [6], the authors discuss an advanced multimodal
approach for complex event detection through the use of
FL. The proposed inference system evaluates the probability
of fire detection while aiming at power conservation. In
[34], the authors propose an improved spatial-based FL
event detection algorithm to decrease the probability of false
positives. A cluster-based data fusion algorithm for event
detection is described in [14]. The K-means algorithm is
adopted to form clusters while a FL. method is adopted by
cluster heads for local decision making. In [19], the authors
propose a centralized mechanism that derives the appropriate
decisions for the immediate identification of events. The
system adopts data fusion and prediction for aggregating
sensor measurements. The mechanism in [19] adopts FL
for handling the uncertainty on the event reasoning. In [20],
the authors propose a centralized mechanism that adopts
multivariate data fusion, time-series prediction, and consen-
sus theory for aggregating measurements using FL-based
inference.

The major difference of our mechanism compared to
the aforementioned efforts is that we propose a distributed
monitoring and localized context inference scheme instead
of a centralized system. In the aforementioned efforts, the
concentrator centrally undertakes the responsibility of event
reasoning. Our mechanism adopts Type-2 Fuzzy Sets instead
of Type-1 Fuzzy Sets, as in [19] and [20], to deal with the
induced uncertainty of the event knowledge representation.
In that case, Type-2 FL-based inference achieves better
performance compared with Type-1 FL-based inference, as
it is substantiated through our comparative assessment. In
combination with the proposed knowledge-centric clustering
scheme, our mechanism is robust and reduces the commu-
nication overhead between nodes and concentrators.

3. Overview & Rationale

Consider a finite set of |A] nodes, N =
{n1,n2,...,nypq}, that monitor a specific area and
perform localized reasoning to infer the presence of events.
Nodes observe the same phenomenon with the help of
sensors. A node receives incoming contextual data (sensors
measurements) and, then, infers whether an event occurs
or not. The degree of occurrence of an event, as locally



inferred by a node n;, is associated with a degree of
danger (DoD;). DoD; is only disseminated by n; to its
spatial neighboring nodes to further enhance the contextual
knowledge of its neighborhood. The dissemination of the
localized contextual knowledge represented by the DoD;
leads an automated clustering of nodes according to their
view on the phenomenon. The clustering is achieved by
the election of a node, referred to as cluster head, based
only on DoDs. Hence, clusters are formed involving nodes
(members) that have similar opinion about the presence of
an event. Each cluster head, then, communicates with the
concentrator. In this context, no centralized processes are
adopted for clustering or inference. Through this approach,
cluster heads convey aggregated contextual knowledge (i.e.,
aggregation of DoDs) to the concentrator, thus, minimizing
the number of messages circulated in the network.
Messages exchanged among members and cluster heads are
not contextual values. Instead, they correspond to context
inference represented by DoDs. The overall architecture of
the proposed mechanism is depicted in Figure 1(Left). In
Figure 1(Right), we present the architecture of a node. We
depict the processes adopted by nodes and the aggregation
of the DoDs by the knowledge-centric clustering and
inference.

We propose a mechanism that builds on top of a local-
ized FL-based inference system (Type-2 FL system; intro-
duced later) for fusing (i) the current context, (ii) the pre-
dicted context, and (iii) the deviated context (defined later).
Our mechanism locally derives the DoD); for every n; every
time a contextual value is captured. Each n; orchestrates a
number of processes to handle incoming contextual data and
derive the appropriate context inference:

o Context Prediction utilizes the trend of historical
aggregated contextual data for forecasting short-term
contextual data.

e Statistical Learning, incrementally, learns the prob-
ability distribution function (pdf) of each contextual
parameter captured by n; based on historical mea-
surements;

o Context Inference, realized by a Type-2 Fuzzy Logic
System (T2FLS), fuses the outputs of the context
prediction and statistical learning processes. The
goal is to derive the DoD; for n;. The DoD; pro-
vides a localized inference of the event based on
(i) the current measurements, (ii) the deviation of
the current measurements from their expected values
and, (iii) the predicted measurements. When the
DoD; exceeds a pre-defined threshold, n; ensures
the occurrence of an event and, then, initiates alerts
to its assigned cluster head;

o Knowledge-centric Clustering based on DoDs of
neighboring nodes. The resulted clusters contain
nodes that have similar localized context inference
results for the event. After clustering, each cluster
head delivers aggregated localized knowledge (in-
cluding its own inference) to the concentrator.

4. Localized Context Inference

Assume a discrete time domain ¢t = 1,2,.... A context
vector X = [z1,...,x4] consists of d contextual parameters
x; € R corresponding to sensor measurements. A node n;
at ¢ captures context x;[t] and locally processes it to infer an
event. We assume that n; can locally store the most recent
M vectors (x;[t — M],...,x[t —1]). Based on this recent
history, n; is capable of predicting the context vector at ¢,
X;[t]. That is, the context predictor estimates the expected
vector x;[t] at ¢ based on all the recent measurements from
t— Mtot— 1, i.e., )A(l[ﬂ = E[Xz[t“Xl[t — 1], .. ,Xi[t —
M]]. Once n; has captured x;[t], it can derive the prediction
difference e;[t] between the estimated context and the actual
(captured) one: e;[t] = ||x;[t] — X;[t]||2, where ||-||2 denotes
the Euclidean norm. As it will be shown later, this difference
gives a first insight of how the actual vector is deviated from
the expected vector; important for context inference.

Moreover, n; incrementally learns the pdf of the context
vector f;(x) as receiving x. Through the incremental learn-
ing, n; is capable of reasoning whether an instantaneous
x;[t] deviates significantly from the up-to-now estimated
expectation E;[x;t], i.e., detects if x;[t] lies outside the
overall pattern of f;(x). The difference from the current
estimated expectation is: u;[t] = ||x;[t] — E;[x;¢]||2- The
basic idea of the localized inference is that n; combines (i)
how much the current context vector is deviated from the
predicted vector, and (ii) in what degree the current context
vector is considered as an outlier given an overall (up-to-
now) estimation of its statistical distribution patterns. The
former indicator exploits short-term knowledge for reason-
ing, while the latter exploits an overall knowledge about the
statistical patterns of the context vectors captured locally on
n;. The fusion of these pieces of knowledge results to more
sophisticated context reasoning about an event occurrence.

Remark In this paper, we provide a solution dealing with
univariate context, i.e., dimension d = 1. Hence, x € R?
reduces to the scalar x € R. The case of multivariate
contextual data is on the agenda of our future research.

4.1. Localized Context Prediction

The proposed mechanism engages a time series predic-
tion algorithm for locally predicting the upcoming contex-
tual data. The mechanism should derive a predicted value
in the minimum time, i.e., the provision of the estimation
in (near) real time due to the criticality of IoT applications.
We adopt a linear time-series predictor with low (linear)
computational complexity. Specifically, let a context history
of the recent M values x;[t — 1],...,a;[t — M], with
x;[t —m] be the contextual value corresponding to the m-
th measurement, m = 1,2,..., M. We predict the context
value &;[t] through a linear combination of the z;[t — m)]
historical measurements with a,, coefficients, such that:
Zi[t] = a0 + Z%Zl amx;[t — m], satisfies the prediction
equations E[Z;[t] — x;[t]] = 0 and E[(Z;[t] — x;[t])x:[t —
m]] = 0. That is, the set of coefficients {a,, }, are estimated
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Figure 1. (Left) The inferred context flow from IoT sensing and computing nodes to the concentrators via the cluster heads; (Right) The architecture of

an IoT node.

to minimize the error between the predicted ;[t] and the
actual contextual value x;[t]. To estimate the a,,, coefficients,
ee adopt the Levinson-Durbin algorithm [8], [21].

4.2. Incremental Expectation Learning

The pdf of the parameter z;, f(z;), captured by n; is
considered unknown. We rely on an incremental estimation
of fi(x;) based on historical values of x; to provide an
insight on the hidden statistics of the unknown distribution.
The incremental estimation of the expectation E;[z;t] =
fR x f;(x)dx up to t provides a view on the recent contextual
observatlons to be compared with the current measurements.
In this context, n; can identify whether x;[t] significantly
deviates from previous observations. To estimate E;[z;t],
we rest on an approximation based on the finite set of
measurements and on an approximation of the f;(x) [3]. We
adopt the widely known Kernel Density Estimator (KDE)
[35]. KDE estimates the hidden distribution of the incoming
samples. Let x;[1],z;[2],...,z;[t], be the context values
captured by n; up to t. Since n; has limited memory
capacity, we have to estimate f;(x) on-the-fly, thus, estimate
E;[z;t] in an on-line mode. The cumulative KDE, up to

t, is defined as: f;(z;t) = ﬁZ;:lK(‘w ),
where h > 0 is the bandwidth of a Kernel function K(-),
which is symmetric and integrates to unity For K(-), we
adopt the Gaussian kernel, i.e., K(u) = f exp (—3u?).
fi(m; t) is incrementally estimated by its previous estimate
fi(x;t—1) and the current context value x;[t]. Specifically,

let uft] = [2=24| We have,

h

fiwst) = %ZK [t = m]) + K(uft])
1
= ih((1t1)fi(gn;t 1)+K(UH)
= o filwmt =1+ K@) )

Hence, upon capturing z;[t], fi(x;t) is incrementally esti-
mated by f;(z;t—1) plus the Kernel function over the differ-
ence |z — x;[t]|. Based on this incremental KDE estimation
of fi(x;t), we can approximate the expectation E;[z;] by

E;[z;t — 1]. By taking the integrals in both sides of the
Eq(1), we obtain that

t

Biloit] = Bl =1+ 7 [ oKz - ailf]/i)da

t 1]+ ol @

-1
= T]Ei [x;t
since the kernel function (by definition) integrates to unity

and [, uK (u)du = 0. By that way, we adopt the incremental
mean calculation in Eq(2) to determine the E;[z;].

4.3. Context Inference under Uncertainty

4.3.1. Fuzzy Context Inference. Context event inference
is achieved locally on n; at ¢ by fusing the current context
x;[t] with the deviation measures e;[t] and p;[t]. The u;[t] is
an indication whether the current context refers to an event-
related observation or not. The ¢;][t] is an indication whether
the current context significantly deviates from its predicted
(short-term) trend. Such fusion is achieved through a finite
set of Fuzzy Inference Rules (FIR). Each FIR reflects the
DoD based on current context and the deviation measures.

Under the principles of fuzzy inference, we propose a
T2FLS, which defines the fuzzy knowledge base for n;, e.g.,
a set of FIRs like: ‘when the local sensed temperature is high
then the DoD for a fire event might be also high’. We do
not rely on a Type-1 FLS (TIFLS) as such an inference
model has specific drawbacks when applied in dynamic
environments and, more interestingly, when the construction
of the FIRs involves uncertainty due to partial knowledge
in representing the output of the inference [28]. In our
case, this corresponds to the uncertainty of defining the
occurrence of an event based only on the local knowledge.
The limitation in a T1FLS is on handling uncertainty in rep-
resenting knowledge through FIRs [12], [28]. In a T1FLS,
experts define exactly the membership degree of input and
output variables, e.g., the characterization of a context values
as ‘high’ or ‘low’. When the definition of a membership
function involves also uncertainty, experts cannot be certain
about the membership grade. In such cases, uncertainty is
observed not only in the environment, e.g., we classify the
DoD as ‘high’, but also on the description of the term,
e.g., ‘high’, itself. In a T2FLS, membership functions are
themselves ‘fuzzy’, which leads to the definition of FIRs
incorporating such uncertainty [28].



4.3.2. Fuzzy Knowledge Base. FIRs refer to a non-linear
mapping between three inputs: (i) xz;, (ii) e;, and (iii) p; and
one output, i.e., the DoD;. The antecedent part of FIRs is a
(fuzzy) conjunction of inputs and the consequent part of the
FIRs is the DoD indicating the belief that an event actually
occurs. The proposed FIRs have the following structure:
IF ZT; is Alk AND €; is Agk AND j2 is Ag}c
THEN DoD,; is By,

where Ajj, Aok, A3y, and By, are membership functions
for the k-th FIR mapping z;, e;, p; and DoD; (values into
unity intervals), by characterizing their values through the
terms: low, medium, and high. The structure of FIRs is the
same as in a T1FLS. If a linguistic term, e.g., high, was
represented by one fuzzy set in a TIFLS, we would use
one membership function g(z) € [0,1] mapping the real
value (input) z to a discrete set of pairs (z;,g(z;)), e.g.,
{(0,0);(0.25,0.1); (0.5,0.75); (1,1)}, where (0.25,0.1)
means that z = 0.25 has a membership degree g(z) = 0.1.
In a T2FLS, Ak, Aok, Asi and By are represented by
two membership functions corresponding to lower and
upper bounds [27]. For instance, the term ‘high’, unlike
in a TIFLS, whose membership for z is a number g(x),
is represented by two membership functions. Hence, x is
assigned to an interval [g1(z),gu(x)] corresponding to
a lower and an upper membership function gr and gy,
respectively (e.g., the membership of z = 0.25 is the
interval [0.05,0.2]). The interval areas [gz,(z;), gu(x;)] for
each x; reflect the uncertainty in defining the term, e.g.,
‘high’, useful to determine the exact membership function
for each term. Obviously, if g, (z) = gy (x), Va, we obtain
a FIR in a T1FLS. The interested reader could refer to [27]
for information on reasoning under Type-2 FIRs.

4.3.3. Degree of Danger Determination. Without loss of
generality, we assume that z;, e;, y; € [0, 1] are normalized
based on the minimum and maximum values depicted by the
application domain. For instance, if the mechanism reasons
about the existence of a fire event, we can set a maximum
temperature value that a node can measure. We also define
DoD; € [0,1], which conceptually aligns with the contex-
tual parameter z;. A DoD); close to unity denotes the case
where the danger is at high levels, i.e., there is a high belief
that a hazardous phenomenon, like fire, actually occurs. The
opposite stands when DoD; tends to zero. For inputs and
the output, we consider three linguistic terms: Low, Medium,
and High. Low represents that a variable (input or output) is
close to zero, while High depicts the case where a variable
is close to unity. Medium depicts the case where the variable
is around 0.5. For instance, Low ¢; indicates that the current
and predicted context are close enough, thus, current context
follows the trend of its historical context. Low p; denotes
that the current context does not significantly deviate from
the regular pattern. Similar rationale stands for the remaining
terms. For each term, human experts define the upper and the
lower membership functions. Here, we consider triangular
membership functions as they are widely adopted in the
literature. However, our T2FLS is generic enough, thus, any
type of membership functions can be adopted.

FIRs incorporate the human knowledge on the inference
process. Table 1 shows the proposed FIRs, designed for
scenarios where contextual data reaching the upper limit
exhibit a ‘danger’ case. Upon receiving x;[t] and its corre-
sponding deviation measures e;[t] and p;[t], the mechanism
is activated as follows: (Step 1) calculation of the interval
(based on the membership functions) for each input; (Step
2) calculation of the active interval of each FIR; (Step
3) performance of ‘type reduction’ to combine the active
interval of each FIR and the corresponding consequent. Step
3 produces the interval of the consequent, and accordingly,
the defuzzification phase' determines a (crisp) value for the
DoD; at t. The most common method for ‘type reduction’ is
the center of sets type reducer [28], which generates a Type-
1 fuzzy set as output, which is, then, converted in a scalar
value for the DoD; after defuzzification. When the DoD;
is over a pre-defined threshold 6 € [0,1], the mechanism
triggers an alert, i.e., infers the occurrence of an event.

TABLE 1. THE Fuzzy INFERENCE RULES

Rule x; e; Wi [ DoD;
1 Low Low or Medium Any Low

2 Low High Any Medium
3 Medium Low Low or Medium Medium
4 Medium Low High Low

5 Medium  Medium or High Any Medium
6 High Low Low or Medium High
7 High Low High Medium
8 High Medium Low or Medium High
9 High Medium High Medium
10 High High Low High
11 High High Medium or High | Medium

5. Knowledge-centric Clustering

5.1. Clustering & Cluster Head Election Objectives

The clustering process refers to the creation of a set of
clusters of the WSN nodes (from N) based on their DoDs.
The process is repeated at each clustering era T, 2T, 3T, . ..
(T being a pre-defined time interval). In each cluster, a node
is elected as the cluster head, being responsible to exchange
messages (only aggregated DoDs, as discussed later) with
the concentrator. Hence, the number of messages circulated
in the network is reduced as it is not necessary for each
node to relay its messages to the concentrator. The election
process concerns a node n; that it experiences the highest
DoD; among its neighbors. The aim of the cluster head is
to notify its members about its appointment, thus, avoiding
redundant messages dissemination. After the cluster head
appointment, members send their DoDs to their cluster
head. This results into enhanced neighborhood knowledge
by unanimously inferring a possible phenomenon in the area
under consideration.

The primary objectives of the election process are: (i)
Appointment of a subset of nodes as cluster heads; (ii) Dy-
namically changing the cluster head appointment. Evidently,

1. Defuzzification is the process of producing a quantifiable result in FL,
given fuzzy sets and the corresponding membership degrees.



this prolongs the WSN lifetime by changing cluster head
appointments, thus, balancing energy consumption for the
inference process and transmission of messages to the mem-
bers and the concentrator; (iii) Termination of the election
process within a constant number of iterations (exchanged
messages). It should be noted that the description of the
cluster head replacement process (i.e., objective (ii)) is be-
yond the scope of this paper. It is also worth noting that we
do not make any assumption about the spatial distribution
of nodes. In our model, every node can act as both a cluster
head and a member, which motivates the need for efficient
head election algorithms.

5.2. Cluster-head Election & Knowledge Exchange

A baseline solution for the election process involves
nodes flooding their DoDs to their neighbours. Hence,
the node with the highest DoD is elected as the cluster
head. However, this solution requires a significant number of
messages. Moreover, since the election process is re-initiated
after T, a high energy budget is required for that type
of communication. There are certain election algorithms
which could be adopted. In our case, nodes exchange their
DoDs and, then, ‘elect’ the head. To this end, we adopt the
‘cluster-head’ election strategy discussed in [37] to elect the
cluster head and modify the election criteria to reflect the
knowledge exchange.

At each node, the election process requires a number
of iterations K > 0. In every step, nodes send and re-
ceive specific small-sized messages from neighbors con-
taining their local DoDs. Before n; starts the election
process, it configures a (local) probability of becoming a
cluster head ¢&;, hereinafter referred to as election proba-
bility (EP). &; is considered a function of the DoD;, i.e.,
& ~ max (Emin, DoD;), where &, is the minimum EP for
each node. &; is not allowed to fall below the pre-defined
threshold &, €.2., 1073. This restriction is essential for
terminating the election process in K = O(1) iterations, as
proved below.

A node n; with a relatively high &; starts the follow-
ing process: it sends announcement messages of the form
(€;,n;) to the N; neighbours to be a cluster head. On the
other hand, a node n; with a low &; delays the transmission
of announcement messages and considers itself ‘non-cluster
head’ if it has heard (§;, n;) with & > &;. Specifically, dur-
ing iteration k € [1, K], n; decides to become a cluster head
with EP &;. Through the process, n; can either be elected
to become a cluster head according to &; or remain at the
same status (i.e., non-cluster head) according to overheard
announcements within its communication range. n; selects
its cluster head n; to be the node with the highest DoD);; this
is achieved by the comparison of §; and ;. Every node n;,
then, multiplies its EP &; with a factor of x > 1, goes to the
next step k + 1 and so on, i.e., §(k+ 1) = min(x&;(k), 1).
If n; decides to become a cluster head since its EP &; has
reached unity, it sends an announcement ‘cluster head n;’ to
its neighbours in N;. n; € N, then, considers itself ‘non-
cluster head’ if it has heard from n; a ‘cluster head n;

and terminates the election process. Note that, this election
process is completely distributed. A node can either decide
to become a cluster head, since its DoD; is the highest
among its neighbours, or be a member which awaits for the
corresponding messages by its unique cluster head.

For clarifying the election algorithm, we provide an
example. Assume two nodes nj, ng in a cluster with
IDs 1 and 2, respectively. Initially, both nodes start with
Starting the algorithm, they send to each other the following
messages: (0.001,1), (0.001,2). As & = &, they both
consider that they are cluster heads and they do not delay
the announcement of messages. Hence, they perform the
following calculations: £;(2) = min(x&;(1),1) = 0.0012,
£2(2) = min(x&2(1),1) = 0.0012. In the second step,
ny observes DoD; = 0.5 and n, observes DoDy = 0.2,
Hence, we have: &(2) = max(&nin, DoD1) = 0.5,
£(2) = max(&min, DoDs) = 0.2. Now, the exchanged
messages are: (0.5,1), (0.2,2). Nodes observe & > &,
thus, n; considers itself as cluster-head and no being a
member delaying the announcement of messages. In the
next step, we get: £1(3) = min(x&;(2),1) = 0.6, £&(3) =
min(x§2(2),1) = 0.24. If new DoDs are observed (this
process could not be synchronized for the two nodes), their
values will affect the calculation of ¢;s, thus, leading to,
potentially, a new cluster head. The process continues as
explained above. The result is that, after K steps, the node
having the highest DoD will become the new cluster head.

Lemma 1. The election process requires O(1) iterations.

Proof See Appendix 1.

Note that the number of iterations for each node does
not depend on the number of neighbours and is bounded
by a constant. Indicatively, when &,,;,, = 1072 and x = e,
a node needs at most eight iterations to elect/be elected as
cluster head.

Lemma 2. The message exchange complexity in the election
process is O(1) per node and O(JN]) for the network.

Proof See Appendix 2.

After the appointment of n; as a cluster head, n; lo-
cally calculates the difference of its DoD; with DoDs
of its member nodes n; € N;, ie., ADoD; =

DoD; = 1371 X en DoDj‘, where N; C N is the set

of n;’s members and |N;| is the cardinality of A;. This dif-
ference reflects the degree of consensus of the cluster on the
context inference result. n; delivers to the concentrator the
pair (DoD;, ADoD;) iff DoD; > 6 and ADoD; < 0.56.
The concentrator then acquires knowledge for a specific
region about the appearance of an event and to what extend
this local inference result is of high belief supported by other
nodes other than n; itself.



6. Performance Evaluation

6.1. Performance Metrics & Comparison Models

We focus on the performance of our model concerning
the inference of specific phenomena and define the following
performance metrics:

Rate of false alerts (RoFA). The RoFA € [0,1] repre-
sents the rate of false alerts that our mechanism derives.
When RoFA — 1, the mechanism results many false alerts
and no efficient conclusion could be drawn for the true
state of the phenomenon. When RoFA — 0, the mechanism
decreases the rate of false alerts. RoFA is defined as the
ratio of false alerts out of a total number of inferences.

Index of Alert (IoA). The IoA refers to the (index)
identifier of the measurement that triggers an alert (i.e., [0A
€ {1,2,...}). Through IoA, we examine how ‘close’ to the
real case an event is triggered (not at early stages to avoid
false alerts and not many stages after the real event). [oA is
evaluated by defining (annotating) events over the adopted
datasets.

Number of messages c. It indicates the total number
of messages sent to the concentrator by cluster heads. The
lower the € is, the lower resources are spent. € does not
refer to messages circulated during the election process. We
consider the resources spent for intra-cluster communication
as negligible compared to the resources spent for delivering
information from cluster heads to concentrators. This is
because such messages are circulated in relatively lower
distances than the communication with the concentrator.
Assume the lifetime of the network (in term of energy)
equal to S and cluster heads depicted by the set Cgy. At each

clustering era T, 2T, ..., our mechanism generates clusters
and Cpg, respectively. Hence, in the network lifetime, L%j

clustering eras are realized. During clustering, the entire
set of nodes send their DoDs to keep the concentrator
informed about the status of the phenomenon, i.e., [N
messages are delivered. In addition, when cluster heads
are generated, then only Cy messages are delivered to
the concentrator. Hence, the following equation holds true:
e= 7] (Cu(T - 1)+ |N]).

We experiment with two real datasets. The first dataset
is available in Intel Berkeley Research Lab’. It contains
measurements from 54 sensors deployed in a lab. We get
54,000 measurements such that |A/| = 54 sensors each one
producing 1,000 measurements related to the temperature
of the lab. All measurements are scaled in [0, 1]. As
no hazardous event is identified by these measurements
(i.e., the probability of a true event is equal to zero),
we consider the injection of faulty values to see whether
the proposed mechanism produces false alerts. We assume
that a high temperature (e.g., around 600 Celsius) defines
the case of a fire incident and inject faulty measurements
as indicated in [31]. The faults rule defined in [31] in-
dicates that every actual measurement x; is replaced as

2. Intel Lab Data, http://db.csail.mit.edu/labdata/labdata.html

follows: z; « (1 + a)z;,a € {2,3,5}. We provide ex-
periments with scenarios where a portion of measurements
p € {1%,5%,10%,20%, 40%, 60%, 80%} are considered
as faulty. p represents how many faulty measurements are
included into our dataset. The higher the p is, the higher
the number of faulty measurements. If p = 1%, we inject
150 faulty measurements, when p = 5%, we inject 750
faulty measurements, and so on. For cluster head election,
we adopt the methodology described in Section 5.2 and set
Emin = 1073, x = e and K = 100.

We also use contextual data from a real flood event
reported by |[N| = 10 water level sensors®. Sensors were
located in the shore of a river to monitor the water level
and infer floods. In this dataset, the probability of the alert
is equal to unity as the flood event was realized in the
past. We adopt 265 measurements just before and during
the flood event and scale them in [0,1]. Based on these data,
we examine whether the proposed mechanism is capable of
identifying the event at the right time (not too early to avoid
false alerts and not after the real event to avoid disaster).

Comparison Models: We compare our mechanism, re-
ferred to as Model, with the Single Sensor Alerting (SSA)
mechanism. The SSA mechanism delivers an alert when a
single measurement is over a pre-defined threshold, i.e., n;
infers an event at ¢ if x;[t] > 6. Through simulations, we
set @ = 0.7, for the entire set of the examined models.
SSA mechanism is not based on any reasoning to derive
the final decision. We also compare our Model with the
Average Measurements Alerting (AMA) mechanism. The
AMA mechanism produces alerts when the average mea-
surement is over 6 (for each sensor’s historical values). The
AMA mechanism realizes a linear opinion pool [27], where
observations are of equal weight. The decision process in
AMA is applied in every sensor as we focus on a distributed
scheme. We also compare the T2FLS with a model that is
based on a Simple Prediction Model (SPM) over the sensors
measurements. The SPM is applied on the historical values
reported by each sensor and if one of them exceeds 6, the
SPM triggers an alert. The SPM adopts the linear predictor
for the historical values of each sensor. In addition, we
compare our mechanism with the Moving Average Model
(MAM) discussed in [33]. The MAM calculates the mean
of a set of sensors measurements to produce each point
of the output. In general, if z = (2(1),2(2),...) is the
sensors input, the output signal is = = (&(1),%(2),...),
with 2(k) = & YW o 2(k — i) and W be the number of
measurements for averaging. Furthermore, we compare our
model with the centralized models in [19] and [20]. Both
models (i.e., [19] & [20]) adopt a Type-1 FLS (T1FLS) in
a concentrator that receives measurements by nodes. The
concentrator is responsible for context event inference. The
TI1FLS in [19] combines the aggregated contextual data and
the predicted context values to infer DoD centrally on the
concentrator. The model in [20] combines aggregated and
predicted contextual values along with the consensus value
as realized by the unanimity of nodes.

3. http://www.pegelonline.wsv.de



6.2. Performance & Comparison Assessment

We execute a set of experiments based on the Intel
Berkeley Research Lab dataset. In Table 2, we present our
results for different p. For p € {1%,5%,20%} our Model
does not result any false alerts while for p = 10%, it
produces only a single false alert. The SSA, SPM mech-
anisms exhibit higher RoFA than our Model. When p €
{40%, 60%,80%}, our Model results to RoFA = {0.010,
0.286, 0.757} while, the SSA, SPM mechanisms result false
alerts that are above the half of the total inference results.
When p € {60%,80%}, the majority of the measurements
are considered as faulty. Our Model minimizes the number
of false alerts when compared to SSA, SPM especially
for p < 40%. SSA and SPM are based only on single
(predicted) measurements (when current context is over
#), thus, do not take into consideration possible negative
effects on the reporting process (e.g., interference, hardware
problems). The Model proceeds with the knowledge fusion
of the current and the predicted context along with the
deviation of the regular patterns before inferring an event.
Through this approach the Model does not purely rely on
context values, and infers an event taking into account also
historical context accompanied by similar future estimations.
AMA and MAM (W = 10) does not produce significant
RoFA except when p = 80% (MAM results RoFA = 0.990),
however, as we discuss below, this has a negative effect in
events identification.

TABLE 2. ROFA METRIC COMPARISON

p RoFAssa RoFAsma RoFAspy  RoFAyam — RoFApodel
1% 0.058 0.000 0.000 0.000 0.000

5% 0.179 0.000 0.179 0.000 0.000
10% 0.356 0.001 0.350 0.001 0.001
20% 0.535 0.000 0.525 0.000 0.000
40% 0.755 0.000 0.755 0.000 0.010
60% 0.831 0.002 0.831 0.002 0.286
80% 0.915 0.006 0.920 0.990 0.757

We further perform a set of experiments with real con-
textual data retrieved by a real flood event. In this dataset,
the flood event is actually identified by starting from 45th
measurement (¢ 45, i.e., IoA = 45). By taking into
consideration only |[N| = 5 nodes, the Model derives an
alert at ¢ = 49 and ¢ = 43 for |N| = 10. We observe that
our Model is able to infer the event just in its beginning
when the number of nodes is large enough (e.g., || = 10).
The SSA and the SPM mechanisms have similar behaviour
resulting to ToA € {34, 35,36,39} for the same data. This
indicates that the SSA and the SPM mechanisms derive false
alerts many stages before the real event commences. The
interesting is that the remaining mechanisms, i.e., AMA,
MAM, cannot identify the event. In both mechanisms, the
averaging scheme adopted to derive the final result cannot
conclude the violation of 6.

We perform a set of experiments for different 6 to reveal
the impact of 6 on our Model. We run experiments for the
Intel Berkeley Research Lab dataset and 6 € {0.5,0.9}. In
Table 3, we present the comparison between our Model and
the remaining models for different p. We observe that the

Model achieves less false alerts than the SSA and the SPM
even for low 6. False alerts are also limited for AMA and
MAM except the case where p = 80% (MAM results to
RoFA = 0.990). Evidently, the lower the 6 is, the higher the
RoFA becomes. When 6 = 0.9, the Model does not result
any false alerts. Actually, it produces the lowest number of
false alerts among the examined models. Nonetheless, a high
0 can possibly lead to missing alerts, i.e., the event cannot
be identified. We now set § = 0.9 and experiment with
the real flood data. As expected, the Model is not able to
identify the event due to the high 6. This makes the Model
very conservative in concluding on the occurrence of an
event. When 6 = 0.5, the Model results an IoA € {43, 32}
for |N| € {5,10}, respectively, while AMA and MAM
cannot identify the event. In any case, the proposed T2FLS
can be ‘calibrated’ through the adopted FIRs to be more
sensitive/strict in the event identification, thus, affecting the
RoFA. In the first place of our future research agenda is the
provision of a model that will adapt the FIRs on the needs
of the environment (e.g., use a reference model that depicts
the most efficient behaviour).

TABLE 3. ROFA METRIC COMPARISON VS. 6

p | RoFAssa RoFAaima  RoFAspy  RoFAnanm  RoFAnoder
1% 0.088 0.000 0.088 0.000 0.052
5% 0.340 0.000 0.335 0.000 0.171
10% 0.576 0.002 0.576 0.002 0.326
6=0.5 20% 0.796 0.000 0.790 0.000 0.666
40% 0.944 0.002 0.940 0.002 0.923
60% 0.983 0.004 0.980 0.004 0.956
80% 0.995 0.065 0.990 0.990 0.984
1% 0.045 0.000 0.450 0.000 0.000
5% 0.102 0.000 0.100 0.000 0.000
10% 0.197 0.001 0.190 0.001 0.000
6=09 20% 0.324 0.000 0.324 0.000 0.000
40% 0.465 0.000 0.465 0.000 0.001
60% 0.561 0.001 0.561 0.001 0.001
80% 0.678 0.003 0.670 0.003 0.001

In Figure 2, we plot our results for e. These experiments
refer to |AV/| = 100 and are not related to any simulation of
nodes location and connectivity radius. We observe that e
is mainly affected by the number of clusters (cluster heads)
and not by the number of clustering eras 7" > 1. Obviously,
when T' = 1, the Model requires a significantly high number
of messages and performs as a baseline model, where at
each ¢, all nodes report their DoDs to the concentrator.
The baseline model requires S - || messages. If we set
T > 1, our results show that the higher the |Cp| is, the
higher the € becomes. This is as [Cy| — |A/|, more messages
are required for the communication between nodes and
concentrator.

Figure 2. Results for the ¢ metric.



Finally, Table 4 shows the comparison between the
Model and models discussed in [19] & [20] using the
Intel Berkeley Research Lab dataset. In general, our
Model outperforms the remaining mechanisms for p €
{5%,10%, 20%,40%}. The opposite stands when p €
{60%, 80%}. These results show that our distributed model
is heavily affected by fluctuations in the contextual measure-
ments being more sensitive to produce alerts. Concerning the
required messages, for S = 1000, 7' = 10 and |N| = 54,
we get that both models in [19] and [20] require 54,000
messages to be sent to the concentrator. In our Model, we
get that the average |Cy| = 4, thus, the Model requires
9,000 messages for the aforementioned setup.

TABLE 4. ROFA METRIC COMPARISON: T1FLS vs. MODEL

p [ RoFArirrLs 191 RoFAri1rrs[20]  RoFAjoder
1% 0.000 0.000 0.000

5% 0.004 0.001 0.000
10% 0.000 0.000 0.001
20% 0.012 0.017 0.000
40% 0.026 0.020 0.010
60% 0.040 0.014 0.286
80% 0.047 0.014 0.757

7. Conclusions

We propose a distributed event analytics mechanism in
IoT, where nodes locally infer events from data streams.
Our mechanism performs distributed reasoning based on
contextualized knowledge-centric clustering, where clusters
are formed according to nodes’ belief on the presence of
phenomena. The localized opinion of each node is derived
through Type-2 Fuzzy Logic inference to handle the un-
certainty related to knowledge representation of an event.
We evaluate our approach in terms of the rate of false
alerts using real data and provide a comparative assess-
ment with other event inference mechanisms. Our future
agenda involves the enhancement of our mechanism with
multivariate contextual vectors in the inference process and
the knowledge-centric clustering.
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Appendix

Appendix 1: Proof of Lemma 1

Proof Consider a probability multiplication factor x > 1
and that node n; starts with the minimum EP of being a
cluster head, i.e., & = &min > 0. Since at each iteration step
the node multiplies its current £ with y then, in the worst
case, that node will be either a cluster head or a member
when the process stops at the first iteration step K such that
XK “1€min > 1. That is, the maximum number of iteration
steps are K = min{k > 0 : x* & > 1}. Hence, the
required number of iterations is K = [log, Em%} +1, which
maps to O(1) iterations. Now, if node n; starts the election
with & > &min then O(1) iterations are the maximum
number of steps for the election process. |

Appendix 2: Proof of Lemma 2

Proof In the election process, a node which is about to
become a cluster head generates at most K = O(1) mes-
sages. On the other hand, a node which is about to become a
member delays in sending messages and sends one message
to just join its cluster head after considering itself as ‘non-
cluster head’. Obviously, the number of those messages

(member messages) is strictly less than [N, since at least
one node will decide to be a cluster head. Hence, the number
of messages exchanged in the network is upper-bound by

K x [N, whichis O(|N]). B



