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Numerical Simulations on the ERICA Tiltrotor

A. Jimenez Garciaa, G. N. Barakosb

CFD Laboratory, School of Engineering, University of Glasgow, G12 8QQ Glasgow, UK

This paper presents aerodynamic calculations of the model-scale ERICA tiltrotor with high-fidelity

computational fluid dynamics. The aim of this work is to assess the capability of the present CFD

method in predicting airloads on the tiltrotor at different flight configurations. In this regard, three

representative flight configurations of the ERICA were selected, corresponding to aeroplane, transi-

tion corridor, and helicopter modes, covering most modes of tiltrotor flight. The rotor blades were fully

resolved and the use of a uniform and non-uniform actuator disk was also put forward to quantify the

effect of the rotor on the fuselage loads. A fundamental investigation of the effect of the aerodynamic

interference between the rotor and wing of the tiltwing aircraft is also shown. The employed CFD

method was able to capture the aerodynamics of the different configurations and the overall agree-

ment obtained with the experimental data demonstrates the capability of the present CFD method in

accurately predict tiltrotor flows.

Nomenclature

Q̄ = Q̄-criterion

∆P = jump of pressure across the disk plane, Pa

Sref = reference area, m2

Srot = rotor disk area, m2

R = flow equation residual vector

W = flow solution vector

a∞ = freestream speed of sound, m/s

CD = drag coefficient,
D

1/2ρ∞V 2
∞Sref

CL = lift coefficient,
L

1/2ρ∞V 2
∞Sref

CP = surface pressure coefficient, CP =
P − P∞

1/2ρ∞V 2
ref
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Lref = reference length, m

Mtip = blade-tip Mach number, Mtip =
Vtip

a∞

P = pressure, Pa

P∞ = freestream pressure, Pa

R = rotor radius, m

T = rotor thrust, N

V∞ = freestream velocity, m/s

Vref = reference velocity, m/s

Vtip = blade-tip velocity, Vtip = ΩR, m/s

CT = thrust coefficient,
T

ρ∞V 2
tipSrot

r = non-dimensional radial coordinate

∆P ∗ = non-dimensional ∆P across the disk plane

M∞ = freestream Mach number, M∞ =
V∞

a∞

Re = Reynolds number, Re = VrefLref/ν∞

∞ = freestream value

ref = reference value

tip = blade-tip value

ν∞ = freestream kinematic viscosity, m/s2

Ω = rotor rotational speed, rad/s

Ψ = main rotor azimuth, deg

ρ = density, kg/m3

ρ∞ = freestream density, kg/m3

θ75% = blade pitch angle at r = 0.75, deg

δFU = fuselage angle of attack

δNAC = nacelle angle of attack
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δTW = tiltable wing angle of attack

µ = advance ratio, µ =
M∞

Mtip

(U)RANS = (unsteady) Reynolds averaged Navier–Stokes

BVWT = Boeing vertical wind tunnel

ALE = arbitrary Lagrangian-Eulerian

AC = aeroplane configuration

ADYN = advanced European tiltrotor dynamics and noise

AoA = angle of attack

BILU = block incomplete lower-upper

CC = corridor configuration

CFD = computational fluid dynamics

CFL = Courant-Friedrichs-Lewy condition

DART = development of an advanced rotor for tiltrotor

DNW-LLF = German-Dutch wind tunnels large low-speed facility

ERICA = enhanced rotorcraft innovation concept achievement

EU = European union

FRB = fully resolved blade

GCG = generalised conjugate gradient

HC = helicopter configuration

HMB = helicopter multi-block

MUSCL = monotone upstream-centred schemes for conservation laws

NICETRIP = novel innovative competitive effective tilt rotor integrated project

NURAD = non-uniform rotor actuator disk

ONERA = office national d’etudes et de recherches aerospatiales

RK = Runge-Kutta
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TILTAERO = tiltrotor interactional aerodynamics

URAD = uniform rotor actuator disk

V/STOL = vertical and/or short take-off and landing

I. Introduction

Tiltrotor is a flying vehicle that combines the V/STOL (vertical and/or short take-off and landing) ca-

pability of helicopters with the high speed cruise of turbo-prop aircraft. The tiltrotor concept has been

intensively studied and investigated during the last sixty years in the United States. For the first time, this

technology was successfully demonstrated with the Bell XV-3 in 1955 [1]. In the late 1960s and early 1970s,

a major program was jointly launched by the NASA Ames Research Center and Bell Helicopters to develop

a new tiltrotor, named XV-15. This hybrid aircraft was used to support the development of a new generation

of tiltrotors like the Bell-Boeing V-22 Osprey and the AW609.

Tiltrotor blades must be designed to efficiently operate in helicopter and aeroplane modes, resulting

in a compromise blade design with high twist and solidity, along with smaller rotor radius. Hence, the

aerodynamic interaction between the rotor and the wings seems to be one of the most important aerodynamic

phenomena to affect the design of tiltrotor blades and the overall performance of the aircraft. In this regard,

experimental studies carried out by Felker and Light [2] and numerical simulations performed by Potsdam

and Strawn [3] investigated the rotor/wing aerodynamic interactions in helicopter mode configuration. To

mitigate the strong aerodynamic interaction between rotor and wing of tiltrotors and to reduce the downward

force acting on the wings in hover [4], a new design was proposed, where a small part of the wing can be

partially rotated. This configuration is known as tiltwing.

Most studies related to tiltrotors have been carried out in the United States, so several research and

development projects have been launched in Europe to provide more insight in tiltrotor flows. DART [5]

(Development of an Advanced Rotor for Tiltrotor) aimed to improve rotor hub designs; TILTAERO [6, 7]

(Tiltrotor Interactional Aerodynamics) to study the interactional aerodynamics; and ADYN [8] (Advanced

European Tiltrotor Dynamics and Noise) to investigate rotor dynamics, performance, and level of noise on

tiltrotors. All these projects have provided a noticeable contribution to the tiltrotor knowledge base.

Unlike conventional tiltrotor configurations, tiltwing aircraft have not been widely studied. To fill

this gap, the research project NICETRIP [9] (Novel Innovative Competitive Effective Tilt Rotor Integrated

Project) was funded by the European Union (EU) to develop a database covering aerodynamic interactional

phenomena and other technological aspects of tiltwing vehicles. In this framework, a 1:5 motorised model-

scale tiltrotor was designed and manufactured under the name of ERICA (Enhanced Rotorcraft Innovative

Concept Achievement) [10] and experiments were undertaken using the 9.5×9.5m DNW-LLF (German-

Dutch Wind Tunnels Large Low-speed Facility) and the 8m S1MA ONERA wind tunnels. The tests covered

the full flight envelope from helicopter mode, where the nacelles were tilted 90 degrees relative to the aircraft

axis, to aeroplane mode, for a range of angles of attack (AoA) and freestream Mach numbers (M∞). Heli-

copter and transition conversion configurations were studied at low speed (M∞ 0 to 0.168) in the DNW-LLF
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wind tunnel [11] due to its larger test section, minimising wake reingestion in the test chamber. By con-

trast, the high speed tests (M∞ 0.168 to 0.55) were conducted in the test section no.2 (45m2) of the S1MA

ONERA wind tunnel [12].

Concerning numerical simulations of tiltrotors, only a few complete studies are found in the literature.

Gates [13] performed numerical simulations on the isolated full-scale XV-15 rotor blades in helicopter and

aeroplane modes using the HMB CFD solver, where good agreement was found with the experimental data

[14–16] for both configurations. In the framework of the TILTAERO and ADYN projects, Decours et al. [8]

carried out aerodynamic and aeroacoustic optimisations of the TILTAERO tiltrotor blade. The optimal blade

was referred to as ADYN blade, and the level of noise was decreased by 4dB in take-off mode and by 6dB

in landing mode [17]. Further studies have also been published for the V-22 tiltrotor using numerical simu-

lations. The drag polar of the V-22 aircraft has been measured in the 20×20ft Boeing V/STOL wind tunnel

(BVWT) [18] and the results were compared against CFD predictions from the FUN3D and OVERFLOW

CFD codes [19]. Neither CFD nor experiments considered the effect of the rotors. The experiments consid-

ered a model of the V-22 of 0.15 scale and provided integrated lift, drag, and moment data. In general, the

authors state that good agreement between the CFD and experiments was obtained but further studies were

recommended to ensure mesh independent results can be obtained.

In 2014, an experimental validation of the 1:5 model-scale ERICA tiltrotor was carried out by Decours

et al. [20], using the state-of-the-art helicopter aerodynamic CFD solvers in Europe. Two flight configura-

tions, corresponding to minimum speed and highly loaded aeroplane and transition corridor modes, were

simulated using different CFD tools, methodologies, turbulence models, and grids with the aim to charac-

terise the aerodynamic interactional phenomena on the ERICA tiltrotor. Concerning the aeroplane mode

configuration, experiments predicted a local separation at the top of the fuselage near the centre-line and the

fixed wing junction. Not all CFD solvers were able to well reproduce the flow separation on the fuselage,

though a fair agreement has been obtained between CFD and experiments, overall.

In this work, we perform numerical simulations of the ERICA tiltrotor using high-fidelity computational

fluid dynamics. The aim of this work is to assess the capability of the present CFD method in accurately

predicting tiltrotor loads at different flight configurations. In this regard, three representative flight configu-

rations of the ERICA were selected, corresponding to aeroplane, transition corridor, and helicopter modes,

covering all modes of tiltrotor flight. The rotor blades were fully resolved and the use of a uniform and non-

uniform actuator disk was put forward to quantify the effect of the rotor on the fuselage loads. A fundamental

investigation of the effect of the aerodynamic interference between rotor and wings on the tiltwing aircraft is

also shown, and this has not been reported elsewhere in the literature. The comparison of results with fully

resolved blades and actuator disks is also novel.

The structure of this paper is as follows: Section II describes the CFD solver used and the methodology

employed to represent the rotor blades. Section III presents the mesh generation and multi-block topology

employed for each individual component. Section IV summarises the test cases selected for computations,

and section V presents the numerical results. At first, the aeroplane configuration results are shown, to assess
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the effect of different methods in modelling the rotor blades on the airloads of the ERICA. Then, transition

corridor and helicopter configuration results are presented. Finally, conclusions and future work are given in

Section VI.

II. HMB Solver

The Helicopter Multi-Block (HMB) [21] code is used as the CFD solver for the present work. It solves

the Unsteady Reynolds Averaged Navier-Stokes (URANS) equations in integral form using the arbitrary

Lagrangian-Eulerian (ALE) formulation, first proposed by Hirt et al. [22], for the time-dependent domains,

which may include moving boundaries. The Navier-Stokes equations are discretised using a cell-centred

finite volume approach on a multi-block grid. The spatial discretisation of these equations leads to a set of

ordinary differential equations in time,

d

dt
(WV ) = −R(W ), (1)

where W and R are the flow solution and flux residual vectors, respectively, and V is the volume of the cell.

To evaluate the convective fluxes, Osher [23] and Roe [24] approximate Riemann solvers are used in HMB,

while the viscous terms are discretised using a second order central differencing spatial discretisation. The

Monotone Upstream-centred Schemes for Conservation Laws (MUSCL) developed by van Leer [25] is used

to provide third order accuracy in space. The HMB solver uses the alternative form of the Albada limiter

[26] being activated in regions where a large gradients are encountered, mainly due to shock waves, avoiding

the non-physical spurious oscillations. An implicit, dual-time stepping method is employed to perform the

temporal integration. The solution is marching in the pseudo-time to achieve fast convergence, using a

first-order backward difference. The linearised system of the Navier-Stokes equations is solved using the

Generalised Conjugate Gradient (GCG) method with a Block Incomplete Lower-Upper (BILU) factorisation

as a pre-conditioner [27]. Because implicit scheme requires small Courant-Friedrichs-Lewy (CFL) at the

early iterations, some explicit iteration using the forward Euler method or the four stage Runge-Kutta method

(RK4) by Jameson [28] should be computed to smooth out the initial flow. Multi-block structured meshes

are used for HMB, which allow easy sharing of the calculation load in parallel computing.

An overset grid and sliding plane methods are available in HMB [29, 30] to allow the relative motion

between different components. Both methods have been widely employed for isolated rotor blades, such as

the UH-60A by Dehaeze et al. [31], S-76 by Jimenez and Barakos [32], XV-15 tiltrotor blades by Gates [13],

and complete helicopter configurations [29]. For the present work, an overset grid method is employed to

explore its capabilities with tiltrotor configurations.

A. Aerodynamic Models

Two aerodynamic methods are employed to model the rotor blades. The higher fidelity method includes

the geometry of the blades in the computational domain and it will be referred to as fully resolved blade

(FRB). This methodology provides a full representation of the wake and detailed information of the source

of unsteadiness of the flow. Furthermore, the boundary layers on the blades are resolved so the method
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provides the best estimate loads. The other aerodynamic models presents here are the actuator disks (AD)

[33], which simulate the effect of the rotor blades by creating a pressure jump across an infinitesimally thin

disk. These methods are useful in predicting loads on the fuselages.

The two actuator disk models employed here are described below. The first model is a uniform rotor

actuator disk (URAD) in loading while the second model allows for a variable disk loading as function of

the rotor radius (NURAD, Non-Uniform Rotor Actuator Disk).

As previously introduced, the actuator disk simulates the effect of the rotor blades by creating a pressure

difference on a single plane. For the case of uniform rotor actuator disk, the pressure jump in non-dimensional

form is:

∆P ∗ =
T

ρ∞V 2
∞Srot

, (2)

where the thrust coefficient is defined as CT =
T

ρ∞V 2
tipSrot

with Srot being the rotor disk area.

The non-uniform rotor actuator disk calculates the jump of pressure across the disk plane based on

Shaidakov’s method [34]. This approach results in a non-uniform pressure distribution and as a function of

radial position along the blade (r) and blade azimuth Ψ . The model is based on the following equation:

∆P ∗ = P0 + P1S sin(Ψ) + P2C cos(2Ψ), (3)

where the coefficients P0, P1S and P2C depend on rotor radius and solidity, rotor attitude, advance ratio,

thrust coefficient, lift coefficient slope, and freestream velocity. The model is detailed in [34, 35].

Figure 1 shows an overview of the relative position of the actuator disk for the ERICA tiltrotor for the

transition corridor (left) and for the helicopter mode configurations (right).

(a) Transition Corridor. (b) Helicopter Mode.

Fig. 1: Set-up of the transition corridor CC (left) and helicopter mode HC (right) configurations with the

rotor actuator disk.
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III. Mesh Generation

The chimera method was employed to ease the generation of the different structured multi-block grids.

For all configurations, self-contained component grids for the main fuselage and the nacelle-tiltable wing

were built, while four ADYN blades were embedded in the nacelle mesh component. To enable the relative

motion between nacelle and tiltable wing so as tiltable and fixed wing, an independently generated overlap-

ping grid sets were used, employing a 4mm gap. Likewise, a gap between the blade root and spinner for the

full blade representation was allowed. A Cartesian off-body mesh was used as the background to capture

the convection of the tip vortex generated by the blades. Table 1 compares the mesh size used here for CFD

computation. If the actuator disk methodology is used, a reduction of the mesh size of about 20% and 18%

for the aeroplane and transition corridor/helicopter modes is achieved.

Table 1: ERICA model-scale component mesh sizes, given as million nodes.

Components Aeroplane Mode Transition Corridor Helicopter Mode

Fuselage and fixed wing 9.9 9.9 9.9

Tiltable wing - 3.6 3.6

Nacelle 30.3 10.9 10.9

Rotor blades (x4) 11.4 11.4 11.4

Wind tunnel 4.6 27.6 27.6

Total 56.2 63.4 63.4

Figure 2 shows a detailed view of the surface mesh and the multi-block topology of the ERICA’s nacelle.

To match the wind tunnel model [11, 12], the engine inlet was treated as solid. In the longitudinal direction

of the nacelle, 270 mesh points are used, while 422 points are used around the nacelle. In the wall normal

direction (see Figure 2b) 41 points are used. That mesh spacing corresponds to a y-plus of about 0.15. A C-

topology around the leading edge of the connection with the tiltable wing was chosen, whilst an O-topology

was used at the nose and rear part of the nacelle.

Figure 3 shows a view of the surface and body-fitted mesh around the fuselage. An O multi-block

topology was built at the front and rear parts of the fuselage, whereas a C-H multi-block topology was

generated around the wing and horizontal stabiliser (see Figure 3b). In the chordwise direction around the

fixed wind, 310 points are used, with 138 around the horizontal stabiliser. The distribution of points normal

to the fixed wing and fuselage, follow and exponential law with the first point located at 4 · 10−6 of the

reference length (Lref), leading to a y-plus of about 0.15.

The multi-block overset arrangement of the ERICA tiltrotor for the case of the aeroplane mode is shown

in Figure 4. Farfield and symmetry boundary conditions were applied at the background level, while chimera

boundaries were used at the nacelle, blades, and fuselage components. The wind tunnel model support was

not modelled.
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(a) Surface mesh. (b) Multi-block topology.

Fig. 2: ERICA’s nacelle structured mesh domain, topology, and surface mesh detail.

(a) Surface mesh. (b) Multi-block topology.

Fig. 3: ERICA’s fuselage structured mesh domain, topology, and surface mesh detail.

IV. Numerical and Test Condition Details

Table 2 summarises the conditions for each test case computed. The first configuration is labelled as

AC1 (aeroplane configuration), and refers to a very low speed aeroplane-mode M∞= 0.168, along with a

large aircraft AoA of δFU= 10.02 degrees. Neither the nacelles nor the tiltable wings were tilted with respect

to the fuselage (δFU= δNAC= δTW). The second case corresponds to a typical tiltrotor transition corridor con-

figuration with a moderate angle of attack of 5.30 degrees, labelled as CC4. Unlike the AC1, the nacelle was

significant rotated respect to the fuselage (δNAC= δFU+30.1), while a small rotation of the tiltable wing (δTW=

δFU+4.0) was allowed. Finally, a helicopter configuration labelled as HC3 was also selected for computation.

This configuration HC3 is characterised for a moderate forward speed (M∞= 0.104) with an aircraft angle of

attack of -5.15 degrees and the nacelles tilted 86.6 degrees respect to the fuselage. The Reynolds numbers,
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(a) Multi-block grid. (b) Cross section of the multi-block grid.

Fig. 4: Details of the multi-block overset arrangement of the ERICA tiltrotor in aeroplane mode

configuration. Blue line=background component; Purple line=fuselage component; Green line= nacelle

component; Grey line=blade component.

based on the reference length Lref and on the freestream velocity V∞, were 1.70 · 106 and 1.16 · 106 for the

AC1/CC4 and HC3 cases respectively. Figure 5 shows the different test conditions employed here, and the

nacelle pitch angle as function of the freestream Mach number.

Table 2: Test conditions for the selected cases [36, 37]. AC1=Aeroplane Mode; CC4=Transition Corridor;

HC3=Helicopter Mode.

Parameters Aeroplane Mode Transition Corridor Helicopter Mode
AC1 CC4 HC3

M∞ 0.168 0.168 0.104

Mtip 0.470 0.603 0.560

µ = M∞/Mtip 0.357 0.278 0.185

Reref 1.70 · 106 1.70 · 106 1.16 · 106

δFU [deg] 10.02◦ 5.30◦ -5.15◦

δNAC [deg] 10.02◦ 35.40◦ 81.45◦

δTW [deg] 10.02◦ 9.30◦ 13.45◦

RPM blade rotor 2130 2730 2490

θ75% [deg] 27.36◦ 16.6◦ 9.0◦

Table 3 summarises the cases performed for the ERICA tiltrotor. Considering the aeroplane configu-

ration AC1, several cases were computed. The rotor blades were represented by means of a uniform rotor

actuator disk (case #1), non-uniform rotor actuator disk (case #2), and fully resolved blade (case #3). To

quantify the effect of the aerodynamic interference between the rotor and wing of the ERICA, case #4 was

simulated which did not include any rotor. For all these cases, a half model of the aircraft was included in

the computational domain, employing symmetry boundary conditions. The complete aircraft was simulated
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Fig. 5: Trimmed test conditions for the ERICA tiltrotor reported by Bruin et al. [36]. AC1 (Aeroplane

configuration), CC4 (Transition Corridor), and HC3 (Helicopter configuration) were selected for numerical

computations.

using a uniform rotor actuator disk (case #6), with the aim to investigate the effect of the symmetry boundary

conditions on the top fuselage centre-line. The transition corridor configuration was also computed using

a uniform rotor actuator disk (case #6) and fully resolved blades (case #7). The helicopter case HC3 was

computed using a steady-state flow approach with the rotor blades modelled via a uniform actuator disk (case

#8). Unsteady Reynolds Averaged Navier-Stokes computations were used for the cases with fully resolved

blades, and steady RANS was used for cases with actuator disk models.

All the flow solutions were computed by solving the RANS/URANS equations, coupled with Wilcox’s

k-ω turbulence model [38]. This was based only on experience and the reputation of this model for stability.

The flow equations were integrated with the implicit dual-time stepping method of HMB, using a pseudo-

time CFL equal to 4 for the RANS cases. For the URANS cases, the selected time step corresponded to half

a degree of rotor revolution.

Table 3: Computational cases for the 1:5 model-scale ERICA tiltrotor. St=Steady; Uns=Unsteady;

URAD=Uniform Rotor Actuator Disk; NURAD=Non-Uniform Rotor Actuator Disk; FRB=Fully Resolved

Blade; Free=Neither Rotor Actuator Disk nor Propeller; S-S=Semi-Span; F-S=Full-Span.

ID Case Configuration St/Uns Methodology Semi/Full Span
#1 AC1 Steady URAD S-S

#2 AC1 Steady NURAD S-S

#3 AC1 Unsteady FRB S-S

#4 AC1 Steady Free S-S

#5 AC1 Steady URAD F-S

#6 CC4 Steady URAD S-S

#7 CC4 Unsteady FRB S-S

#8 HC3 Steady URAD S-S
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V. Results and Discussion

To assess the capability of the present CFD method in accurately predicting tiltrotor flows, twenty one

cross-sections were selected for CP profile comparisons between CFD and experiments [11, 12] (see Table

4). Two sections were selected on the top and bottom symmetry planes of the fuselage (labelled with SYM-

TOP and SYM-BOT respectively), four sections on the fixed wing (labelled with FW), three on the tiltable

wing (labelled with TW) which define the zone of aerodynamic interaction between the tiltable wing and the

blades, four on the nacelle (labelled with NA), and eight on the fuselage (labelled with FU). Figure 6 shows

the position of the selected sections on the ERICA tiltrotor for the aeroplane mode AC1.

Considering the AC1 configuration, CP was analysed for the FRB, URAD, and NURAD approaches.

The first goal was to evaluate the ability of the aerodynamic methods in producing adequate estimates of the

loads at the aerodynamic interaction zone. The second goal was to investigate if results of the AD provide

good agreement of the loads on the fuselage. Total loads on the ERICA tiltrotor and visualisation of the

flowfield using iso-surfaces of the Q̄-criterion are also presented for the FRB approach. Finally, results for

the transition corridor and helicopter mode configurations will be compared through CP distribution on the

selected stations with the experimental data.

Table 4: Nomenclature of the stations selected for CP profile comparisons. BOT=Bottom; FU=Fuselage;

FW=Fixed Wing; NA=Nacelle; TW=Tiltable Wing; SYM=Symmetry.

Nomenclature Description
SYM-TOP Fuselage symmetry plane (top), station y=0 mm.

SYM-BOT Fuselage symmetry plane (bottom), station y=0 mm.

FW-A Fixed wing, station y=280 mm.

FW-B Fixed wing, station y=490 mm.

FW-C Fixed wing, station y=700 mm.

FW-D Fixed wing, station y=805 mm.

TW-A Tiltable wing, station y=855 mm.

TW-B Tiltable wing, station y=955 mm.

TW-C Tiltable wing, station y=1117.5 mm.

NA-A Nacelle (top), y=1500 mm.

NA-B Nacelle (bottom), y=1500 mm.

NA-C Nacelle (central), x=1560 mm.

NA-D Nacelle (rear), x=1860 mm.

FU-A Fuselage, station x=260 mm.

FU-B Fuselage, station x=535 mm.

FU-C Fuselage, station x=810 mm.

FU-D Fuselage, station x=1163 mm.

FU-E Fuselage, station x=1470 mm.

FU-F Fuselage, station x=1810 mm.

FU-G Fuselage, station x=2460 mm.

FU-H Fuselage, station x=2760 mm.
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(a) Sections on the fixed and tiltable wings. (b) Sections on the fuselage.

Fig. 6: Cross-sections selected for comparisons between CFD and experiments [11, 12] on the fixed and

tiltable wings, and fuselage of the ERICA tiltrotor for the aeroplane mode configuration.

A. Aeroplane Mode AC1

1. CP profile comparisons

CP profile comparisons between CFD and experiments [11, 12] on the fuselage, fixed and tiltable wings

of the ERICA tiltrotor are given in Figure 7. They correspond to the top fuselage centre-line and inner,

middle, and outer tiltable and fixed wing sections. The CFD results were not averaged in phase, which could

lead to a source of error in the comparison. For the FRB cases, CP values were averaged over the last com-

puted rotor revolution instead of time-averaging. Regarding the CP profile at the centre-line of the fuselage

(Figure 7a), a zone of recirculation is seen by both sets of experiments (Modane and DNW experiments are

denoted by squares and triangles, respectively) represented by a pressure plateau after the wing leading edge

suction peak. The HMB predictions (URAD=green line, NURAD=blue line, FRB=red line) overestimate

the suction peak (CP URAD= 1.70; CP NURAD= 1.70; CP FRB= 1.66; CP DNW= 1.25; CP ONERA= 1.18) and do

not capture the region of recirculation. This can be due to a failure of the employed turbulence model, wind

tunnel effects, and lack of exact trimmed conditions. By contrast, the CFD results at the front and rear part

of the fuselage are in close agreement with the experimental data. Considering the inner fixed wing section

(Figure 7b), experiments suggest that this region is separated due to the presence of a plateau on the CP data.

CFD predictions slightly overestimate the suction peak and the pressure plateau is not well reproduced. This

is consistent with the flowfield predicted in Figure 7a.

In the middle and outer fixed wing sections (Figures 7c-7e), wind tunnel experiments show a good agree-

ment, with small differences of 9% for the suction peak. Results show good agreement with the experiment at

all stations, even if the trailing edge pressure plateau is slightly under-estimated. Regarding the zone of aero-

dynamic interaction located near the tiltable wing sections (Figures 7f-7h), good agreement between CFD

and experimental results is observed. Moreover, results of the CFD with the actuator disk produced adequate
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estimates of the CP profile with a small discrepancy of 1.59% on the suction peak between both approaches.

As can be seen, negligible differences were found between the URAD and NURAD results for all stations.

Note that the differences between the two sets of experiments are always larger than the differences between

FRB and AD results.

Using the URAD loads as a reference, the effects of using half or complete aircraft geometries with

or without rotor modes can be assessed in terms of pressure distributions, in Figure 8. For all stations,

numerical simulations for the whole aircraft (referred to as URAD F-S) have a negligible impact on the CP

if compared with predictions using symmetry (referred to as URAD). Regarding the effect of prop rotor on

and off (referred to as Free) on the loads, it can be observed that the centre-line of the fuselage and the

fixed-wing regions are weakly influenced by the wake-body interaction. The tiltable wing regions, however,

are strongly affected by the interactional process, thus giving rise to a larger increase in the normal (Cn) and

tangential (Ct) coefficients (see Figures 8g-8h).

Figure 9 shows CP profile comparisons on the nacelle component, corresponding to the top and bottom

centre lines, and the central and rear sections of the nacelle (see Figure 9c). Considering the top and bottom

centre-line sections (Figures 9a-9b), a noticeable scatter of CP is observed for both sets of experiments.

The CFD results were able to capture the averaged trend of the experimental CP for both sections, where

the results with the actuator disk provided slightly higher CP values compared to the fully resolved blades.

Finally, for the middle and rear part of the nacelle (Figures 9d-9e), good agreement is shown between CFD

and experiments.

Figure 10 presents CP comparisons on the ERICA fuselage at eight cross-sections. As can been seen,

all CFD curves are close to the experimental data. Better agreement is obtained at the front of the fuselage

(see Figures 10a-10d), where the flowfield is attached. The HMB solution appears to capture well all features

shown by the experiments. Even for stations located behind the fixed wing (see Figures 10e-10h), the agree-

ment is still fair near the spoonsons and the fin of the model. It is noticeable that discrepancies appear not to

be present when the actuator disk approaches were employed, which encourages the use of this approach in

predicting loads on the fuselage.

The effect of the model support on the ERICA tiltrotor results was also assessed using the average CP

distribution on the bottom part of the fuselage in Figure 11. The model of the DNW-LLF was supported

via a ventral sting set-up at the rear part of the fuselage, whilst a straight sting was set-up in the ONERA

model. As can be seen in Figure 11, the model support on the fuselage is stronger for the DNW-LLF, and less

intrusive for the ONERA model. From a numerical point of view, HMB predictions compare well with the

experimental data of ONERA, where the support is straight. This is consistent with the fact that the model

support was not modelled in the computational domain. Furthermore, no discrepancies were found between

FRB and AD results, which may suggest that this zone is not influenced by details of the rotor blades.
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2. Load distributions

In this section, the integrated loads generated on the nacelle, tiltable wing, and the rest of the fuselage

with the fixed wing are analysed for the aeroplane configuration with the fully resolved blade approach. Lift

and drag coefficients on the tiltable wing as function of the main rotor azimuth Ψ are shown in Figure 12a.

The drag (CD) and lift (CL) coefficients are represented by squares and triangles, respectively, while their

averaged values are represented with solid lines. As can be seen, the 4/rev. blade passage effect on the

tiltable wing is well captured, with fluctuation values of 5.14% and 23.8% for the lift and drag, respectively.

Previous work [20], reported fluctuations of lift and drag between 5%-7% and 20%-30% depending on the

partner.

Likewise, the history of the loads on the nacelle is given in Figure 12b, which reveals the 4/rev. blade

passage effect for both aerodynamic coefficients. The lift and drag fluctuations are 6.86% and 2.5%, respec-

tively, which suggests that the nacelle has a milder unsteady behaviour than the tiltable wing. The fuselage

and fixed wing lift and drag coefficients are presented in Figure 12c, which also reveals a 4/rev. signal

behaviour due to the blade passage. The results show small fluctuations of drag (5.64%) and lift (2.17%)

coefficients.

Finally, the lift and drag coefficients of the complete ERICA tiltrotor are compared with the experimental

data. Table 5 shows a breakdown of the total averaged lift and drag coefficient for each component. A

discrepancy of 15.51% and 33.9% for the lift and drag coefficients is found. Results reported in Decours

et al. [20] also found a discrepancy on lift about 15%, and no drag values were reported. The NICETRIP

experimental data is relatively new and not well explored by researchers. It is therefore likely that corrections

must be applied to the experimental data.

Table 5: Averaged lift and drag coefficient comparisons between CFD and experiments [11, 12] for the

ERICA tiltrotor.

Component HMB3 Wind tunnel
CL CD CL CD

Tiltable wing 0.244 0.012 - -

Nacelle 0.039 0.017 - -

Fuselage 0.432 0.041 - -

Rotor 0.073 - - -

Total 0.789 0.071 0.683 0.053

3. Flowfield details

Visualisation of the flowfield of the ERICA tiltrotor using the Q̄-criterion [39] coloured by Mach number

is presented in Figure 13 for the fully resolved blade and uniform rotor actuator disk approaches. The quantity
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Q is defined as follows:

Q =
1

2
(ΩijΩij − SijSij), (4)

where Ωij and Sij are the antisymmetric and symmetric part of the velocity gradient, respectively:

Ωij =
1

2

(
∂ui

∂xj
− ∂uj

∂xi

)
, Sij =

1

2

(
∂ui

∂xj
+

∂uj

∂xi

)
. (5)

The quantity Q has the dimensions of a velocity squared divided by a length squared, and it is therefore

nondimensionalised in HMB as follows:

Q̄ = Q

(
Lref

Vref

)2

. (6)

Regarding the FRB approach, the wake behind the rotor disk is preserved for more than one rotor diam-

eter downstream thanks to the refined mesh employed in this region (Figure 14). This informative plot shows

the interaction of the rotor wake with the nacelle and tiltable wings. From these iso-surfaces it can be seen

that the rotor wake does not directly interact with the fuselage and the fixed part of the wings. Iso-surface

contours of Q̄-criterion are shown from the CFD simulations using the uniform rotor actuator disk in Figure

13b, which reveals that a detailed wake characteristics cannot be easily identified.

B. Transition Corridor CC4

1. CP profile comparisons

The CC4 case corresponds to a typical tiltrotor corridor configuration with a moderate angle of attack

of 5.30 degrees. The tiltable wing and nacelle angles were tilted 4 and 30.1 degrees, respectively, relative

to the aircraft axis. Like for the AC1 case, profile comparisons of CP between CFD and experiment were

assessed on the fuselage, fixed and tiltable wing of the ERICA tiltrotor (see Figure 15). Considering the AC1

results, no significant differences were found between the URAD and NURAD results. This support the idea

of using the simplest aerodynamic model (URAD) here to compare with the FRB approach.

Considering the pressure coefficient at the centre-line of the fuselage (Figure 16a), the experiments

suggest the absence of flow separation mainly due to reduction of the angle of attack by almost 5 degrees.

Results show a fair agreement with both experiments, where the suction peak is slightly over-estimated

(CP URAD= 1.56; CP FRB= 1.53; CP DNW= 1.49; CP ONERA= 1.39). In the inner fixed wing (see Figure

16b), a discrepancy on the suction peak is presented by both sets of experiments (21% higher for DNW that

Modane). It is interesting to note that no pressure plateau is present at the experiments, which supports the

idea of absence of flow separation. From a numerical point of view, the CFD results compare well with

the experimental data of DNW and, where the pressure plateau is well reproduced. The same analysis can

be done for the middle and outer fixed wing (Figures 16c-16f). Furthermore, small differences are found

between the FRB and URAD approaches, which a maximum discrepancy of the suction peak of 1.29%.

Figures 16g-16h show CP comparisons within the aerodynamic interaction zone. The experiments

present a different behaviour of the pressure plateau near at the trailing edge, where the DNW measure-

ments suggest that the flow is not attached (see Figure 16h). The agreement between experiments and CFD

16



results are still fair and minor discrepancies appear to be present when the actuator disk approach was em-

ployed. Despite that use of the actuator disk model, CFD predictions are in close agreement with the DNW

experiment, which highlights the capability of this low-fidelity approach in predicting wing loads.

Finally, a quantitative assessment of CP profile comparisons on the ERICA fuselage is done, considering

eight cross-sections (Figures 17a-17h). Despite that a minor discrepancy is found between experiments

in the middle of the wing (see Figure 17h), a good agreement can be seen between the two wind tunnel

measurements. Like for the AC1 case, the uniform actuator disk can cope with the loads on the fuselage,

where a fair agreement has been obtained.

2. Flowfield and aerodynamic comparison between AC1 and CC4

The visualisation of flowfield of the ERICA tiltrotor using the Q̄-criterion iso-surface is presented in

Figure 18 for the FRB and URAD solutions. Considering the FRB approach (Figure 18a), a more complex

wake is developed behind the rotor disk if compared with the AC1 wake due to the stronger wake/wing

interation for the CC4 configuration.

Figure 19 shows a comparison of the aeroplane and transition corridor modes for the surface pressure

distributions at stations located on the fixed and tiltable wings of the ERICA tiltrotor. The DNW experimental

data was selected for both modes. The freestream Mach number was kept constant (M∞= 0.168), so the

changes observed on the experimental and predicted peak of Cp are mainly due to the difference in the AoA

and the rotor/wing interaction. The CFD and test data agree fairly well, at all stations, and the CFD captures

the same difference between AC1 and CC4 as measured in the wind tunnel. This is an encouraging result

regarding the use of CFD for these very complex flow cases.
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Fig. 7: CP profile comparisons between CFD and experiments [11, 12] on the fixed and tiltable wings of the

ERICA tiltrotor for the aeroplane mode configuration AC1.

18



  [m]

0 0.5 1 1.5 2 2.5

­2

­1.5

­1

­0.5

0

0.5

1

Modane DP311

DNW DP2192

HMB3 URAD

HMB3 Free

HMB3 URAD (F­S) 

C
P

x

(a) SYM-TOP, section y=0 mm.

  [m]

1.4 1.5 1.6 1.7 1.8 1.9

­3

­2.5

­2

­1.5

­1

­0.5

0

0.5

1

Modane DP311

DNW DP2192

HMB3 URAD

HMB3 Free

HMB3 URAD (F­S)

C
P

x

(b) FW-C, section y=700 mm.

  [m]

1.4 1.5 1.6 1.7 1.8 1.9

­3

­2.5

­2

­1.5

­1

­0.5

0

0.5

1

Modane DP311

DNW DP2192

HMB3 URAD

HMB3 Free

HMB3 URAD (F­S)

C
P

x

(c) FW-D, section y=805 mm.

  [m]

1.4 1.5 1.6 1.7 1.8 1.9

­3

­2.5

­2

­1.5

­1

­0.5

0

0.5

1

Modane DP311

DNW DP2192

HMB3 URAD

HMB3 Free

HMB3 URAD (F­S)

C
P

x

(d) TW-A, section y=855 mm.

  [m]

1.4 1.5 1.6 1.7 1.8 1.9

­3

­2.5

­2

­1.5

­1

­0.5

0

0.5

1

Modane DP311

DNW DP2192

HMB3 URAD

HMB3 Free

HMB3 URAD (F­S)

C
P

x

(e) TW-B, section y=995 mm.

  [m]

1.4 1.5 1.6 1.7 1.8 1.9

­3

­2.5

­2

­1.5

­1

­0.5

0

0.5

1

Modane DP311

DNW DP2192

HMB3 URAD

HMB3 Free

HMB3 URAD (F­S)

C
P

x

(f) TW-C, section y=1117 mm.

(g) Normal coefficient, Cn. (h) Tangential coefficient, Ct.

Fig. 8: CP profile comparisons between CFD and experiments [11, 12] on the fixed and tiltable wings of the

ERICA tiltrotor for the aeroplane mode configuration AC1 (a-f). Effect of the aerodynamic interference

between the rotor and wing of the ERICA (g-h).
19



(a) NA-A, section y=1500 mm.

  [m]

1.3 1.4 1.5 1.6 1.7 1.8 1.9

­1

­0.5

0

0.5

1

Modane DP311

DNW DP2192

HMB3 URAD

HMB3 NURAD

HMB3 FRB

C
P

x

(b) NA-B, section y=1500 mm.

(c) Location of the cross-sections.

 re
f[
­]

­1.6 ­1.2 ­0.8 ­0.4 0 0.4 0.8 1.2 1.6 2
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

Modane DP311

Modane DP311

DNW DP2192

DNW DP2192

HMB3 URAD

HMB3 NURAD

HMB3 FRB

z
/L

C
P

PORT STARBOARD

z

y

(d) NA-C, section x=1560 mm.

 re
f[
­]

­0.6 ­0.4 ­0.2 0 0.2 0.4 0.6 0.8
0.8

0.9

1

1.1

1.2

Modane DP311

Modane DP311

DNW DP2192

DNW DP2192

HMB3 URAD

HMB3 NURAD

HMB3 FRB

z
/L

C
P

PORT

STARBOARD

z

y

(e) NA-D, section x=1860 mm.

Fig. 9: CP profile comparisons between CFD and experiments [11, 12] on the nacelle of the ERICA

tiltrotor for the aeroplane mode configuration AC1.
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(a) FU-A, section x=260 mm. (b) FU-B, section x=535 mm.

(c) FU-C, section x=810 mm. (d) FU-D, section x=1163 mm.

(e) FU-E, section x=1470 mm. (f) FU-F, section x=1810 mm.

(g) FU-G, section x=2460 mm. (h) FU-H, section x=2760 mm.

Fig. 10: CP profile comparisons between CFD and experiments [11, 12] on the fuselage of the ERICA

tiltrotor for the aeroplane mode configuration AC1.
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Fig. 11: CP profile comparisons between CFD and experiments [11, 12] on the bottom part of the fuselage

of the ERICA tiltrotor for the aeroplane mode configuration AC1.

(a) Loads on the tiltable wing. (b) Loads on the nacelle.

(c) Loads on the fuselage and fixed wing.

Fig. 12: History of the lift and drag coefficients in the tiltable wing, nacelle, and fuselage and fixed wing of

the ERICA tiltrotor.
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(a) Wake of the FRB solution.

(b) Wake of the URAD solution.

Fig. 13: Wake-visualisation of the ERICA tiltrotor in aeroplane mode configuration using Q̄-criterion

(Q̄=0.075) shaded by contour of Mach numbers. Results with the FRB (above) and URAD (below).
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Fig. 14: Detailed view of the refined mesh employed for the aeroplane mode configuration with the fully

resolved blade.

(a) Sections on the fixed and tiltable wings. (b) Sections on the fuselage.

Fig. 15: Cross-sections selected for comparisons between CFD and experiments [11, 12] on the fixed and

tiltable wings, and fuselage of the ERICA tiltrotor for the transition corridor configuration.
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Fig. 16: CP profile comparisons between CFD and experiments [11, 12] on the fixed and tiltable wings of

the ERICA tiltrotor for the transition corridor configuration.
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(a) FU-A, section x=260 mm. (b) FU-B, section x=535 mm.

(c) FU-C, section x=810 mm. (d) FU-D, section x=1163 mm.

(e) FU-E, section x=1470 mm. (f) FU-F, section x=1810 mm.

(g) FU-G, section x=2460 mm. (h) FU-H, section x=2760 mm.

Fig. 17: CP profile comparisons between CFD and experiments [11, 12] on the fuselage of the ERICA

tiltrotor for the transition corridor configuration.
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(a) Wake of the FRB solution.

(b) Wake of the URAD solution.

Fig. 18: Wake-visualisation of the ERICA tiltrotor in transition corridor configuration using Q̄-criterion

(Q̄=0.075) shaded by contour of Mach numbers. Results with the FRB (above) and URAD (below).
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Fig. 19: CP profile comparisons between CFD and experiments [11] on the fixed and tiltable wings of the

ERICA tiltrotor for the aeroplane and transition corridor configurations.
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C. Helicopter Mode HC3

1. CP profile comparisons

Numerical simulations of a helicopter configuration (nacelles tilted 86.6 degrees) labelled as HC3 is also

carried out. This configuration is characterised for a moderate forward speed (M∞= 0.104) with an aircraft

angle of attack of -5.15 degrees (see Figure 5). Like the previous cases, profile comparisons of CP between

CFD and experiment were assessed on the fuselage, fixed and tiltable wing of the ERICA tiltrotor (see Figure

20) where a URAD approach was used. Unlike the AC1 and CC4 configurations where experiments in DNW

and ONERA were available, the HC3 test was only carried out in the DNW wind tunnel.

(a) Sections on the fixed and tiltable wings. (b) Sections on the fuselage.

Fig. 20: Cross-sections selected for comparisons between CFD and experiment [11] on the fixed and tiltable

wings, and fuselage of the ERICA tiltrotor for the helicopter configuration.

Considering the pressure coefficient at the centre-line of the fuselage 21a, the DNW experiments suggest

absence of flow separation. The CFD results are in a good agreement with experiments, and the suction

peak is well represented (CP HMB= 1.28; CP DNW= 1.26) with a small discrepancy of 1.58%. The same

analysis can be done for the inner fixed wing (see Figure 21b), where the suction peak and pressure plateau

at the trailing edge are well captured. It is noticeable that discrepancies appear to be present, when sections

on the fixed wing (Figures 21c-21f) are analysed. In fact, the CFD predictions reveal an under-predicted

suction peak compared to the experiment, even if the pressure plateau distribution is well captured. The same

behaviour was found at the aerodynamic interaction zone (Figures 21g-21d). It can be seen that experiments

seem to predict separated flow at the further station on the tiltable wing (Figure 21d). The CFD predictions

did not capture this the region of recirculation.

To conclude, the performance analysis of the ERICA tiltrotor for the HC3 configuration, a comparison

of CP profile have also been performed, considering eight cross-sections on the fuselage (Figures 22a-22h).

As can be seen, all CFD curves are in close agreement with the experiments. This agreement is still fair for

stations located behind the fixed wing and near the spoonsons (Figure 22f).
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(a) SYM-TOP, section y=0 mm.
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(b) FW-A, section y=280 mm.
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(c) FW-B, section y=490 mm.
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(d) FW-C, section y=700 mm.
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(e) FW-D, section y=805 mm.
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(f) TW-A, section y=855 mm.
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(g) TW-B, section y=995 mm.
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(h) TW-C, section y=1117 mm.

Fig. 21: CP profile comparisons between CFD and experiment [11] on the fixed and tiltable wings of the

ERICA tiltrotor for the helicopter configuration.
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(a) FU-A, section x=260 mm. (b) FU-B, section x=535 mm.

(c) FU-C, section x=810 mm. (d) FU-D, section x=1163 mm.

(e) FU-E, section x=1470 mm. (f) FU-F, section x=1810 mm.

(g) FU-G, section x=2460 mm. (h) FU-H, section x=2760 mm.

Fig. 22: CP profile comparisons between CFD and experiment [11] on the fuselage of the ERICA tiltrotor

for the helicopter configuration.
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VI. Conclusions

This paper demonstrated the capability of CFD methods to predict tiltrotor flows. The 1:5 model-scale

ERICA tiltrotor was considered for validation, where three flight configurations (aeroplane, transition corri-

dor, and helicopter) were selected. The main conclusions are:

• The method was able to capture the fuselage surface pressure in different modes of flight.

• For the AC1 case, the aerodynamic interactions in the region of the nacelle and tiltable wing were

captured by the FRB results, and the CFD with URAD and NURAD models also produced adequate

estimates of the wing loads. The effect of the model support was also investigated and it was found

that sting-mounted cases was less intrusive. The overall lift and drag of the vehicle were not, however,

captured accurately.

• For the CC4 case, CP comparisons between CFD and experiments showed good agreement for all

stations investigated with small discrepancies between FRB and URAD results.

• Regarding the HC3 case, CFD results under-estimated the distribution of surface pressure coefficient at

the aerodynamic interaction zone. The reason of this discrepancy may be due to lack of exact trimmed

conditions. The presented results show clearly that computations with resolved blades are necessary if

all flow details must be accurately captured.
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