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Evaluating a social multi-user interaction model using a Nao robot

Simon Keizer1, Pantelis Kastoris1, Mary Ellen Foster1, Amol Deshmukh1 and Oliver Lemon1

Abstract— This paper presents results from a user evaluation
of a robot bartender system, which supports social engagement
and interaction with multiple customers. The system is a
Nao-based alternative version of an existing robot bartender
developed in the JAMES project [1]. The Nao-based version
has given us a local experimentation platform, allowing us to
focus on social multi-user interaction rather than the robot
technology of object manipulation. We will describe the design
of the Nao-based system and discuss the differences with the
original JAMES system. In a recent evaluation of the JAMES
system with real users, a trained and a hand-coded version
of the action selection policy were compared [2]. Here we
present results from a similar comparative user evaluation on
the Nao-based system, which confirm the conclusions of the
previous experiment and provide further evidence in favour
of the trained action selection mechanism. Task success was
found to be almost 20% higher with the trained policy, with
interaction times being about 10% shorter. Participants also
rated the trained system as significantly more natural, more
understanding, and better at providing appropriate attention.

I. Introduction

The use of service robots in the home as well as in public
spaces has become increasingly viable over the last decade.
The development of effective and robust models for social
multi-user human robot interaction is continuing to be vital
to this development. This paper builds on previous work on
using machine learning techniques in this area, applied to
the example of a robot bartender. This bartender should not
only be task effective, i.e., taking orders from customers and
serving the drinks they ordered, but also exhibit socially
appropriate behaviour, e.g., serving multiple customers in
the appropriate order, and following other social conventions
such as greeting and responding to a customer’s “thank you”
with “you’re welcome”, making interactions with the robot
more acceptable and pleasant for customers.

With the purpose of testing and evaluating such models for
social interaction locally on a regular basis, the bartender
system developed in the JAMES project1 was ported to
a modified robot platform comprising a Nao torso robot
and a single Microsoft Kinect for vision. This modified
robot cannot track the full range of the users’ non-verbal
behaviour and is not physically able to serve drinks; however,
it provides a useful platform for experiments specifically
addressing aspects of social multi-user interaction.

Using this Nao-based robot bartender, we carried out a
user evaluation similar to the one described in [2], focusing
on comparing a hand-coded and trained version of the action
selection component of the system. Based on the current
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Fig. 1. Nao/Kinect robot bartender

social state, which contains relevant higher level information
such as which customers are present, whether a customer is
seeking attention, or what they want to order, this action
selection component decides what action (communicative
and/or non-communicative) the robot should produce next.

The paper is organised as follows. In Section II we
describe the Nao-based robot bartender system and contrast
it with the original JAMES system. In Section III we describe
in more detail the action selection component on which
the evaluation is focused, called the Social Skills Executor
(SSE). The evaluation itself is described in Section IV,
followed in Section V by the results and discussion. The
paper is concluded in Section VII.

II. Robot bartender system

The JAMES robot bartender [1] is equipped with modules
for vision and speech processing, along with modules con-
trolling the robot behaviour. The robot behaviour is realised
in the form of both speech and head/arm gestures. Based
on observations about the users in the scene, the system
maintains a model of the social context, and decides on
effective and socially appropriate responses in that context.
The system thus aims to engage in, maintain, and close
interactions with users, take a user’s order via spoken conver-
sation, and serve their drinks. For the Nao-based bartender,
we implemented versions of the vision system and the robot
behaviour controller making use of a Nao torso robot and a
single Microsoft Kinect as shown in Figure 1.



Fig. 2. Kinect-based vision system

A. Vision module

The full JAMES computer vision system [3] tracks the
location, facial expressions, gaze behaviour, and body lan-
guage of all people in the scene in real time, integrating
signals from multiple sensors including two calibrated stereo
cameras and a Microsoft Kinect depth sensor. For the current
study, we have developed a vision system that uses only a
single Kinect sensor to track the location and torso orienta-
tion of all customers, using the built-in skeleton tracking
provided by the Kinect for Windows SDK [4] as shown
in Figure 2. Although the features tracked by the Kinect-
based vision system are a subset of those handled by the
full system, the information it provides is still sufficient for
the Social State Recogniser (SSR) [5] to estimate the social
state of all customers for use in selecting response actions
as described in Section III.

B. Realisation of robot actions

As shown in Figure 1, the Nao robot hardware consists
of two 5-degrees-of-freedom arms with hands, along with a
head with 2-degrees-of-freedom for pan and tilt. The robot
head is equipped with multi colour LED lights, along with
two speakers in its ears for producing synthesised speech,
and a camera which can capture 30 images/second. The
Nao torso has an embedded computer provided with an
API developed in Python [6] for programming different
gestures and for data acquisition from sensors. A set of Nao
robot behaviours was developed for the bartender domain,
based on those supported by the full JAMES robot. These
behaviours included both verbal actions and gestures. The
verbal actions were realised using the Nao’s built-in text-
to-speech (TTS) facility, while the gestures were realised
using motion from hands and the robot head. Table I lists the
behaviours supported by the Nao in this domain; note that,
for practical reasons, the Nao serves drinks “symbolically”
through the ServeDrink gesture in which the robot grasps
and hands over an imaginary drink.

III. Social Skills Execution

The Social Skills Executor (SSE) controls the behaviour
of the robot bartender by selecting both communicative and
non-communicative robot actions, based on the social state
updates it receives from the SSR. In the bartender domain,
the non-communicative actions typically involve serving a
specific drink to a specific user, whereas the communicative
actions have the form of dialogue acts [7], directed at a
specific user, e.g., setQuestion(drink) (“What would you
like to drink?”) or initialGreeting() (“Hello”). Full
details of the SSE are presented in [2]; we summarise the
main points here.

In our design of the SSE, the decision making process that
leads to the actions for the robot to realise (or the decision
to do nothing) consists of three stages: 1) social multi-
user coordination: managing the system’s engagement with
the users present in the scene (e.g., accepting a user’s bid
for attention, or proceeding with an already engaged user),
2) single-user interaction: if proceeding with an already
engaged user in the social multi-user coordination stage,
generating a high-level response to that user, in the form of a
communicative act or physical action (e.g., greeting the user
or serving him a drink), and 3) multi-modal fission: selecting
a combination of modalities for realising a response selected
in the single-user interaction stage (e.g., a greeting can be
realised through speech and/or a nodding gesture), using the
Nao behaviours listed in Table I.

For the multi-user coordination and single-user interac-
tion stages, the decision making process happens through
a combination of two Markov Decision Process (MDP)
models, which can be trained using reinforcement learning
in interaction with a Multi-User Simulated Environment
(MUSE) developed for this purpose [2]. MUSE allows for
rapidly exploring the large space of possible states in which
the SSE must select actions. A reward function incorporating
individual rewards from all simulated users in the environ-
ment is used to encode preferred system behaviour in a
principled way. A simulated user assigns a reward if they are
served the correct drink, and gives penalties corresponding
to their waiting time and various other forms of undesired
system behaviour.

The architecture for interactions in simulation using
MUSE includes both SSE and SSR. MUSE produces inputs
for the SSR: a) a vision input stream containing information
about the visible users, including their location and gaze
direction; b) speech events in the form of user dialogue acts;
c) rewards provided by the simulated users; and d) feedback
about the execution of robot actions. MUSE also processes
the output of the SSE to simulate action execution: the start
of the action is signalled to the SSR, and when an action
is completed, it is made available for processing by the
simulated users. In this way, robot actions can be given a
duration in the simulated environment (in terms of a number
of simulated time frames), and MUSE can thus produce an
input stream for the SSR, whereas the SSE processes input
and generates output on the basis of events.



TABLE I
Nao behaviours for the bartender domain

Behaviour Description

Say Nao speaks the given text with default TTS
LookAt Nao looks at a given location position in space
Nod Nao nods or shakes its head
GreetExpression Nao greets the customer by waving a hand
ServeDrink Nao makes a grabbing action and brings the hand to a serving position
SmileExpression Nao’s eyes change colour, and its head and body move to show joy

IV. User evaluation

For the user evaluation of the Nao based robot bartender,
48 subjects—university students with varying backgrounds—
were recruited and asked to interact with the system, re-
sulting in a total of 96 two-user interactions. Each pair of
subjects interacted four times with the system, two times
whilst running the hand-coded SSE (labelled SSE-HDC), and
two times whilst running the trained SSE (SSE-TRA). To
cancel out any bias due to learning effects, the order of these
four interactions was varied between subject pairs. Before the
four interactions, both users of each pair determined which
of the three possible drink types (coke, blue lemonade, or
green lemonade) they were going to order. Note that the
SSE policies compared in this study were identical to those
used in the previous study described in [2].

A. Godspeed evaluation

As a way to evaluate the overall impression of the Nao-
based system, the subjects were asked to fill out a ques-
tionnaire based on the Godspeed questionnaire series [8],
both before and after being exposed to the system. The pre-
experiment questionnaire was to give us an insight into the
users’ expectations about the system, and to what extent these
expectations were met. The full Godspeed questionnaire
consists of five sets of questions, but in the interest of time
we limited that to the two categories that we considered to be
the most relevant for our purposes: likeability and perceived
intelligence (Figure 3).

B. Subjective evaluation metrics

In order to compare the two versions of the system in
terms of subjective performance, every subject filled out a
questionnaire after each of the four interactions, as shown in
Figure 4. The questions were designed to measure perceived
system performance in terms of task success, ease of seeking
the robot’s attention, ease of making the robot understand a
drink order, and naturalness of the interaction.

C. Objective evaluation metrics

Besides the subjective evaluation we also analysed the
system logs, resulting in a number of objective evaluation
metrics. These metrics are averages for the following values
for each user in each interaction:
• Attention seeking time: the time in seconds between the

moment the (vision) system has detected the user and

Godspeed III: Likeability
Please rate your impression of the robot on these scales:

Dislike 1 2 3 4 5 Like
Unfriendly 1 2 3 4 5 Friendly

Unkind 1 2 3 4 5 Kind
Unpleasant 1 2 3 4 5 Pleasant

Awful 1 2 3 4 5 Nice

Godspeed IV: Perceived Intelligence
Please rate your impression of the robot on these scales:

Incompetent 1 2 3 4 5 Competent
Ignorant 1 2 3 4 5 Knowledgeable

Irresponsible 1 2 3 4 5 Responsible
Unintelligent 1 2 3 4 5 Intelligent

Foolish 1 2 3 4 5 Sensible

Fig. 3. Godspeed questionnaire sections used for evaluation. Note that
for the pre-experiment test the questions were formulated to ask about the
users’ expectation about the robot, rather than their impression.

Q1: What did you try to order? [coke/blue lemonade/green lemonade]
Q2: Did you successfully order a drink from the bartender? [Y/N]

Please state your opinion on the following statements:
[ 1:strongly disagree; 2:disagree; 3:slightly disagree;

4:slightly agree; 5:agree; 6:strongly agree ]
Q3: It was easy to attract the bartender’s attention [1–6]
Q4: The bartender understood me well [1–6]
Q5: The interaction with the bartender felt natural [1–6]
Q6: Overall, I was happy about the interaction [1–6]

Fig. 4. User questionnaire after each interaction

the moment the user is recognised as seeking attention
by the social state recogniser;

• Interaction time: the time in seconds between the mo-
ment of detection by the vision system and either the
moment a drink has been served to that user, or, if the
user was not served, the moment the user leaves the
scene (i.e., is no longer visible by the system);

• Serving time: the time in seconds between the moment
of the user recognised as seeking attention and the
moment the user has been served a drink (assuming the
user has been served at all);

• Number of SSE level 1 decisions: the number of times
the SSE multi-user coordination policy was triggered to
make a decision;

• Number of SSE level 2 decisions: the number of times



the SSE single user interaction policy was triggered to
make a decision;

• Number of speech input events: the number of times the
Kinect speech processing module detected speech input;

• Number of speaker identification failures: the number of
times the social state recogniser could not assign speech
input to a known customer; and

• Number of ASR failures: the number of times speech
input was discarded because the confidence score (pro-
vided by the Kinect speech recogniser) was below the
threshold of 0.5.

V. Results and discussion
A. Godspeed questionnaire

The results from the Godspeed questionnaire pre and post
test are shown in Figure 5. The responses on all questions
decreased from the pre test to the post test: on the likeability
questions, only a marginal decrease was observed, whereas
the decrease in perceived intelligence was significant at
p < 0.05 on a Wilcoxon signed rank test. It is likely that
one reason for the decrease in perceived intelligence is the
rather limited task domain currently supported by the system;
on the other hand, the behaviour of the bartender system
did not have as much effect on the users’ impression in
terms of likeability. Also, recall that this questionnaire is
aimed to evaluate an overall impression of the robot system,
whereas our focus in developing this Nao-based version of
the robot was on approximating the basic capabilities of
the original JAMES robot and on replicating the previous
comparison between the two SSE versions. Note that a
decrease in Godspeed scores was also found in two recent
user evaluations of the full JAMES robot system [9], [10].

Fig. 5. Godspeed results (significant differences indicated with an asterisk)

B. Subjective evaluation

The results from the questionnaire in Figure 4 are given
in Table II, in the form of a percentage (success rate) for
question Q2, and average scores for questions Q3 to Q6.
As indicated by the asterisks in the table, the system that
used the trained version of the SSE (SSE-TRA) significantly
outperformed the hand coded version (SSE-HDC) on all
scores (p < 0.05 on a Wilcoxon signed rank test).

TABLE II
Perceived performance results for the hand-coded and trained SSE

SSE-HDC SSE-TRA

Q2 (task success) * 55.21% 75.00%
Q3 (attention) * 4.36 4.92
Q4 (understanding) * 3.53 4.52
Q5 (naturalness) * 3.35 4.04
Q6 (overall) * 4.13 4.64

TABLE III
Objective measures on the system logs of the collected interactions

SSE-HDC SSE-TRA

AvgAttTime 0.519 0.617
AvgIntTime * 45.119 40.492
AvgServTime 30.166 27.172
AvgNumDecs1 14.56 14.21
AvgNumDecs2 5.56 6.00
AvgNumDecs2a 2.83 3.79
SpeakerIdFailRate 44.63% 46.78%
AsrConfRejRate 56.69% 50.62%

C. Objective evaluation

The results of the objective analysis of the experiments
are summarised in Table III, again with an asterisk indicating
differences that were significant on a Wilcoxon signed-rank
test (p < 0.05). The average time between detecting a user
and recognising them to seek attention (AvgAttTime) was
very short, and only marginally longer for the interactions
with the system that used the trained SSE policy (SSE-
TRA). This is according to expectations since subjects were
asked to enter the scene and (immediately) approach the
robot to order a drink, and the SSE component does not
play a direct role in recognising users seeking attention. The
average time of interactions (AvgIntTime) with the SSE-TRA
system was significantly shorter than those with the SSE-
HDC system, suggesting that the trained policy resulted in
more efficient interactions. The average time it took to serve
a user (AvgServTime) was also somewhat shorter for the
SSE-TRA system. Part of this difference can be explained by
the performance of the speech processing component: in the
interactions with the SSE-HDC system, the speech rejection
rate (i.e., rejections due to failed speaker identification,
denoted by SpeakerIdFailRate, or due to the ASR confidence
score being too low, denoted by AsrConfRejRate) was 6%
higher, which could affect the overall performance. However,
this difference is not statistically significant.

D. Discussion

The results from the human user evaluation presented here
indicate that in terms of subjective measures as well as
objective interaction time, the trained SSE outperforms the
hand-coded version. This result confirms the findings in [2],
where the trained SSE also obtained better subjective scores
overall, and a significantly better score for perceived success.



One of the main differences between the two SSE versions
is that in the initial state of a single user interaction, the
hand-coded SSE decides randomly between asking the user
for their order and doing nothing, i.e., waiting for the user to
order on their own initiative, whereas the trained SSE always
asks the user immediately for their order. This difference
is also reflected in the average number of decisions made
by the single user interaction policies in Table III. Espe-
cially when no-action decisions are excluded, this number
(AvgNumDecs2a) is higher for the SSE-TRA policy because
it asks the user for their order more often. Although in real
bar situations, it seems perfectly reasonable to assume that a
customer can order without the bartender explicitly asking,
in this more artificial human-robot interaction setting, this
strategy might have been too confusing, resulting in the lower
scores presented above.

VI. Related work

The relative affordability of the Nao robot has allowed for
an increase in human robot interaction research, especially
in domains that do not require advanced object manipulation
or mobility. For example, [11] describes a multi-user robot
application in the restaurant domain that was created with the
Nao torso built-in development environment ‘Choregraphe’.
The Nao platform has also been used in experiments in the
context of a multi-user quiz game [12], and there has also
been research on using reinforcement learning for single-
user human robot interaction [13]. Other work on multi-user
engagement and interaction using a virtual agent has been
reported in [14], [15].

VII. Conclusion

In this paper, we have presented a socially intelligent robot
bartender, ported to the Nao torso robot platform. This new
robot bartender is not capable of actually serving drinks, but
uses a gesture for this action. However, sufficiently realistic
interactions can be supported for useful multi-user human
robot interaction experiments.

Using the new Nao robot bartender system we carried
out a user evaluation, focused on comparing a trained and
hand-coded version of the Social Skills Executor (SSE),
the action selection component of the system. The results
confirmed the results from a similar, recent evaluation on
the original robot bartender system [2], and provided even
further evidence in favour of the trained version of the
SSE, which received significantly higher subjective scores
than the hand-coded version, and objectively also resulted
in more efficient interactions. Task success was found to be
almost 20% higher with the trained policy, with interaction
times being about 10% shorter. Participants also rated the
trained system as being significantly more natural, more
understanding, and better at providing appropriate attention.

To date, we have extended the functionality of the JAMES
bartender system, aiming at more realistic and natural inter-
actions. For example, users can now order multiple drinks,
instead of a single drink of given type only, and also
additional actions have been included for handling natural

opening and closing of interactions (e.g., by generating
and responding to greetings and goodbyes) and clarification
questions (e.g., “Did you say ‘blue lemonade’?”). Details of
this revised system are available in [10].

For future work we plan to adopt these extensions in the
Nao-based robot bartender as well, and carry out experiments
for both system evaluation and data collection purposes.
We aim to use the collected data to train new interaction
models for this version of the system, either from scratch
or by adapting the existing models that were based on data
collected with the original JAMES robot bartender.
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