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Abstract—To optimize the energy utilization, intelligent energy
management solutions requires appliance-specific consumption
statistics. One can obtain such information by deploying smart
power outlets on every device of interest; however it incurs extra
hardware cost and installation complexity. Alternatively, a single
sensor can be used to measure total electricity consumption and
thereafter disaggregation algorithms can be applied to obtain
appliance specific usage information. However, discerning low-
power appliances in the presence of high-power loads is quite
challenging. To improve the recognition of low-power appliance
states, we propose a solution that makes use of circuit-level
power measurements. We examine the use of a specialized variant
of Hidden Markov Model (HMM) known as Factorial HMM
(FHMM) to recognize appliance specific load patterns from the
aggregated power measurements. Further, we demonstrate that
feature concatenation can improve the disaggregation perfor-
mance of the model allowing it to identify device states with an
accuracy of 90% and 80% for binary and multi-state appliances
respectively. Through experimental evaluations, we show that
our solution performs better than the traditional event based
approach. In addition, we develop a prototype system that allows
real-time monitoring of appliance states.

I. INTRODUCTION

Today, energy conservation is a challenging issue and sub-
sequently demands solution for optimal utilization of avail-
able energy resources. A detailed review [1] of more than
60 feedback studies suggest that maximum energy saving
within offices and residential spaces can be achieved using
direct feedback mechanisms (i.e., real-time appliance level
consumption information) as opposed to indirect feedback
mechanisms (i.e., monthly bills, weekly advice on energy
usage). The energy consumption information available from
the current as well as emerging smart meters is in aggregated
form, whereas an energy breakdown is inevitable in order to
identify inefficient energy usage.

Non-Intrusive Load Monitoring (NILM) is an attractive
method to acquire appliance specific consumption informa-
tion because unlike other load monitoring approaches it only
requires single meter per house or a building which is easy
to install and less costly, allowing the disaggregation of
aggregated power measurements. The NILM based approaches
can broadly be classified into event based and non-event
based methods. The event based approach is based on the
characterization of on-off events generated by appliances. The
on-off events can be defined in terms of change in the real
(P) and reactive (Q) power levels as proposed by Hart [2].

These events can further be defined in terms of steady-state or
transient changes and accordingly steady-state and transient
event based feature extraction methods are developed. The
power change method is found to be accurate in discerning
high-power appliances (Oven, Refrigerator, stove etc.) due to
their distinctive steady state features. However, appliances with
variable power draw characteristics and low-power consump-
tion profile are difficult to disaggregate from the aggregated
load measurements due to overlapping steady-state features. To
improve the disaggregation accuracy, instead of power change,
researchers [3] have experimented with current and voltage
based features for appliance disaggregation. In [4] author make
use of principal component analysis for feature extraction,
whereas [5] proposed to use steady-state current harmonics to
reduce the ambiguous overlapping of appliance signatures in
the P-Q plane. In contrast to steady-state approaches, transient
approaches [3], [6] have tried to sample the incoming current
and voltage waveform at a high sampling frequency in order to
extract distinctive features such as shape, size, duration, high-
order harmonics to characterize an appliance operation in its
transient state.

Though, the use of transient features in conjunction with
steady-state features provides an improved load disaggregation
performance [6], however transient patterns are sensitive to
wiring architecture, network geometry and demands costly
hardware for sampling the electrical signal at higher data rate.
On the other hand, the smart meters in future will only be able
to provide data at a low frequency resolution.

In literature, mostly pattern recognition [3], [7] or opti-
mization based approaches [6], [8] have been adopted to
perform load disaggregation. However, the existing solutions
achieve limited accuracy in real-world deployments due to the
following reasons: Firstly, most of the research work in the
past has focused on identifying large appliances such as HVAC
system neglecting the presence of low-power appliances. The
inability of traditional NILM solutions to recognize low-power
loads impacts the overall disaggregation accuracy, which can
be improved by using circuit-level measurements, as high-
power loads often receive dedicated circuits within houses.
Motivated by this, in this paper we study the suitability of
Factorial Hidden Markov Models (FHMM) for low power
appliance monitoring using circuit-level energy measurements.
Secondly, the current research work in NILM has focused
mainly on the identification of binary operation (i.e. ON or



OFF) of the appliances. However, in a real-world setting
many appliances often operates in more than two states.
Therefore in our experimental evaluations, we have taken into
consideration both the binary and multi-state operation of the
appliances. An important aspect of our work is the selection
of adequate feature sets, which are used for the proposed
classifiers and corresponding modelling of power states of
individual appliances. Through extensive evaluations based
on collected real world data, we show that concatenation of
power and statistical features can not only improve the binary
state (ON/OFF) detection of appliances, but it works well
even for the inference of multiple power states. Moreover,
we have shown that our approach works in a real-time once
the models are trained as opposed to traditional approaches
which requires batch data for load disaggregation. At the same
time, we have taken into account the applicability and cost of
the solution because we make use of low frequency power
measurements to develop generative model of the appliances
for energy disaggregation. This type of measurements can
easily be acquired from a smart meter without the need of
any additional hardware.

The remainder of the paper is organized as follows. In
the next section, we provide an introduction to our proposed
appliance model based on Factorial Hidden Markov Model
(FHMM), whereas we present the results of our experimental
evaluations in section 4. Finally, we summarize our findings
and conclude our paper in section 5.

II. APPLIANCE DISAGGREGATION USING FHMM

The problem of appliance disaggregation can be formally
expressed as follows. Given the sequence of aggregated power
readings x = [x1, ......xT ] of M appliances for t = [1, ....T ] time
measurements, we want to find out the power contribution of
each appliance p = [pm

1 ......p
m
T ] where p is dependent on the

states of the appliances sm
t = [sm

1 , .....s
m
T ] s.t. m ∈ {1, ....,M}.

At any point in time t the xt = ∑
i=M
i=1 pi

t , whereas consumption
information of each appliance state can be determined from
the sub-metered data during the training phase. Hence, the
problem is thus reduced to determining the states of the
appliances sm

t during each time period t.
Hidden Markov Models (HMM) [9] have been widely used
to model stochastic processes and also well suited to model
the combination of independent processes. The aggregated
power signal x at the output of smart meter or an in-house
circuit can be thought of a linear combination of power signals
generated as a result of appliances changing their states. This
time-varying signal can be best modeled by a variant of an
HMM known as ”Factorial Hidden Markov Model” [10]. The
Factorial Hidden Markov Model (FHMM) is a combination of
multiple single HMM’s evolving in time separately, however
the output of the model xt at any time t is dependent on the
current states of all the HMM’s. We assume that we know the
number and types of appliances apriori, therefore each target
appliance can be modeled as a single HMM comprising of
multiple states that defines its operational behavior.

For example the LCD screen can have three operational states
ON, IDLE and OFF. The possible state transitions of an LCD
screen can be represented as shown in Fig 1a. This simple
model can be translated into a single HMM as shown in Fig
1b, where an observation symbol ot at any time t is governed
by the hidden state variable st . An HMM model λ can simply
be defined by initial state probability π , emission probability
φ and state transition probability A s.t λ = {π,φ ,A}.
The π defines the initial probability of an appliance state
at t = 1, whereas A is a transition matrix that defines the
possible state transitions within a model. The φ represents the
probability of an observation at time t given a particular state.
In our case, the observation vector is a power drawn values of
an appliance in each particular state and we assume φ to follow
a Gaussian distribution : φ ≈N (µk,σk), where µ and σ are
the mean and variance of observation sequences in a particular
state k. There are efficient algorithms as discussed in [9] for
training the HMM Model (e.g. Baum-Welch Algorithm), for
evaluating model likelihood (e.g. Forward Backward Algo-
rithm) as well as for the inference of probable hidden state
sequences (e.g. Veterbi Algorithm). As discussed earlier, our
goal is to infer individual appliance states given the aggregated
power readings x. To represent a combined load model for
the appliances operating in parallel, it is possible to define
a regular HMM model with a Km×Km transition matrices ,
where K is the number of states in each appliance. However
such a model would impose a high computational requirements
as state transitions grow exponentially with an inclusion of
every new appliance. FHMM is an extension to HMM that
limits the state transitions to MK × K transition matrices
by introducing distributed state space architecture in which
independent Markov chains contribute to a single observable
output as shown in Fig 1c. The hidden state st is now split
into M independent factors sm

t . However, the transition matrix
is constrained in a way that there are no intermediate state
transitions between the M independent chains but they are still
linked via the observable output xt . We now discuss the model
definition, learning and inference methods for an FHMM in
the following subsections.

A. Model Definition
As discussed earlier, each chain in the FHMM has Marko-

vian dynamics that is independent of each other. In addition, a
hidden state is only dependent on its preceding state, whereas
these two properties can be mathematically expressed as
follows

p(sM) = (sM
t=1)

M

∏
t=1

(sM
t |sM

t−1) , p(s) = ∏
M

p(sM) (1)

Each appliance model is trained independently as a single
HMM and using the properties of Eq (1), we can define the
initial probability distribution as p(s1) = ∏

M
m=1 πm , and hence

the transition matrices of our FHMM is expressed as

p(st |st−1) =
M

∏
m=1

AM (2)

x is the random variable representing the aggregated circuit-
level energy measurements. However, after feature extraction
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Fig. 1: (a) State Transition diagram of an LCD (b) A graphical representation of a Hidden Markov Model (HMM) (c) To
define a combined load model, appliance HMM’s arranged in a specialized structure to form a Factorial HMM

xt = ( f1, .. fD)
T , where D represents the dimension of the fea-

ture space which has a direct impact on the model performance
as discussed in Section III. It has been mentioned earlier that
in case of single appliance HMM, we assume the observation
sequence to follow Gaussian distribution with mean µ and
variance σ , however in case of FHMM mean of observation
sequence xt would be the sum of output W m generated by
each independent appliance chain. In other words, the mean
µt is dependent on the respective states of the appliances at
that particular time t. Formally it can be expressed as

µt =
M

∑
m=1

W m
sM
t

(3)

Hence the emission probability of the model can be expressed
in terms of probability density function of the observable
output conditioned on the states of the appliances. It can be
defined as follows

p(xt |st) = |C|−
1
2 (2π)−

D
2 exp{1

2
(xt −µt)

TC−
1
2 (xt −µt)} (4)

where C is a stationary covariance matrix, and once p(xt |st)
can be computed, the joint probability distributionp(xt ,st) can
be defined as follows

p(xt ,st) = p(s1)p(x1|s1)
T

∏
t=2

p(st |st−1)p(xt |st) (5)

Eq (5) can be expanded using Eq(2) and the value of p(s1)

p(xt ,st) =
M

∏
m=1

π
m p(x1|s1)

T

∏
t=2

M

∏
m=1

AM p(xt |st) (6)

B. Learning and Inference
The author at [10] has provided a comparison between the

exact and approximate methods for training and inference
in FHMM. Expectation Maximization (EM) algorithm which
involves an expectation step (E-step) and a Maximization
step (M-step), has proven to be quite successful with HMM.
However, in case of FHMM, the E-step that basically performs
inference of posterior distribution of model states p(s|x,λ )
becomes intractable for the model containing a large number
of chains. To overcome this and to decrease the computational
requirement several approximate inference methods have been
proposed. In our work, we make use of structural variational
approximation method that assumes decoupling amongst the
independent chains forming a simpler structure so that efficient
forward backward algorithm could be applied. It introduces an
approximate distribution Q(s) and the aim of the inference

task is to minimize the Kullback-Leibler (KL) divergence
between approximate and exact distribution P(s). However
an additional ht

m factor must be introduced in the place
of emission probability in order to perform inference using
standard Baum-Welch procedure. The ht

m can be thought of
as a fictitious observation which represents a combination of
different settings for sm

t . The probability of this responsibility
factor is varied to minimize the KL divergence between
Q(s) and P(s). Hence, the parameters of the approximate
distribution becomes λ = {πm,Am,ht

m}. In order to minimize
the KL divergence between Q(st) and P(st) , the ht

m factor
must be updated using following equations

hm
t = exp{(W m)TC−1xem

t −
1
2

∆
m} (7)

∆
m
k = ((W m

k )TC−1W m
k ) , xem

t = xt −
M

∑
l 6=m

W lQ(sl
t) (8)

The complete derivation of Eq (7) and (8) can be found be
in [10]. We are interested to infer the most probable hidden
state sequence within each chain, conditioned on the obser-
vation sequence x. Therefore, once our combined appliance
model is trained, the decoding of the states can be done via
applying standard Viterbi algorithm [9] on the independent
chains due to their tractable structure.

III. EXPERIMENTAL SETUP AND EVALUATIONS

The proposed approach has been evaluated by acquiring the
data from a large test bed facility deployed in our research
center. In order to train and test our appliance models, we have
obtained energy consumption data from the employees work
desks via smart plugs. These plugs are smart power outlets
with an inbuilt energy meter and zigbee module, collocated
to user work desks so that office appliances including PC
workstation, LCD, laptop, desk lamp and a fan can be attached
to it via the multi-socket as shown in Figure 2. Each plug
act as a circuit-level monitoring device which logs the power
measurement at a frequency of 3 samples per second. We have
implemented an online version of our FHMM models using
Matlab, assuming that the number and types of appliances are
known apriori. The data collection has been done wirelessly, as
each smart plug transmits data to a selected aggregation point
(sink) using a wireless interface. The sink is further connected
to a Management Gateway (GW) which reports the data to



(a) (b)
Fig. 2: (a)Experimental Setup for the Energy monitoring of the office work desks (b) A Snapshot of Real-Time Prototype

a central server, so that it can be stored in a database. The
monitoring station queries the database periodically to acquire
the last 5 power measurement samples xt = [xt−4, .....,xt−1,xt ]
from the target work desks and forward it to the Matlab
environment so that our proposed model can perform in-
ference of the appliance states in real-time. Moreover, in
order to demonstrate the usefulness of our approach for real
life applications, we have implemented a live service in our
office environment that provides increased awareness of the
operational states of devices at each work desk. Our prototype
system features a mobile user interface for Android smart
phones, which allows employees to access the operational state
of the devices at their desks in a visual way from wherever
they are as shown in Figure 2b. To evaluate the performance
of our proposed model, we have conducted experiments in
two phases: Binary and multi-state operational phase. In the
binary phase we have configured all the target appliances to
operate just in two states :ON and OFF. For example, using
the power-management options we have disabled any power-
saving settings for the LCD Screen, Work Station (WS), and
Laptop, so that they would always operate in a high power
mode without switching to idle or standby states. However in
the multi-state phase, we have taken into account all possible
states for all the target devices. To train the appliance models,
we have separately collected the data for each appliance
during their binary as well as multi-state operations. For each
appliance, we have collected a training data for an average
duration of 30 minutes. We have designed 10 test cases for the
evaluation of our proposed approach as shown in Table II. The
unique combination of appliance state varies with the number
of appliances and their respective states, for example lamp
and LCD can follows four distinct combination sequence in
case of binary operation. Accordingly, for each test case we
have generated an average of 120 events by manually changing
the states of the appliances. We now elaborate in detail the
feature extraction process and the results of our experimental
evaluation in the discussion below

A. Feature Processing
The power measurement includes real power (P), reactive

power (Q), root mean square values of current (Irms) and
voltage (Vrms) waveforms and the phase angle ϕ between them.
Another term called apparent power (AP) which is the product

of Irms and Vrms is often used to calculate the power factor (PF).
The power factor is simply a ratio between real and apparent
power and it often varies from 0 to 1 depending if the load
is reactive or resistive, similarly phase angle between current
and voltage can also be used to discriminate a resistive or a
reactive load. The relationship between the three powers can
be expressed by the following equation : AP = P2 +Q2.

For our experiments, we have extracted five different fea-
tures from the circuit-level measurements as listed in Table I.
We have trained appliance models using these features, as a
result we have to separately define five different FHMM’s,
model F1 to model F5. For the case of feature F1, we have
simply calculated the average of real power consumption of
the observation window. For F2, the average of reactive power
values is concatenated the with the real power. Similarly for
F3, F4,and F5 we have included three more features namely
PF, standard deviation of real and reactive values respectively.
In the feature selection process, we have adopted a heuristic
approach, trying several feature combinations as listed in
Table I to find out the best possible combination for the task
of load disaggregation. In the following subsection, we have
presented our results showing how feature concatenation can
improve the model performance.

TABLE I: Features for Appliance Models
No Features Comments
F1 P where P = 1

5 ∑
5
t=1 Pt

F2 P,Q where Q = 1
5 ∑

5
t=1 Qt

F3 P,Q,PF where PF = P
AP

F4 P,Q,PF,Pstd where Pstd =
√

1
5 ∑

5
t=1(Pt −P)2

F5 P,Q,PF,Pstd ,Qstd where Qstd =
√

1
5 ∑

5
t=1(Qt −Q)2

B. Performance Evaluation
In order to evaluate the performance of a classifier, accuracy

is a most commonly used metric. However, for a multi-class
classification problem it is often impaired with data unbalance
issue. Therefore, we have decided to adopt an F-measure
instead as a metric to access the performance of our models.
To provide a comparison, we have evaluated the performance
of our approach with a traditional event detection algorithm
that makes use of generalized likelihood ratio (GLR) approach
to perform change detection in the power levels from the time-
series data. The detected changes are regarded to be as an event
followed by a clustering mechanism which is used to match



(a) (b) (c)
Fig. 3: (a) F-measure comparison of FHMM Models for Binary State Classification (b) F-measure comparison of FHMM
Models for Multi-State Classification (c) F-measure comparison of Event Based Approach versus Model 4

the events in order to identify an appliance state. The detailed
discussion of this approach can be found in [11].
1) Binary State Classification

As discussed earlier, we have separately trained five load
models with respect to five different feature sets. The Fig 3a
provides a performance comparison of all the five models for
the case of binary state classification. The best appliance state
recognition performance is achieved by the model F4 trained
using feature F4. The average F-measure (for the 10 test cases)
of model F4 is 0.906, whereas the separate F-score for each
test case is listed in Table II. It is clearly evident from the
results shown in Fig 3a that increasing the dimension of the
feature space has a significant impact on the inference of our
models. However, it is not true for the model F5 because the
addition of feature Qstd negatively impact the performance
of the model. The model F1 and F2, trained using the real
and reactive power features shows the lowest performance
especially for the test cases between 7 and 10. However,
the additional power factor information along with real and
reactive power features in model F3 significantly improves
the inference of appliance states. In parallel, we have also
evaluated the performance of event detection algorithm for all
the test cases. In comparison to our best performing model
F4, the GLR based method achieves an F-score of 0.804
as shown in Fig 3c. Our model has not only outperformed
event-based algorithm in recognizing appliance states from
the aggregated measurement, but in case of individual load
operations it recognizes each appliance with an accuracy of
more than 90 % as listed in Table III.

2) Multi-state Classification
It is clear from Fig 3b, that even for the case of multi-

state appliances model F4 shows superior performance over
the other models. However it must be noted that average
F-measure has dropped from 0.906 to 0.804 for multi-state
appliance operation. It can be seen from Table II, that for test
cases 9 and 10 the performance of the model falls below 0.67.
The model F1 on the other hand clearly fails to recognize
device states, whereas the accuracy decreases gradually as

TABLE II: F-measure of FHMM trained using F4 for the Test
Cases of Binary and Multi-state Appliance Operation

Test
Cases

Appliances FHMM
(Binary) a

FHMM
(Multi-state)a

1 WS, LCD 0.987 0.956
2 Laptop,Lamp 0.980 0.961
3 Lamp, Fan 0.976 0.87
4 Laptop, Fan 0.862 0.702
5 WS, LCD,Lamp 0.941 0.890
6 WS, Lamp,Laptop 0.931 0.91
7 WS, LCD,Lamp,Laptop 0.90 0.74
8 WS, LCD,Lamp,Fan 0.88 0.731
9 WS, LCD,Laptop,Fan 0.839 0.669
10 All 5 Appliances 0.768 0.614

a These F-measures are for the FHMM Models trained with feature F4.
TABLE III: Segregated Appliance Recognition

Appliance FHMM
(Binary)

FHMM
(Multi-state)

Work Station 0.96 0.933
22” LCD 0.99 0.940
Laptop 0.953 0.90

Desk Lamp 0.99 0.99
Table Fan 0.912 0.867

the number of appliances in each test case increases. The
load disaggregation becomes even more challenging when
the appliances with multiple states operate in parallel. This
is clear from the results listed in Table III, that in case of
segregated appliance operations our model F4 can recognize
the target appliances with a high accuracy. Oppositely, in case
of combine load operations the performance of the model
decreases due to number of reasons as discussed in the
next section. The concatenation of features however shows
clear improvement in load disaggregation performance of the
models as shown in Fig 3b. As for event based approach,
the detection of multi-state device is even more challenging.
In the evaluations, the average F-measure for an GLR based
algorithm has dropped down to 0.67 for the case of multi-
state appliances as shown in Fig 3c. It is mainly because
the possibility of similar power draw between states and
their combinations increases in case of multi-state appliances
operating in parallel. Additionally, state transitions causing
unexpected power variations also impact the accuracy of event
detection algorithm.



IV. DISCUSSION AND CONCLUSION

We can summarize several important findings from the
evaluations reported in Section III-B. We can easily conclude
from our experiments that overall appliance state recognition
is higher for FHMM as well as for event detection algorithm,
if the appliances follows a binary operational pattern only.
However, the performance severely degrades in case of devices
switching to intermediate states. It is due to a number of
reasons; firstly as the number of states grows the likelihood
of state combinations resulting in a energy measurement that
may overlap with a power consumption of another device
also increases. For example, the power draw by laptop and
fan running in their active states is equivalent to LCD in an
ON state. This results in an inaccurate detection of appliance
states. This problem is severe for event detection approach
because it rely on changes in real and reactive power levels,
which makes it difficult to discern appliances with similar
power consumption. The possibility of such events increases
if switching of multi-state appliances occurs frequently.

Secondly, it is quite evident from the results shown in Fig 3
that the number and type of appliances operating in parallel
can make the inference challenging. For example, in Table II
the F-measure for the model F4 is low for all those test cases
which contains a combination of fan, laptop and a LCD. Not
only, it is due to the overlapping states of fan and laptop due to
similar power consumption but combination of inductive and
capacitive loads violates our assumption in Eq (3). According
to Eq (3), at any point in time t the mean µt of the respective
states linearly combine at the output, however it does not hold
true completely for these cases. We have already discussed in
Section III-A that reactive power is dependent on the phase
angle between the current and voltage, and for capacitive loads
the currents leads the voltage and the opposite happens for
the inductive loads thus producing the leading and lagging
power factor. Therefore, if loads containing capacitive and
inductive elements (capacitors and motors) such as laptop and
fan operates in parallel, the reactive powers of the loads instead
of addition cancels out each other. Hence, the combination of
capacitive and inductive loads makes the inference task more
difficult because the calculation of joint probability distribution
p(xt ,St) is based on the Eq (3). Resistive loads (i.e. lamps) on
the other hand have no reactive power, so their combination
with inductive and capacitive loads does not have any impact
on the assumptions.

We found out that real and reactive power alone is not ade-
quate to train appliance load models, whereas concatenating it
with PF and Pstd can significantly improve the identification
of appliance states. The FHMM performs better in comparison
to event based approach because it not only incorporates
additional features but the prediction of the current state is
also dependent on the previous state. The inference works on
a principle of maximizing the posterior probability at time t
which is governed by the transitional probability of the states
within an appliance model. On the other hand, GLR based
approach relies on change detection for event classification

which is susceptible to power draw variations. Normally,
during the start-up phase and state transitions few appliances
takes longer time to attain a stable state. For example, in our
experiment there is a high variance of power draw values of a
desktop fan at the start-up phase. This holds true as well when
the fan speed has been changed from one level to another level.
Similarly, the work station load varies depending on the CPU
usage. These variations itself can act as distinctive signature
for the case of probablistic models as the results shown in 3b
clearly indicates that concatenation of Pstd feature has aided
the inference mechanism.

To conclude, our approach has been able to recognize
appliance states with an F-measure score of 0.906 and 0.804
for the cases of binary and multi-state appliance operations
respectively. In future, we plan to extend our work by in-
creasing the type and number of target appliances used in the
evaluations, and further investigate the use of other sources
of information such as motion, sound, time as well contextual
information to improve the disaggregation performance.
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