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Abstract	

Implicit visual processing of emotional stimuli has been widely investigated since the classical studies on affective 

blindsight, in which patients with primary visual cortex lesions showed discriminatory abilities for unseen 

emotional stimuli in the absence of awareness. In addition, more recent evidence from hemianopic patients showed 

response facilitation and enhanced early visual encoding of seen faces, only when fearful faces were presented 

concurrently in the blind field. However, it is still unclear whether unseen fearful faces specifically facilitate visual 

processing of facial stimuli, or whether the facilitatory effect constitutes an adaptive mechanism prioritizing the 

visual analysis of any stimulus. To test this question, we tested a group of hemianopic patients who perform at  

chance in forced-choice discrimination tasks of stimuli in the blind field. Patients performed a go/no-go task in 

which they were asked to discriminate simple visual stimuli (Gabor patches) presented in their intact field, while 

fearful, happy and neutral faces were concurrently presented in the blind field. The results showed a reduction in 

response times to the Gabor patches presented in the intact field, when fearful faces were concurrently presented in 

the blind field, but only in patients with left hemispheric lesions. No facilitatory effect was observed in patients 

with right hemispheric lesions. These results suggest that unseen fearful faces are implicitly processed and can 

facilitate the visual analysis of simple visual stimuli presented in the intact field. This effect might be subserved by 

activity in the spared colliculo-amygdala-extrastriate pathway that promotes efficient visual analysis of the 

environment and rapid execution of defensive responses. Such a facilitation is observed only in patients with left 

lesions, favouring the hypothesis that the right hemisphere mediates implicit visual processing of fear signals.  
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1 Introduction		

Implicit	 visual	 processing	 of	 emotional	 information	without	 awareness	 has	 been	 extensively	 investigated,	

due	 to	 its	 importance	 for	 survival	 (for	 a	 review,	Celeghin	et	 al.,	 2015;	Diano	et	 al.,	 2017;	Tamietto	and	de	

Gelder,	2010).	The	pioneering	studies	conducted	by	Larry	Weiskrantz	on	blindsight	(Weiskrantz	et	al.,	1974)	

showed	that	patients	with	lesions	of	the	primary	visual	cortex	(V1)	could	discriminate	above	the	chance	level	

specific	features	of	stimuli	presented	in	their	scotoma.	Subsequent	studies,	with	the	contribution	of	the	same	

research	 group,	 provided	 evidence	 of	 the	 peculiar	 ability	 of	 these	 patients	 to	 unconsciously	 perceive	

emotional	 signals,	 a	 phenomenon	 called	 affective	 blindsight	 (de	 Gelder	 et	 al.,	 2001,	 1999).	 Patients	 with	

affective	 blindsight	 show	 performance	 above	 chance	 when	 they	 are	 asked	 to	 discriminate	 the	 emotional	

content	of	faces	presented	in	their	blind	field	(i.e.,	two-alternative	forced	choice	tasks;	de	Gelder	et	al.,	1999;	

Pegna	et	al.,	2005).	In	addition,	their	responses	to	emotional	target	stimuli,	presented	in	the	intact	field,	are	

facilitated	when	an	emotionally	congruent	stimulus	is	presented	concurrently	in	the	blind	field	(de	Gelder	et	

al.,	 2001).	They	 also	 show	 reduced	 event	 related	potentials	 (ERPs)	when	emotionally	 incongruent	unseen	

faces	and	voices	are	presented	together	(de	Gelder	et	al.,	2002).	

More	recently,	residual	visual	processing	of	the	emotional	content	of	unseen	stimuli	has	also	been	shown	in	

patients	 with	 visual	 field	 defects	 without	 blindsight	 (Bertini	 et	 al.,	 2013;	 Cecere	 et	 al.,	 2014).	 Indeed,	

hemianopic	patients	who	do	not	demonstrate	any	form	of	blindsight	or	affective	blindsight	in	classical	terms	

(i.e.,	 they	perform	at	 the	 chance	 level	when	asked	 to	discriminate	 any	 content,	 emotional	or	otherwise,	 of	

stimuli	presented	in	their	blind	field	in	two	alternative	forced	choice	tasks),	have	shown	implicit	processing	

of	 unseen	 fearful	 stimuli	 both	 at	 the	 behavioural	 level	 and	 at	 the	 electrophysiological	 level.	 Specifically,	

hemianopic	 patients	 evaluated	 with	 indirect	 tests	 in	 which	 they	 were	 asked	 to	 respond	 to	 seen	 faces	

presented	 in	 the	 intact	 field,	 during	 the	 concurrent	 presentation	 of	 faces	 in	 their	 blind	 field,	 showed	 a	

response	facilitation	(i.e.	reduced	reaction	times)	only	when	fearful	faces	were	presented	at	the	same	time	in	

the	blind	field,	but	not	when	happy	faces	were	presented	in	the	blind	field	(Bertini	et	al.,	2013).	Similarly,	at	

the	electrophysiological	level,	presenting	fearful	faces	in	the	blind	field	increases	the	amplitude	of	the	N170	

component	evoked	by	faces	presented	in	the	intact	field,	indicating	enhanced	early	structural	encoding	of	the	

seen	faces	(Cecere	et	al.,	2014).	These	findings	from	hemianopic	patients	show	that	when	the	cortical	visual	
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pathway	 is	 lesioned,	 threat-related	 emotional	 information	 in	 the	 blind	 field	 can	 still	 be	 extracted	 and	

processed	in	order	to	improve	visual	processing	in	the	intact	field.		

This	 fear-related	 specificity	 in	 implicit	 visual	 processing	 seems	 to	 be	mediated	 by	 the	 spared,	 alternative	

subcortical	visual	circuit,	which	encompasses	structures	important	for	visual	and	emotional	processing	such	

as	 the	 superior	 colliculus	 (SC),	 the	 pulvinar	 and	 the	 amygdala	 (LeDoux,	 1998).	 The	 subcortical	 colliculo-

pulvinar-amygdala	 circuit	 represents	 a	 critical	 route	 for	 coarse	 and	 rapid	 visual	 processing	 of	 salient	 and	

emotional	visual	information	(Garrido	et	al.,	2012;	Garvert	et	al.,	2014).	Indeed,	superior	colliculus’	neurons	

in	 primates	 have	 been	 shown	 to	 encode	 coarse	 facial	 information	 around	 25-50	ms	 after	 stimulus	 onset	

(Nguyen	et	al.,	2016,	2014).	In	keeping	with	this	finding,	the	pulvinar	shows	differential	neural	responses	to	

facial	 expressions	 within	 100	 ms	 after	 stimulus	 onset	 (Maior	 et	 al.,	 2010).	 Similarly,	 in	 humans,	 early	

responses	to	fearful	faces	in	the	pulvinar	and	the	amygdala	have	been	found	as	early	as	40	ms	after	stimulus	

onset	(Luo	et	al.,	2007).	Evidence	of	direct	anatomical	connections	between	these	subcortical	sites	has	been	

provided	by	diffusion	tensor	imaging	studies	in	both	monkeys	and	humans	(Rafal	et	al.,	2015;	Tamietto	et	al.,	

2012).	Crucially,	the	fibers	connecting	the	structures	of	this	subcortical	pathway	are	spared	and	reportedly	

strengthened	after	V1	 lesions	 in	blindsight	patients	(Tamietto	et	al.,	2012),	supporting	 the	hypothesis	 that	

they	might	represent	the	pathway	for	implicit	emotional	visual	processing.		

So	far,	the	behavioural	and	electrophysiological	findings	in	hemianopic	patients	(Bertini	et	al.,	2013;	Cecere	

et	 al.,	 2014)	 have	 shown	 that	 presenting	 unseen	 fearful	 faces	 facilitates	 early	 visual	 encoding	 and	

behavioural	discrimination	of	faces	presented	in	the	intact	field.	However,	the	engagement	of	the	colliculo-

pulvinar-amygdala	circuit	 in	implicit	visual	processing	of	fearful	faces	without	awareness	suggests	that	the	

facilitatory	effects	could	generalize	to	other	stimuli	outside	the	facial	domain.	Indeed,	the	subcortical	circuit	

allows	 rapid	 detection	 of	 stimuli	 for	 survival	 (Adolphs,	 2013;	 LeDoux,	 2014),	 therefore	 suggesting	 an	

adaptive	role	in	prioritizing	visual	analysis	of	the	environment.	In	line	with	this	idea,	the	present	study	was	

designed	 to	 investigate	whether	 presenting	 fearful	 faces	 in	 the	 blind	 field	 of	 hemianopic	 patients	without	

blindsight	could	facilitate	the	visual	analysis	of	simple	visual	stimuli	presented	in	the	intact	field.	Specifically,	

patients	were	asked	 to	discriminate	Gabor	patches	presented	 in	 the	 intact	 visual	 field,	during	 	 concurrent	

presentation	of	 fearful,	happy	and	neutral	 faces	 in	the	blind	field.	 Indeed,	 the	orientation	discrimination	of	
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Gabor	patches	is	known	to	rely	on	the	activation	of	striate	and	early	ventral	extrastriate	cortices	(Fang	et	al.,	

2005)	and,	 is	 therefore,	suitable	for	testing	basic	visual	processing.	 If	unseen	fear	signals	are	processed	by	

the	spared	subcortical	pathway	and	 facilitate	visual	processing	 in	 the	 intact	 field,	 then	responses	 to	Gabor	

patches	 in	 the	 intact	 field	 should	 be	 facilitated,	 when	 fearful	 faces,	 but	 not	 happy	 or	 neutral	 faces,	 are	

concurrently	presented	in	the	blind	field.		

	

	
2 Methods	

2.1 Participants	

Sixteen	 right-handed	 patients	with	 chronic	 visual	 field	 defects	 participated	 in	 Experiments	 1	 and	 2.	 Eight	

patients	had	a	 left	visual	 field	defect	 (3	 females;	mean	age:	45.7	years;	mean	years	of	education:	15	years;	

mean	 time	 since	 lesion	onset:	16.9	months),	 and	 the	other	 eight	patients	had	a	 right	 visual	 field	defect	 (2	

females;	 mean	 age:	 49.9	 years;	 mean	 years	 of	 education:	 11.5	 years;	 mean	 time	 since	 lesion	 onset:	 12.6	

months),	as	documented	by	an	automated	perimetry	test.	The	two	groups	of	patients	did	not	differ	in	terms	

of	age	(t(14)=-0.64;	p=.53),	education	(t(14)=1.89;	p=.08)	or	time	since	 lesion	onset	(t(14)=0.5;	p=.62).	All	

patients	 had	 post-geniculate	 lesions	 resulting	 in	 deafferentation	 or	 destruction	 of	 the	 striate	 cortex,	

confirmed	by	computed	tomography	(CT)	or	magnetic	resonance	 imaging	(MRI).	Clinical	details	and	lesion	

reconstruction	images,	based	on	CT	or	MRI	scans	are	reported	in	Table	1	and	Fig.	1,	respectively.	All	patients	

had	 normal	 or	 corrected-to-normal	 vision	 and	 no	 coexisting	 neurological	 or	 psychiatric	 disorders	 or	

cognitive	 deficits.	 In	 accordance	 with	 the	 Declaration	 of	 Helsinki,	 patients	 provided	 written	 informed	

consent	to	participate	in	the	study,	which	was	approved	by	the	Departmental	Ethics	Committee.	

Mapping	 of	 brain	 lesions	 was	 performed	 using	 MRIcron	 (Rorden	 et	 al.,	 2007;	 Rorden	 and	 Brett,	 2000).	

Lesions	documented	by	the	most	recent	clinical	CT	or	MRI	were	traced	onto	the	T1-weighted	MRI	template	

from	the	Montreal	Neurological	Institute	provided	with	MRIcron	software	(Rorden	et	al.,	2007;	Rorden	and	

Brett,	2000).	Lesion	volumes	were	computed	for	each	patient	and	the	extents	of	the	lesions	were	compared	

between	the	two	groups	with	Mann-Whitney	test,	revealing	no	significant	differences	between	patients	with	

left	(19253	mm3)	and	right	(30762	mm3)	hemispheric	damage	(U	=	29;	Z	=	0.32;	p	=	 .75).	All	patients	had	
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lesions	of	cortical	areas	that	excluded	the	amygdala,	posterior	thalamus,	and	superior	colliculus	(Figure	2C,	

D,	E).	

	

Please	insert	Figures	1	and	2	about	here.	

	
2.2	Apparatus	

During	the	experimental	sessions,	patients	sat	in	a	dimly	lit	and	sound	attenuated	room	in	front	of	a	17”	LCD	

monitor	 (refresh	rate:	60	Hz)	at	a	distance	of	57	cm.	Eye	movements	were	monitored	via	a	Pan/Tilt	optic	

eye-tracker	 (Eye-Track	 ASL-6000;	 sampling	 rate	 60	 Hz).	 Stimulus	 presentation	 was	 controlled	 by	 a	 PC	

running	 Presentation	 software	 (Version	 0.60,	 www.neurobs.com).	 Patients	 were	 asked	 to	 hold	 constant	

fixation	on	a	central	white	cross	subtending	a	visual	angle	of	2°.	For	patients	with	quadrantopia,	P4	(right	

inferior	 quadrantopia)	 and	 P7	 and	 P8	 (right	 superior	 quadrantopia),	 the	 fixation	 cross	 was	 horizontally	

centered,	but	presented	at	the	top	or	bottom	of	the	screen	(2°	from	the	upper/lower	edge),	respectively,	in	

order	to	ensure	presentation	of	stimuli	in	the	blind	field.	In	both	experimental	sessions,	the	central	fixation	

cross	and	the	stimuli	were	presented	on	a	grey	background.	

	

2.3	Experiment	1	–	Two-alternative	forced	choice	tasks	

In	order	to	ensure	that	patients	had	no	form	of	blindsight,	they	underwent	four	separate	sessions	of	a	two-

alternative	 forced	 choice	 (2AFC)	 task	 using	 different	 types	 of	 stimuli.	 Stimuli	were	 only	 presented	 in	 the	

blind	 field,	 with	 their	 center	 aligned	 to	 the	 center	 of	 the	 screen	 on	 the	 vertical	 axis	 (0°)	 and	 at	 ±10°	

eccentricity	 on	 the	 horizontal	 axis	 (either	 to	 left	 or	 to	 the	 right	 based	 on	 each	 patient’s	 scotoma	

lateralization).	 For	patients	with	quadrantopia,	 the	 stimuli	were	presented	 at	 the	 same	horizontal	 (±10°	 )	

and	vertical	(0°)	eccentricity	 from	the	center	of	 the	screen,	but	the	fixation	cross	was	presented	at	the	top	

(for	 lower	 quadrantopia)	 or	 at	 the	 bottom	 (for	 upper	 quadrantopia)	 of	 the	 screen,	 such	 that	 the	 vertical	

distance	 of	 the	 center	 of	 the	 stimuli	 from	 the	 fixation	was	 11°.	 In	 the	 visual	 detection	 task,	 the	 stimulus	

consisted	of	a	white	dot	(2°	diameter).	In	the	emotional	task,	12	greyscale	photographs	(Ekman	and	Friesen,	

1976)	 of	 six	 different	 identities	 (3	 females)	 showing	 fearful	 or	 happy	 expressions	 (7°	x	 5°)	were	 used	 as	



7	
	

stimuli.	 In	 the	 gender	 task,	 stimuli	 consisted	 of	 six	 greyscale	 photographs	 (Ekman	 and	 Friesen,	 1976)	 of	

different	 faces	 (Three	 females)	with	 a	 neutral	 expression	 (7°x	 5°).	 The	 photographs	were	modified	 using	

Adobe	 Photoshop	 to	 extract	 an	 area	 centered	 on	 the	 face	 and	 to	 remove	 the	 hairline.	 In	 the	 geometrical	

shapes	task,	white	squares	and	circles	(5°	x	5°)	were	used	as	stimuli.	Each	trial	(2250	ms	overall	duration)	

started	with	a	central	fixation	cross	(500	ms),	followed	by	the	target	stimulus,	if	present	(1500	ms)	and	again	

by	a	fixation	cross	(250	ms).	After	the	presentation	of	each	stimulus,	a	sound	prompted	patients	to	verbally	

respond	and	responses	were	manually	recorded	by	the	experimenter.	A	new	trial	began	when	patients	were	

fixating	 the	central	 fixation	cross.	Trial	onset	was	manually	 controlled	by	 the	experimenter.	Patients	were	

instructed	 to	keep	 fixation	on	 the	 central	 cross	during	 the	 task	and	 trials	where	eye	movements	occurred	

were	discarded	from	the	analysis	(2%).	Stimuli	were	randomly	presented	in	the	blind	visual	field;	no	stimuli	

were	shown	in	the	intact	field.	In	the	visual	detection	task,	patients	were	asked	to	indicate	whether	or	not	a	

white	dot	was	presented	in	the	blind	field	(50%	valid	trials,	50%	catch	trials).	In	the	remaining	three	tasks	

they	were	 required	 to	 guess,	 between	 two	 choices,	which	 type	 of	 image	was	 presented	 in	 the	 blind	 field:	

fearful	 versus	 happy	 faces	 in	 the	 emotional	 task,	 male	 versus	 female	 faces	 in	 the	 gender	 task	 and	 circle	

versus	square	in	the	geometrical	shapes	task.	Sessions	were	performed	in	a	counterbalanced	order.	In	each	

of	 the	 four	experimental	 tasks,	patients	performed	a	single	block	of	180	trials	(90	trials	of	each	of	 the	two	

possible	choices).	For	each	task,	the	mean	percentage	of	correct	responses	was	computed	and	the	accuracy	

was	compared	to	the	chance	level	(50%	correct	responses)	using	a	Binomial	test.	

	

2.4 Experiment 2 - Go/no-go task with redundant stimuli  

Patients	performed	a	go/no-go	orientation	discrimination	task	with	stimuli	presented	in	both	the	intact	and	

the	blind	field.	Target	stimuli	were	presented	in	the	intact	field	and	coupled	with	concurrent	stimuli	 in	the	

blind	 field.	 Pairs	 of	 stimuli	 appeared	pseudo-randomly	 at	 10°	 on	 the	horizontal	 axis	 to	 the	 left	 and	 to	 the	

right	 of	 the	 center	 of	 the	 screen	with	 their	 center	 aligned	 to	 the	 center	 of	 the	 screen	 on	 the	 vertical	 axis	

(0°).For	patients	with	quadrantopia,	the	stimuli	were	presented	at	the	same	horizontal	(±10°	)	and	vertical	

(0°)	 eccentricity	 from	 the	 center	 of	 the	 screen,	 but	 the	 fixation	 cross	was	 presented	 at	 the	 top	 (for	 lower	
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quadrantopia)	or	at	the	bottom	(for	upper	quadrantopia)	of	the	screen,	such	that	the	vertical	distance	of	the	

center	of	the	stimuli	from	the	fixation	was	11°.	

Target	stimuli,	presented	in	the	intact	field,	consisted	of	Gabor	patches	(diameter:	2°;	spatial	frequency:	8Hz)	

that	were	created	using	Matlab	(The	MathWorks	Inc.,	Natick,	MA)	and	exported	in	a	format	compatible	with	

Presentation	software.	Concurrent	stimuli	presented	in	the	blind	field	consisted	of	18	greyscale	photographs	

(Ekman	 and	 Friesen,	 1976)	 of	 six	 different	 identities	 (3	 females)	 showing	 fearful,	 happy	 or	 neutral	

expressions	(7°	x	5°).	Photographs	were	modified	using	Adobe	Photoshop,	to	extract	an	area	centred	on	the	

face	and	to	remove	the	hairline.		

The	structure	of	each	trial	consisted	of	a	central	 fixation	cross	(500	ms),	 followed	by	the	stimuli	 (200	ms)	

and	 a	 subsequent	 blank	 screen	 (1000	ms).	 A	 new	 trial	 automatically	 began	 after	 an	 inter-trial	 interval	 of	

random	 duration	 (500-800	 msec).	 Trials	 with	 eye	 movements	 were	 discarded	 from	 the	 analysis	 (4%).	

Overall,	patients	performed	six	blocks	of	the	go/no-go	task.	In	half	of	the	blocks,	they	were	asked	to	quickly	

respond	to	Gabor	patches	with	a	vertical	orientation	(by	pressing	the	spacebar	on	a	keyboard)	and	to	refrain	

from	responding	to	Gabor	patches	with	a	horizontal	orientation;	 in	 the	other	half	of	 the	blocks,	 target	and	

non-target	 stimuli	 were	 reversed.	 Concurrently	 with	 target	 presentation	 in	 the	 intact	 field,	 a	 face	 with	 a	

fearful	expression,	a	happy	expression	or	a	neutral	expression	was	presented	in	the	blind	visual	field	.	A	total	

of	216	trials	were	presented	(108	trials	when	the	target	was	the	horizontal	Gabor	patch:	18	repetitions	x	3	

unseen	 emotional	 faces	 x	 2	 target/distractor;	 108	 trials	when	 the	 target	was	 the	 vertical	Gabor	patch:	 18	

repetitions	 x	 3	 unseen	 emotional	 faces	 x	 2	 target/distractor).	 To	 control	 for	 outliers,	 trials	with	 response	

times	 (RTs)	 exceeding	 2	 standard	 deviations	 above	 or	 below	 the	mean	 were	 excluded	 from	 the	 analysis	

(5%).	Responses	to	horizontal	and	vertical	Gabor	patch	targets	were	collapsed	and	RTs	and	hit	rates	were	

analysed	 using	 two	 separate	 analyses	 of	 variance	 (ANOVA)	with	Group	 (right-hemisphere	 lesion	 patients,	

left-hemisphere	 lesion	 patients)	 and	Condition	 (unseen	 fearful,	 unseen	happy,	 unseen	neutral),	 as	 factors.	

Post-hoc	comparisons	were	run	with	Newman-Keuls	test.	

	

3 Results	
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3.1 Experiment	1	–	Two-alternative	forced	choice	tasks	

In	the	visual	detection	task,	performance	did	not	significantly	differ	 from	chance	(see	Table	2;	all	ps>	 .23).	

Performance	also	did	not	differ	significantly	from	chance	in	the	discrimination	tasks:	emotional	task	(all	ps>	

.1),	gender	task	(all	ps>	 .1),	geometrical	shapes	task	(all	ps>	 .18).	These	results	 indicate	that	patients	were	

not	aware	of	the	presence	or	the	nature	of	stimuli	presented	in	the	blind	field	and	did	not	show	any	form	of	

blindsight.	Moreover,	anecdotally,	both	left	and	right	lesioned	patients	spontaneously	reported	the	absence	

of	any	visual	sensation	throughout	the	entire	test,	regardless	the	type	of	stimulus	presented	in	the	blind	field.	

	

3.2	Experiment	2	-	Go/no-go task with redundant stimuli 

Results of the ANOVA on the RTs to horizontal and vertical Gabor patches presented in the intact field revealed no 

significant main effect of Group [F(1,14) = 0.013, p= .9; ηp
 2 <.0009] or Condition [F(2,28) = 1.76, p= .19; ηp

 2 

=.11]. In contrast, a significant Group x Condition interaction was found [F(2,28) = 8.71, p= .001; ηp
 2 =.38]. Post-

hoc comparisons revealed that, in patients with left hemispheric lesions, RTs to Gabor patches presented in the 

intact field were reduced when they were concurrently presented with fearful faces in the blind field (555 ms), 

compared to the conditions in which they were presented with happy faces (586 ms; p=.005) or neutral faces (579 

ms; p=.032; see Figure 3).  No significant difference was found between these two latter conditions (p=.38). In 

contrast, in patients with right hemispheric lesions, RTs to seen Gabor patches coupled with concurrent unseen 

fearful faces (575 ms) were not significantly different from RTs in the conditions with concurrent happy (565 ms; 

p=.19) and neutral faces (562 ms; p=.22). Again, no significant difference was found between the happy and neutral 

conditions (p=. 74; see Figure 3). 

Results of the ANOVA on the hit rates revealed no significant main effect or interaction (all ps > .17). The mean hit 

rates was 93% (±6%).	

	

Please	insert	Figure	3	about	here.	

	

4	Discussion	
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In patients with visual field defects without blindsight, unseen fearful faces facilitated visual processing of and 

behavioural responses to simple visual stimuli (i.e. Gabor patches) presented in the intact field. In a task requiring 

patients to discriminate the orientation of Gabor patches in their intact field, a reduction in response times was 

found only when fearful faces were concurrently presented in the blind field. No modulation of the response was 

observed in the presence of unseen neutral or happy faces.  

These results are in line with previous findings in hemianopics without blindsight, showing that unseen fearful 

faces represent the only visual information that is implicitly processed and able to facilitate early visual encoding 

(Cecere et al., 2014) and response times (Bertini et al., 2013) to faces presented in the intact field. This suggests 

that, when the cortical visual pathway is damaged, threat-related information can be processed in the absence of 

awareness. This effect might be subserved by the subcortical colliculo-pulvinar-amygdala circuit, which is spared 

after the lesion (Tamietto et al., 2012). Indeed, fearful faces represent an optimal cue for engaging the subcortical 

visual circuit, as they have been shown to enhance amygdala responses even in the absence of awareness (Morris et 

al., 2001). In addition, recent electrophysiological evidence in primates has shown that superior colliculus’ neurons 

respond to face and face-like stimuli (Nguyen et al., 2016, 2014) and that pulvinar neurons show differential 

activation to emotional faces (Maior et al., 2010).  

The present findings add to previous data by showing that unseen fearful faces can facilitate not only the processing 

of other faces in the intact field, but also the visual processing of simple visual stimuli, such as Gabor patches. This 

suggests that the effects of engaging of the subcortical colliculo-pulvinar-amygdala pathway by presenting unseen 

fearful faces extend outside the facial domain and can influence visual processes mediated by the striate and early 

extrastriate cortices (Fang et al., 2005). Emotional images can enhance activity in early occipital cortices (Lang et 

al., 1998; Morris et al., 1998; Vuilleumier, 2005) and modulate early visual components in event-related potentials  

(Batty and Taylor, 2003; Borhani et al., 2015; Frühholz et al., 2011; Schupp et al., 2004; Stekelenburg and de 

Gelder, 2004), possibly through reciprocal connections between the amygdala and visual processing regions (Diano 

et al., 2017; LeDoux, 1998). Moreover, stimuli such as highly distressing noises, which reliably activate the 

subcortical defensive circuit and induce acute cardiac changes consistent with defense responses (Vila et al., 2007), 

are also associated with heightened visual perceptual processing (Keil et al., 2010). Furthermore, novel (Schomaker 

and Meeter, 2012) and emotionally salient visual stimuli, such as fearful faces (Bocanegra and Zeelenberg, 2009; 
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Phelps et al., 2006), have been shown to facilitate early visual processing and enhance contrast sensitivity. In line 

with this reasoning, previous ERP findings from hemianopic patients (Cecere et al., 2014) support the idea that 

unseen fearful faces can enhance early visual processing; indeed, hemianopic patients showed an increase in the 

amplitude of early ERP components (i.e., N170) related to the early structural visual encoding of faces. 

It	is	worth	noting	that	the	fear-specific	implicit	visual	processing	observed	in	hemianopic	patients	here	and	

in	previous	 findings	(Bertini	et	al.,	2013;	Cecere	et	al.,	2014)	 is	different	 from	the	performance	of	patients	

with	 affective	 blindsight,	 who	 demonstrate	 above-chance	 emotional	 discrimination	 and	 congruency-

dependent	 facilitation	 effects	 with	 emotional	 stimuli	 (de	 Gelder	 et	 al.,	 2001,	 1999;	 Pegna	 et	 al.,	 2005).	

Different	neural	 substrates	might	account	 for	 these	distinct	patterns	of	performance.	 Specifically,	 affective	

blindsight	might	reflect	the	contribution	of	spared	and	functionally	reorganized	cortical	visual	areas,	while	

the	 fear-specific	 implicit	 visual	 processing	 of	 hemianopic	 patients	 might	 rely	 only	 on	 the	 activity	 of	 the	

colliculo-pulvinar-amygdala	subcortical	pathway.	This	has	also	been	suggested	by	similar	findings	in	healthy	

participants	 tested	with	backward-masked	emotional	 faces,	who	showed	 fear-specific	 response	 facilitation	

(i.e.	 similar	 to	 that	 found	 in	 hemianopic	 patients)	when	 the	 occipital	 cortex	was	 inhibited	 by	 transcranial	

direct	current	stimulation	(tDCS),	and	congruency-dependent	effects	(i.e.	similar	to	those	found	in	blindsight	

patients)	 when	 tDCS	 was	 applied	 to	 a	 control	 site	 without	 suppressing	 activity	 in	 visual	 cortical	 areas	

(Cecere	et	al.,	2013).	

Notably,	 in	 line	with	previous	electrophysiological	 findings	 (Cecere	et	al.,	2014),	 in	 the	present	 study	only	

patients	with	 left	hemispheric	 lesions	 showed	response	 facilitation	with	unseen	 fearful	 stimuli,	 suggesting	

that	 the	 intact	 right	 hemisphere	 mediates	 the	 facilitatory	 effect.	 The	 relevance	 of	 the	 right	 hemisphere	

subcortical	 route	 to	 emotional	 processing	 has	 been	 extensively	 documented,	 especially	 for	 unconscious	

affective	stimuli	(for	a	review:	Gainotti,	2012).	In	line	with	these	findings,	masked	emotional	faces	have	been	

reported	 to	 elicit	 right-lateralized	 amygdala	 activation	 (Costafreda	 et	 al.,	 2008).	 Additionally,	 unconscious	

fear-conditioned	 stimuli	 and	 subliminal	 fearful	 faces	 have	 been	 found	 to	 enhance	 activity	 in	 the	 right	

amygdala	 (Morris	 et	 al.,	 1998)	 and	 increase	 connectivity	 between	 the	 right	 hemisphere	 subcortical	 route,	

including	the	right	amygdala,	superior	colliculus	and	pulvinar	(Morris	et	al.,	1999;	Williams	et	al.,	2006).	
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Although	the	two	groups	of	patients	did	not	differ	in	terms	of	age,	lesion	onset	and	size,	possible	differences	

in	their	lesional	profile	or	the	extent	of	visual	field	sparing	could	represent	a	potential	confound.	Therefore,	

further	 studies	 are	needed	 to	 confirm	 the	different	 role	 of	 the	 left	 and	 right	 hemisphere	 in	mediating	 the	

facilitation	related	to	unseen	fear.		

In summary, the present findings provide evidence from hemianopic patients that unseen fear signals can be 

implicitly processed in the absence of awareness and facilitate visual processing in the intact visual field. This 

facilitatory effect, possibly mediated by the subcortical route for emotional processing, might represent an adaptive 

mechanism in which implicitly processed fear information acts as a warning signal and enhances early perceptual 

processing, in order to ensure rapid visual analysis of the environment and a timely reaction to an imminent threat. 
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Figure	Legends	

	

Figure 1: Lesion reconstruction images from MRI or CT scans, projected onto the normalized MNI template for 

patients with left hemisphere lesions (left column) and right hemisphere lesions (right column). 

Figure 2: Location and overlap of brain lesions. (A, B) The image shows the lesions of the left-lesioned patients 

(A) and right-lesioned patients (B) projected onto four axial slices of the standard MNI brain. In each slice, the left 

hemisphere is on the left side. The levels of the axial slices are marked by white lines on the sagittal view of the 

brain. The color bar indicates the number of overlapping lesions. (C–E) Overlap of the lesions of both left- and 

right-lesioned patients projected onto the axial slices where the amygdala (C), the posterior thalamus (D), and the 

superior colliculus (E) are visible. The arrows indicate the amygdala (C), the posterior thalamus (D), and the 

superior colliculus (E). 

Figure 3: Mean RTs for each condition (unseen fearful, unseen happy, unseen neutral) in patients with left 

hemisphere (LH) lesions and right hemisphere (RH) lesions. Error bars represent the standard error of the mean (s. 

e. m). Asterisks indicate a p < .05. A significant reduction in reaction times was found in the unseen fearful face 

condition relative to the unseen happy and neutral face conditions. 
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Figure 3 
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Table 1. Summary of clinical, demographic, and lesional data. M = male; F = female; AVM = arteriovenous 

malformation. 

 

  

Case	 Sex	 Age	 Years	of	
Education	

Time	since	lesion	
onset	(months)	

Visual	Field	Defect	 Aetiology	 Lesion	site	
	

P1	 M	 52	 8	 25	 Right	hemianopia	 Traumatic	 Left	temporal	

P2	 M	 57	 13	 5	 Right	hemianopia	 Vascular	 Left	occipital	

P3	 M	 58	 8	 17	 Right	hemianopia	 Vascular	 Left	occipital	

P4	 M	 65	 8	 5	 Right	inferior	quadrantopia	 Vascular	 Left	occipital	

P5	 F	 54	 18	 8	 Right	hemianopia	 Vascular	 Left	temporal-occipital	

P6	 M	 34	 11	 18	 Right	hemianopia	 Vascular	 Left	parietal-occipital	

P7	 F	 29	 13	 8	 Right	superior	quadrantopia	 Vascular	(AVM)	 Left	temporal-parietal-occipital	

P8	 M	 50	 13	 15	 Right	superior	quadrantopia	 Vascular	 Left	temporal-parietal-occipital	

P9	 M	 47	 13	 8	 Left	hemianopia	 Vascular	 Right	temporal-parietal-occipital	

P10	 M	 33	 13	 4	 Left	hemianopia	 Vascular	 Right	temporal-parietal	

P11	 M	 41	 11	 9	 Left	hemianopia	 Vascular	 Right	parietal-occipital	

P12	 F	 56	 16	 72	 Left	hemianopia	 Vascular	 Right	parietal-occipital	

P13	 M	 74	 23	 6	 Left	hemianopia	 Vascular	 Right	occipital	

P14	 M	 40	 13	 12	 Left	hemianopia	 Vascular	(AVM)	 Right	occipital	

P15	 F	 37	 13	 6	 Left	hemianopia	 Tumoral	 Right	temporal-occipital	

P16	 F	 38	 18	 18	 Left	hemianopia	 Vascular	 Right	temporal-parietal	
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Case Visual Detection  
Task 

Emotional Task Gender Task Shape Task 

P1 47% 47% 48% 47% 

P2 46% 54% 52% 46% 

P3 53% 50% 49% 48% 

P4 54% 56% 48% 51% 

P5 54% 49% 53% 55% 

P6 49% 46% 47% 53% 

P7 53% 50% 54% 47% 

P8	 47%	 51%	 46%	 46%	

P9	 50%	 53%	 44%	 50%	

P10	 47%	 54%	 50%	 48%	

P11	 53%	 46%	 50%	 53%	

P12	 49%	 47%	 47%	 50%	

P13	 53%	 50%	 48%	 54%	

P14	 54%	 48%	 46%	 51%	

P15	 46%	 50%	 52%	 53%	

P16	 53%	 56%	 46%	 46%	
 

Table 2. Percentages of correct answers in the two-alternative	forced	choice	tasks.	

. 
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