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Abstract—In this letter we propose two methods for personnel 

recognition and gait classification using deep convolutional neural 

networks (DCNNs) based on multistatic radar micro-Doppler 

signatures. Previous DCNN based schemes have mainly focused on 

monostatic scenarios, whereas directional diversity offered by 

multistatic radar is exploited in our work to improve classification 

accuracy. We first propose the voted monostatic DCNN method 

(VMo-DCNN), which trains DCNNs on each receiver node 

separately, and fuses the results by binary voting. By merging the 

fusion step into the network architecture, we further propose the 

multistatic DCNN method (Mul-DCNN), which performs slightly 

better than VMo-DCNN. These methods are validated on real data 

measured with a 2.4 GHz multistatic radar system. Experimental 

results show that Mul-DCNN achieves over 99% accuracy in 

armed/unarmed gait classification using only 20% training data 

and similar performance in two-class personnel recognition using 

50% training data, which are higher than the accuracy obtained 

by performing DCNN on a single radar node. 

 
Index Terms—Convolutional neural networks, data fusion, 

deep learning, micro-Doppler, multistatic radar, target 

classification. 

I. INTRODUCTION 

ICRO-Doppler refers to the additional Doppler frequency 

shift of moving targets generated by vibration, rotation, 

etc. with respect to their main Doppler component [1]. Target 

classification using micro-Doppler signatures has seen a rapid 

growth in recent years [2-6], with application in fields including 

surveillance [2][3], healthcare [4][5] and human-computer 

interaction [6]. Based on the human micro-Doppler signature, 

personnel recognition and human activity classification have 

attracted much attention [5, 7-10]. In [7], empirical features 

with clear physical meaning are used to train a support vector 

machine (SVM) classifier. Similar classification tools are used 

in [8] on dual frequency radar micro-Doppler signatures. The 

authors of [9] propose some features based on singular value 

decomposition (SVD) of the spectrogram, which yield good 

performance in classification of unarmed/armed personnel 

outdoors. Principal component analysis (PCA) is used in [5] for 

feature extraction, and a more robust tool L1-PCA is utilized in 

[10] for indoor human limb motion classification. 

The newly developed deep learning algorithms have been 

introduced into radar target classification. One of the 

preliminary works by Kim [11] investigated the feasibility of 

using deep convolutional neural network (DCNN) in micro-

Doppler based classification tasks. The authors used a DCNN 

with a straightforward structure to distinguish human from 

three classes of non-human objects and to classify six classes of 

human activities. In [12], a similar method was used for hand 

gesture classification. More sophisticated DCNN architectures 

were used later, including 7-layer DCNN [13], transfer learned 

AlexNet and VGG-16 network [14] and a three-layer semi-

supervised auto-encoder [15]. New problems such as low 

latency classification [16] and multi-target human gait 

classification [9, 17] have also been taken into consideration. 

It is well known that micro-Doppler signatures depend on the 

aspect angle between the target movement and the radar line of 

sight. Classification performance suffers severe degradation 

when the aspect angle is close to 90°, but it degrades slightly at 

smaller aspect angles, e.g. 30° [7]. Because multistatic radar 

observes targets from different lines of sight, it has the potential 

to alleviate the negative effect of large aspect angles and hence 

to improve the classification accuracy by using proper multi-

view fusion methods. One of the pioneer works [18] uses a 

fused spectrogram from multistatic radar data, but the algorithm 

is tested only on synthetic data generated by video motion 

capture. In further study [9] and [19], real data are collected by 

the multistatic radar system NetRAD for the classification of 

armed/unarmed personnel targets. Using empirical features and 

off-the-shelf classifiers, the authors train unique classifiers for 

each receiver node, and then fuse the classification results by 

binary voting. The fused result shows improved accuracy 

compared to each receiver node itself. Another approach to 

classification with multistatic radar firstly fuses features from 

different nodes and then feed them into classifiers. Ref. [20] 

uses brute force search and other less computationally intensive 

algorithms, e.g. T-test and mutual information criteria, to find 

three optimal/sub-optimal features out of twelve pre-defined 

features at each receiver node. Instead of feature selection, Ref. 

[21] uses linear combination, i.e. PCA, to fuse features obtained 

from 4×4 MIMO channels.  

A natural thought is to combine the advantage of DCNN and 

multi-view fusion. A novel work [16] investigates the 

feasibility of combining data from different aspect angles to 
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improve classification accuracy, using deep learning and 

boosting trees. However, the data are measured by monostatic 

radar at different aspect angles rather than by a multistatic radar 

system simultaneously. To the best of our knowledge, 

classification based on multistatic micro-Doppler signatures 

using DCNN has not been sufficiently investigated.  

In this letter, performing DCNN on a single radar node is 

called monostatic DCNN method (Mo-DCNN). With the data 

collected by three radar nodes of a multistatic radar, we propose 

two DCNN based methods for personnel recognition and gait 

classification. One is the voted monostatic DCNN method 

(VMo-DCNN), in which we fuse the results of Mo-DCNN of 

each node via binary voting. The other one is the multistatic 

DCNN method (Mul-DCNN), in which a fusion layer is added 

to the network thus the fusion step is conducted inside the 

DCNN automatically. Due to the existence of the fusion layer, 

Mul-DCNN is able to learn fusion rules automatically and has 

the potential to achieve better performance. Both VMo-DCNN 

and Mul-DCNN are tested on real data and show significant 

accuracy improvement over Mo-DCNN for both personnel 

recognition and gait classification tasks.  

The remaining parts of this letter are organized as follows. 

Section II describes the multistatic radar dataset. Section III 

demonstrates the DCNN architecture and the process of DCNN 

training. Section IV presents the results of the two classification 

tasks. Finally, we conclude the letter in Section V. 

II. MULTI-STATIC RADAR DATASET 

The data used in this letter were collected in July 2015 by 

NetRAD, a coherent multistatic pulsed radar system developed 

at University College London [9]. NetRAD consists of three 

nodes deployed on a linear baseline and operating at 2.4 GHz, 

with linear up-chirp modulation, 45 MHz bandwidth and 5 kHz 

pulse repetition frequency (PRF). Fig. 1 shows the geometry of 

the experimental scene. All antennas of the three nodes are 

pointing at zone 5. The node in the middle (node 1) is a 

transmitter-receiver node, whereas the other nodes (node 2 and 

3) on both sides are receivers only. Thus, three-channel 

synchronized data can be collected simultaneously. Each set of 

data was recorded for 5 s, during which a single person walked 

towards the baseline in one of the six zones, either moving his 

arms freely (referred to as “unarmed” case) or holding a 

metallic pole (referred to as “armed” case). The whole dataset 

consists of 2 persons, 2 actions (i.e. armed and unarmed), 6 

zones and 5 repetitions for each case, making a total number of 

120 three-channel recordings. We further duplicate the size of 

the dataset by splitting every piece of data into two pieces both 

with 2.5 s duration, and discard the data collected in zone 5 due 

to some missing data. In summary, we use a dataset containing 

200 samples collected by the three nodes.  

Typical data samples collected by node 1 are visualized in 

Fig.2 using the Short Time Fourier Transform (STFT). The 

main Doppler component is about 20 Hz, corresponding to the 

torso speed of the subject. The other components mainly 

indicate the movement of limbs. It is easy to find differences 

between the armed (Fig.2 (b) and (d)) and unarmed (Fig.2 (a) 

and (c)) gaits. In the unarmed case, higher Doppler bandwidth 

is observed due to freely swinging arms. In the armed case, the 

movement of arms is restricted by the metallic pole in hands, 

resulting in a more condensed micro-Doppler pattern. The 

difference between the persons A (Fig.2 (a) and (b)) and B 

(Fig.2 (c) and (d)), however, is less noticeable. When both 

persons are unarmed (Fig.2 (a) and (c)), the gait of person A 

shows slight asymmetry. The difference is even harder to find 

by human eyes when they are both armed (Fig.2 (b) and (d)). 

In this letter, we focus on the tasks of gait classification and 

personnel recognition. Both are two-class classification tasks. 

In the gait classification task, the two classes are armed and 

unarmed gaits, regardless of the person. In the personnel 

recognition task, we try to classify persons A and B regardless 

of whether they are armed or unarmed. The personnel 

recognition task is much more challenging.  

III. DCNN IMPLEMENTATION AND TRAINING 

A. Data Pre-processing for Transfer Learning 

Here the transfer learned DCNN is used to distinguish 

different gaits and different personnel targets. Transfer learning 

[22] is generally a technique that aims to transfer the knowledge 

learned from one task to another related but different one. In the 

field of DCNN, it refers to utilizing the information of a 

network pre-trained on a large dataset to train a different 

network on a small dataset, which has been successfully used 

in the design of many DCNNs [23, 24] to alleviate overfitting 

problems. It can be done in two steps: (1) replace the last few 

layers in the pre-trained network by new designed ones and 

initialize them randomly; (2) train on the small dataset (referred 

 
Fig. 1. The NetRAD radar system setup [9] 

  

 
Fig. 2. Typical spectrograms of different person and activity (node 1): (a) 
person A, unarmed; (b) person A, armed; (c) person B, unarmed; (d) person B, 

armed 

  

(a) (b) 

(c) (d) 



GRSL-01119-2017 

 

3 

to as “fine-tuning”). Recent work has explored the feasibility of 

using CNN pre-trained on optical image dataset to fine-tune 

micro-Doppler spectrograms [14]. However, the time-

frequency spectrograms have only one channel, whereas optical 

images typically have RGB channels. The authors of [14] 

simply copy STFT spectrograms for the three input channels to 

solve this dimension mismatch problem, which is equivalent to 

regarding the spectrograms as grayscale images.  

In our method, the STFT spectrograms with three different 

window sizes are used as different channels of input data. 

Inspired by multi-resolution analysis methods such as wavelet, 

we believe that the magnitude of spectrograms in different time-

frequency resolutions provide richer information than single 

resolution ones. Specifically, we first calculate log-scale 

spectrograms with dimension 128 (frequency) ×  125 (time) 

using a Blackman window and a threshold of -40dB. Then the 

spectrograms are normalized to the interval [0, 255] to match 

the range of optical images, and finally the mean value of each 

spectrogram is subtracted. We set the window size to 0.13 s, 

0.26 s, and 0.51 s, respectively. One may refer to Fig. 3 to find 

an example of the input time-frequency spectrograms. Fig.3 (b) 

to (d) demostrate the spectrograms with increasing window 

size, corresbonding to increasing frequency resolution and 

decreasing time resolution. In Fig. 3(a), spectrograms of 

different window sizes are stacked as RGB image compoments, 

which are used exactly as the inputs of DCNN. The R, G and B 

channels of Fig.3 (a) are identical to those of Fig.3(b), (c) and 

(d), respectively. 

B. DCNN Architecture 

Using data from a single node as input, a six-layer DCNN is 

carried out for Mo-DCNN (shown in Fig.4, where the number 

follows ‘#’ indicates the feature depth). The Rectified Linear 

Unit (ReLU) activation is used after each layer except the last 

layer fc 6, where softmax is used. The idea for this architecture 

is straightforward. Optical images and spectrograms share some 

low level features, e.g. edges and curves, which are captured in 

the first several convolution layers of a network. Therefore, the 

first three layers (conv 1-3) are identical to and initialized with 

the first three convolution layers of pre-trained VGG-f network 

[25], which is an eight-layer DCNN architecture originally used 

for optical image classification. Here VGG-f is used just for 

example, and one may change to other network architectures 

with corresponding modification. We add the subsequent 

convolution layer (conv 4) to reduce dimensionality of the 

feature map along Doppler axis, resulting in an output with 

dimension 1 × 7 × 64  (Doppler ×  time ×  depth). Now, the 

output of conv 4 could be considered as seven different feature 

vectors with length 64, each containing information of the 

spectrogram within different (but overlapped) time interval. 

Finally, these vectors are fed into another two fully connected 

layers (fc 5-6) followed by a softmax activation to produce the 

final output. The output, a 7 × 2  matrix, represents the 

estimated Bernoulli distribution of the two classes within seven 

different time interval. When conducting back propagation, we 

treat the above-mentioned feature vectors as separate training 

samples. However, when testing, we mean-pool the output 

(dimension 7 × 2 ) along the timeline and get an averaged 

probability distribution (dimension 1 × 2 ), which improves 

classification robustness significantly.  

The proposed VMo-DCNN simply fuses the Mo-DCNN 

output of three nodes by binary voting. For the Mul-DCNN 

(shown in Fig.5, where some details are omitted for a clearer 

view), the first four layers in Mo-DCNN are copied for each 

receiver nodes. The corresponding layers share the same 

weights except for layer 4. Weight sharing reduces the total 

number of parameters, thus mitigating potential overfitting 

problem. Here we add a fusion layer to aggregate information 

from three branches corresponding to the three radar nodes. In 

this layer, the three output feature maps of layer 4 are max-

pooled along the node dimension (elementwise maximum 

operation). The subsequent layers are identical to those in Mo-

DCNN.  

For training speed-up and overfitting prevention, batch 

 
Fig. 4. The DCNN architecture for Mo-DCNN (1 node per network as input) 
 

 

Fig. 5. Proposed DCNN architecture for Mul-DCNN (3 nodes as input together) 

 

  
Fig. 3. Three-channel spectrogram as input (node 1): (a) Spectrograms stacked 

as an RGB image; (b) – (d) Spectrograms in default MATLAB colors, FFT 

window size equals to 0.13 s, 0.26 s, 0.51 s, respectively 

  

(a) (b) 

(c) (d) 
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normalization [26] and dropout [27] are used in the DCNN 

architecture except for the last two layers, since these two layers 

contain very small number of weights and are not likely to 

become overfitted.  

C. Training details 

We implement the proposed neural network using 

MatConvNet [28], a MATLAB based open source CNN toolkit. 

For training, we use the Adam solver [29] with parameters β1 =
0.9, β2 = 0.999, ϵ = 1 × 10−8 and a fixed batch size of 5, with 

mild complex Gaussian noise added to raw training samples to 

alleviate overfitting problems. Training lasts for 300 epochs in 

total. For the first 100 epochs, we initialize the first three 

convolution layers with VGG-f net [25] pre-trained on 

ImageNet dataset and set their learning rates to zero. The rest 

layers are initialized randomly and trained with learning rate 

α = 5 × 10−3 (for 20% and 33% training data ratios) or α =
2 × 10−3  (for 50% training data ratio). Then we set small 

(0.1α) learning rate for the first three layers while keeping the 

others unchanged for another 100 epochs. Finally, all learning 

rates are reduced to a tenth for additional 100 epochs, making 

the network converge. The training is carried out on an NVIDIA 

GTX1060 GPU with 6 GB memory. The training process takes 

minutes for 300 epochs, while testing takes only a few 

milliseconds per sample, which is affordable in some real-time 

scenarios. We summarize running times of training and testing 

in Fig. 6. Note that training time increases with the number of 

training samples while testing time only relies on the network 

architecture. 

IV. EXPERIMENTAL RESULTS 

A. Randomly Partitioned Training Set 

We first investigate the performance under three different 

ratios of training data, i.e. 20%, 33%, 50%. In the case of 20% 

training ratio, we partition the dataset into five folds randomly 

and evenly and conduct 5-fold cross validation using one fold 

as training set at each time. Since the two samples from the 

same piece of data tend to be similar, we put them either into 

training set or testing set. To make the result even more robust, 

the 5-fold cross validation is repeated for three times with 

statistically independent dataset partitions, making a total 15 

repetitions. Similarly, we conduct 3-fold cross validation for 

five times in the case of 33% training ratio (15 repetitions in 

total) and 2-fold cross validation for eight times in the case of 

50% training ratio (16 repetitions in total), resulting in almost 

the same total repetitions for all three ratios. 

The performances of both tasks, i.e., gait classification and 

personnel target identification, are validated using the above-

mentioned partition setups. Tables I and II show the minimum, 

maximum, and average accuracy among 15 or 16 independent 

trials. Columns 1 to 3 represent the accuracy of Mo-DCNN, 

namely the results of monostatic DCNN at each single node. 

Columns 4 to 5 represent the results of VMo-DCNN and Mul-

DCNN, respectively. As shown in Table I, the accuracy of gait 

classification is high enough with 20% training data, in which 

Mul-DCNN performs the best in average classification 

accuracy. We also find that VMo-DCNN fails to outperform 

Mo-DCNN with node 1 data, but this minor performance gap 

could be neglected considering statistical variance. In the more 

challenging personnel recognition task (shown in Table II), we 

try all training ratios. It is observed that both VMo-DCNN and 

Mul-DCNN show significant accuracy improvement over Mo-

DCNN. Mul-DCNN has the best overall performance again, 

though VMo-DCNN shows better minimum or maximum 

accuracy in certain scenarios. We pay additional attention to the 

minimum accuracy in both tasks, since the worst case indicates 

the robustness of an algorithm. We are glad to see that, in most 

scenarios, Mul-DCNN in both tasks improves the worst 

accuracy effectively compared to Mo-DCNN. 

B. Training on One Zone 

In addition to the random partitioning, we evaluate the 

proposed methods using one-zone data as the training set and 

the rest for testing. This experiment is more practical since the 

TABLE I 

RANDOM PARTITION: GAIT CLASSIFICATION ACCURACY (%) 

 
 Rx  

node 1 

Rx  

node 2 

Rx  

node 3 

VMo- 

DCNN 

Mul- 

DCNN 

20% 

training 

min 
max 

average 

98.75 

100.00 

99.50 

95.62 
98.75 

97.17 

94.37 

100.00 

98.00 

98.12 

100.00 

99.33 

98.75 

100.00 

99.63 

 

TABLE II 

RANDOM PARTITION: PERSONNEL RECOGNITION ACCURACY (%) 

  
Rx 

 node 1 
Rx 

 node 2 
Rx 

 node 3 
VMo- 
DCNN 

Mul- 
DCNN 

20% 

training 

min 

max 
average 

91.25 

98.75 
94.50 

88.75 

97.50 
94.33 

87.50 

96.87 
91.96 

91.87 

99.37 

97.13 

93.12 

99.37 

97.42 

33% 

training 

min 

max 
average 

93.08 

99.23 
97.10 

89.29 

98.46 
95.73 

92.31 

99.23 
96.65 

96.15 

100.00 

98.64 

93.85 

100.00 

98.98 

50% 
training 

min 

max 

average 

97.00 

100.00 

98.12 

95.00 

100.00 

98.31 

98.00 

100.00 

98.75 

99.00 

100.00 

99.75 

99.00 

100.00 

99.94 

 

 
Fig. 6. Running times of training (left axis) and testing (right axis) 

TABLE III 

TRAIN ON ONE ZONE: ACCURACY (%) 

Task 
Training 

zone 

Rx 

node 1 

Rx 

node 2 

Rx 

node 3 

VMo- 

DCNN 

Mul- 

DCNN 

Gait 

classification  

zone 1 

zone 2 
zone 3 

zone 4 

zone 6 
average 

98.75 

99.12 

100.00 

96.37 

99.13 
98.67 

93.00 

93.37 
89.87 

88.75 

93.87 
91.77 

98.75 

98.25 
99.88 

97.62 

97.75 
98.45 

99.75 

99.38 

100.00 

97.38 

99.50 

99.20 

99.87 

99.37 

100.00 

98.12 

99.00 

99.27 

Personnel 
recognition  

zone 1 

zone 2 

zone 3 
zone 4 

zone 6 

average 

94.13 

87.75 

94.75 

78.37 

95.00 

90.00 

81.75 

80.50 

85.62 
85.63 

95.12 

85.72 

83.00 

82.12 

89.25 
86.87 

89.88 

86.23 

90.88 

89.88 

93.62 
89.00 

96.13 

91.90 

95.50 

89.62 

93.25 

89.25 

97.25 

92.97 
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testing data have aspect angles that the classifier has never seen 

in training, which is often the case in the real applications. We 

perform experiments on both tasks, i.e. gait classification and 

personnel target identification. Five repetitions are done for 

each deterministic data partition and each task. The average 

performances of different methods are provided in Table III. 

Compared to random partitioning with 20% training data, the 

training ratio is the same but the accuracy falls as expected. 

However, in both tasks, VMo-DCNN and Mul-DCNN 

outperform all single nodes in nearly all training zones. 

Moreover, Mul-DCNN performs the best in terms of the 

average accuracy in most zones. This result indicates the 

robustness of the proposed methods. 

V. CONCLUSION AND DISCUSSION 

In this letter, we combined the superiority of DCNN and 

multistatic radar in micro-Doppler signature classification. The 

novel architecture design in the proposed Mul-DCNN enables 

data fusion within the DCNN, which outperforms processing at 

a single node (Mo-DCNN) as well as binary voting of multiple 

nodes (VMo-DCNN). To fully utilize the three channels in pre-

trained DCNN, we proposed a novel pre-processing technique 

using multi-window-size spectrograms as input to the network. 

Experiments on real data show that Mul-DCNN achieves over 

99% accuracy in gait classification using only 20% training data 

and similar performance in personnel recognition using 50% 

training data. Future work will aim to collect and analyze more 

data of different subjects and different classes of activities to 

test the proposed DCNN architectures. 

REFERENCES 

[1] V. C. Chen, “Doppler signatures of radar backscattering from objects with 

micro-motions,” IET Signal Process., vol. 2, no. 3, pp. 291–300, Sep. 

2008. 
[2] B. K. Kim, H. S. Kang and S. O. Park, “Drone classification using 

convolutional neural networks with merged Doppler images,” IEEE 

Geosci. Remote Sens. Lett., vol. 14, no. 1, pp. 38-42, Jan. 2017. 
[3] R. Zhang, G. Li, C. Clemente, and J. J. Soraghan, “Multi-aspect micro-

Doppler signatures for attitude-independent L/N quotient estimation and 

its application to helicopter classification,” IET Radar, Sonar Navigat., 
vol. 11, no. 4, pp. 701-708, Apr. 2017. 

[4] F. Fioranelli, M. Ritchie and H. Griffiths, “Bistatic human micro-Doppler 

signatures for classification of indoor activities,” 2017 IEEE Radar Conf. 
(RadarConf), Seattle, WA, 2017, pp. 0610-0615. 

[5] B. Jokanovic, M. Amin, F. Ahmad, and B. Boashash, “Radar fall detection 
using principal component analysis,” Proc. SPIE, Radar Sensor 

Technology XX, Baltimore, MD, 2016, vol. 9829, p. 982919. 

[6] G. Li, R. Zhang, M. Ritchie, and H. Griffiths, “Sparsity-Driven Micro-
Doppler Feature Extraction for Dynamic Hand Gesture Recognition," 

IEEE Transactions on Aerospace and Electronic Systems, accepted and 

available online. 
[7] Y. Kim and L. Hao, “Human activity classification based on micro-Doppler 

signatures using a support vector machine,” IEEE Trans. Geos. Remote 

Sens., vol. 47, no. 5, pp. 1328–1337, May. 2009. 
[8] L. Yang, G. Chen, and G. Li, “Classification of personnel targets with 

baggage using dual-band radar,” Remote Sensing, vol. 9, no. 6, p. 594, Jun. 

2017. 
[9] F. Fioranelli, M. Ritchie, and H. Griffiths, “Centroid features for 

classification of armed/unarmed multiple personnel using multistatic 

human micro-Doppler,” IET Radar, Sonar Navigat., vol. 10, no. 9, pp. 
1702-1710, Dec. 2016. 

[10] P. P. Markopoulos and F. Ahmad, “Indoor human motion classification by 

L1-norm subspaces of micro-Doppler signatures,” 2017 IEEE Radar Conf. 
(RadarConf), Seattle, WA, 2017, pp. 1807-1810. 

[11] Y. Kim and T. Moon, “Human detection and activity classification based 
on micro-Doppler signatures using deep convolutional neural networks,” 

IEEE Geosci. Remote Sens. Lett., vol. 13, no. 1, pp. 8-12, Jan. 2016. 

[12] Y. Kim and B. Toomajian, “Hand gesture recognition using micro-Doppler 
signatures with convolutional neural network,” IEEE Access, vol. 4, pp. 

7125-7130, Oct. 2016. 

[13] T. S. Jordan, “Using convolutional neural networks for human activity 
classification on micro-Doppler radar spectrograms,” Proc. SPIE, Sensors, 

and Command, Control, Commun., and Intell. (C3I) Technologies for 

Homeland Security, Defense, and Law Enforcement Applicat. XV, 2016, 
vol.  9825, p.982509. 

[14] J. Park, R. J. Javier, T. Moon and Y. Kim, “Micro-Doppler based 

classification of human aquatic activities via transfer learning of 
convolutional neural networks,” Sensors, vol. 16, no. 12, p. 1990, Nov. 

2016. 

[15] M. S. Seyfioğlu, S. Z. Gürbüz, A. M. Özbayoğlu and M. Yüksel, “Deep 
learning of micro-Doppler features for aided and unaided gait 

recognition,” 2017 IEEE Radar Conf. (RadarConf), Seattle, WA, 2017, 

pp. 1125-1130. 
[16] K. N. Parashar, M. C. Oveneke, M. Rykunov, H. Sahli and A. Bourdoux, 

“Micro-Doppler feature extraction using convolutional auto-encoders for 

low latency target classification,” 2017 IEEE Radar Conf. (RadarConf), 
Seattle, WA, 2017, pp. 1739-1744. 

[17] R. P. Trommel, R. I. A. Harmanny, L. Cifola and J. N. Driessen, “Multi-

target human gait classification using deep convolutional neural networks 
on micro-doppler spectrograms,” 2016 European Radar Conf. (EuRAD), 

London, 2016, pp. 81-84. 
[18] C. Karabacak, S. Z. Gürbüz, M. B. Guldogan and A. C. Gürbüz, “Multi-

aspect angle classification of human radar signatures,” Proc. SPIE, Active 

and Passive Signatures IV, 2013, vol. 8734, p.873408. 
[19] F. Fioranelli, M. Ritchie and H. Griffiths, “Performance analysis of 

centroid and SVD features for personnel recognition using multistatic 

micro-Doppler,” IEEE Geosci. Remote Sens. Lett., vol. 13, no. 5, pp. 725-
729, May. 2016. 

[20] F. Fioranelli, M. Ritchie, S. Z. Gürbüz and H. Griffiths, “Feature diversity 

for optimized human micro-Doppler classification using multistatic 
radar,” IEEE Trans. Aerosp. Electron. Syst., vol. 53, no. 2, pp. 640-654, 

Apr. 2017. 

[21] M. B. Özcan, S. Z. Gürbüz, A. R. Persico, C. Clemente and J. Soraghan, 
“Performance analysis of co-located and distributed MIMO radar for 

micro-Doppler classification,” 2016 European Radar Conf. (EuRAD), 

London, 2016, pp. 85-88. 
[22] S. J. Pan and Q. Yang, “A Survey on Transfer Learning,” IEEE Trans. 

Knowl. Data Eng., vol. 22, no. 10, pp. 1345-1359, Oct. 2010. 

[23] M. Oquab, L. Bottou, I. Laptev, and J. Sivic, “Learning and transferring 
mid-level image representations using convolutional neural networks,” 

IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 

Columbus, OH, 2014, pp. 1717-1724 
[24] H. C. Shin et al., “Deep convolutional neural networks for computer-aided 

detection: CNN architectures, dataset characteristics and transfer 

learning,” IEEE Trans. Med. Imag., vol. 35, no. 5, pp. 1285-1298, May. 
2016. 

[25] K. Chatfield, K. Simonyan, A. Vedaldi and A. Zisserman, “Return of the 

devil in the details: delving deep into convolutional nets,” Proc. British 
Machine Vision Conf. 2014, Nottingham, 2014, pp. 1-12. 

[26] S. Ioffe, C. Szegedy, “Batch normalization: accelerating deep network 

training by reducing internal covariate shift,” Int. Conf. Machine Learning, 
Lille, 2015, pp. 448-456. 

[27] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. 

Salakhutdinov, “Dropout: a simple way to prevent neural networks from 
overfitting,” J. Mach. Learning Research, vol. 15, no. 1, pp.1929-1958, 

Jun. 2014. 

[28] A. Vedaldi and K. Lenc, "MatConvNet - Convolutional Neural Networks 
for MATLAB," Proc. 23rd ACM Int. Conf. Multimedia, Brisbane, 2015, 

pp. 689-692. 

[29] D. P. Kingma and J. L. Ba, “Adam: A Method for Stochastic 

Optimization,” 3rd Int. Conf. Learning Representations, San Diego, CA, 

2015. 


