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In this work, we present results for classification of different classes of targets (car, single and multiple people, bicycle) using 
automotive radar data and different neural networks. A fast implementation of radar algorithms for detection, tracking, and 
micro-Doppler extraction is proposed in conjunction with the automotive radar transceiver TEF810X and microcontroller unit 
SR32R274 manufactured by NXP Semiconductors. Three different types of neural networks are considered, namely a classic 
convolutional network, a residual network, and a combination of convolutional and recurrent network, for different 
classification problems across the 4 classes of targets recorded. Considerable accuracy (close to 100% in some cases) and low 
latency of the radar pre-processing prior to classification (approximately 0.55s to produce a 0.5s long spectrogram) are 
demonstrated in this paper, and possible shortcomings and outstanding issues are discussed. 
 

1. Introduction 

Autonomous vehicles have been gaining significant interest 

in the past few years, with considerable attention and 

investments from technology-intensive companies (such as 

data management and algorithms developers, vehicles and 

electronic sensors and systems manufacturers), governments 

and academic research community, and media and the general 

public [1-3]. As research in this vast field grows, an attempt 

of standardising the different levels of autonomy that ADAS 

(Advanced Driver Assistance Systems) can enable in ground 

vehicles has been made, specifying six levels ranging from 0 

to 5, from rather standard car accessories such as ABS 

(Antilock Braking System), to fully autonomous dynamic 

driving with little to no inputs from the human driver [2]. 

To achieve complete driving autonomy, the capability of 

sensing the surrounding environment and other moving 

entities, other vehicles or humans and animals, is paramount. 

Different sensing technologies have been proposed [4]. 

Cameras are suited for objects classification exploiting colour 

and texture data, and can be relatively cheap compared to the 

other types of sensors, but may suffer from limited depth of 

view and adverse weather and light conditions, as well as 

requiring high data processing power, depending on the 

image classification algorithm.  

LiDAR uses rotating laser arrays to generate an accurate 3D 

map of the surrounding environment around the autonomous 

vehicle, but this type of sensors are still rather expensive and 

may require significant computational power to address the 

adverse effect of light and weather (rainy, foggy, snowy 

conditions).  

Radar sensors provide the advantage of not being affected by 

light and weather conditions, as well as exploiting mature 

range-Doppler and classification processing developed for 

different end applications over the years [5]. However, the 

applicability and adaptation of these techniques to the 

specific automotive context, and the development of the most 

suitable processing to fuse information from different radar 

channels and heterogeneous sensors are still open research 

questions. In particular, significant research in the context of 

automotive radar has been devoted to the issue of detecting 

and classifying accurately vulnerable road users, such as 

pedestrians, to preserve their safety. 

One of the earliest classification studies on automotive radar 

reported over 90% accuracy when distinguishing vehicles and 

pedestrians [6], as well as other objects [7], by extracting 

features from micro-Doppler signatures combined with Joint 

Probability Data Association tracking, in order to account for 

discrepancies in amplitude and shape due to aspect angle 

changes. Although the use of trackers worn by vulnerable 

road users would help their detection and classification [8], 

the reliability of the whole system would be poor, as relying 

uniquely upon compliance of them wearing the devices. 

Other studies looked at using range-Doppler maps as the 

domain to perform classification. Object tracking through 

clustering algorithms and a linear classifier were used to 

distinguish vehicles and scenarios of walking pedestrians in 

[9], and in [10] features related to the size, orientation, and 

frequency of the pedestrians’ step were used in conjunction 

with OS-CFAR (Ordered Statistics-Constant False Alarm 

Rate) and Density Based cluster algorithm. Further works 

focused on using different domains of information to achieve 

vehicles-pedestrians classification, such as [11] through the 

phase characteristics (coherent/non-coherent) of the object 

signature, and [12] through features related to the differences 

in Radar Cross Section (RCS) between the different classes 

of targets, used together with an SVM (Support Vector 

Machine) classifier. As systems working at higher frequency, 

tens but also hundreds of GHz, become available, work has 

been carried out to characterise the radar signatures of 

pedestrians in the automotive context, such as in [13-15] 

which considers the frequency ranges around 300 GHz. 

Another group of studies looked at characterising the radar 

signatures of cyclists, to highlight differences and similarities 

with those of pedestrians and vehicles that can be useful to 

improve their detection and classification [16-18]. Bicycles 

can travel at significantly higher speed than pedestrians and 

present high manoeuvrability on the road, as well as at the 
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same time exhibiting low RCS compared with vehicles; they 

are therefore a challenging class of targets for automotive 

radar applications.   

Many of the classification studies considered some form of 

“handcrafted” extraction process on the radar data in order to 

obtain the most suitable combination of features to maximise 

classification accuracy [19-20]; this often requires significant 

expertise and inputs from the human radar operator/engineer, 

thus not lending too well to achieving reliable automatic 

classification in the large diversity of situations and scenarios 

expected for automotive radar. To address this issue, an 

emerging stream of work in the literature has been looking at 

neural networks as a processing tool to bypass the feature 

extraction step and enable automatic selection of the most 

suitable features and meaningful information for 

classification within the network itself.   One of the first work 

in this aspect was [21], in which Deep Convolutional Neural 

Networks (DCNN) were given spectrograms directly as input 

data to distinguish 4 classes of targets (humans, dogs, horses 

and cars signatures), and 7 different human activities. The 

DCNN was a scaled-down model of the famous VGG16 

(Visual Geometry Group) network that won the ImageNet 

classification challenge in 2014, and accuracy in the region 

of 91% was achieved for target identification. Further work 

on the use of CNNs in the context of human activity 

recognition for assisted living has been presented [22], 

focusing on aspects such as most suitable pre-processing and 

time-frequency distribution for the micro-Doppler signatures 

[23], combination of information from different radar 

domains including range-Doppler and range-time to enhance 

performance [24], different architectures mixing Auto-

Encoders (AE) with CNNs [25-26], and challenges and 

strategies to train deep networks effectively with limited 

experimental radar data available [27]. Other works have 

looked at classifying different human gaits in the context of 

area surveillance using ground-based radar, in particular 

identifying individual pedestrians as opposed to group of 

multiple people, either using CNNs or Recurrent Neural 

Networks (RNNs) on the spectrograms [28-29], and at 

classification of armed/unarmed personnel using multistatic 

radar [30]. 

In this work, we present and discuss a modular pipelined 

approach to achieve near real-time radar data processing and 

multiple moving object tracking, and to subsequently classify 

these objects. Three different neural network architectures 

have been explored – a downscaled version of the network 

VGG16, utilizing the same block structure; the very deep 

ResNET-50 [31], which uses shortcuts between network 

blocks to avoid overfitting and achieve better generalization; 

and an innovative CNN+LSTM (Long Short-Term Memory) 

architecture, which is able to extract features from micro-

Doppler spectrogram segments, and learn their representation 

as time series (sequences of data). This is an innovative 

approach, as the radar data will be considered by the LSTM 

network part not as snapshot spectrograms images (as 

currently done in many works in the literature [22-28]), but 

as temporal data sequences. Although demonstrated on 

preliminary results on a small experimental dataset, this 

classification approach may prove well suited to radar data, 

exploiting the inherent information from a sequence of radar 

waveforms, rather than casting the problem as classification 

of images. 

Although the dataset of experimental samples is small, the 

work presented here aims to demonstrate the potential of this 

approach. It provides a proof of concept evaluation of lean 

implementation of radar signal processing necessary for radar 

micro-Doppler based classification, and of different 

architectures of neural networks that do not require manual 

fine-tuning of parameters of external inputs to guide the 

feature extraction process. 

These processing steps have been implemented with the 

following objectives: 

 to use real experimentally-gathered data for training and 

testing the neural networks, in order to investigate the 

generalization capabilities of the network architectures 

beyond the ideal cases of using simulated data. This 

includes the implementation of radar signal processing 

for detection and tracking of multiple targets, which can 

provide good performance even in the presence of 

significant noise generated within the radar system; 

 to have a significantly low classification latency – below 

0.5 seconds, since studies have shown that the average 

driver reaction time is around 0.7 seconds [33]; 

 to use the micro-Doppler spectrograms directly as input 

to the classifier and network, avoiding handcrafted 

features (e.g. Micro-Doppler bandwidth and frequency, 

Cepstral coefficients, moments of vectors extracted by 

Singular Value Decomposition, and many others 

proposed in the literature [20]) - This allows to avoid 

possible loss of relevant information and fine-tuning of 

the many parameters involved when defining the feature 

extraction algorithms. 

The remainder of this paper is organised as follow. 

Section 2 describes the experimental setup, the radar kit used, 

and the data collection protocol. Section 3 introduces the 

implementation of the radar signal processing developed, and 

the structure of the neural networks used in this study. Section 

4 presents and comments on the experimental results. Finally, 

section 5 draws conclusions and discusses some possible 

future work. 

2. Experimental setup and data collection 

All data have been collected using the TEF810X fully 

integrated automotive radar transceiver manufactured by 

NXP Semiconductors and S32R274 radar Micro-Controller 

Unit. The radar operation mode was configured as Frequency 

Modulated Continuous Wave (FMCW), with linear chirp 

modulation, and the parameters, shown in Table 1. These 

parameters were empirically found to provide the clearest 

micro-Doppler (MD) signatures at visual inspection, as well 

as providing a reasonable compromise in terms of range 

resolution, Doppler unambiguous range, and data throughput 

for fast transferring and processing. The system had 1 

transmitter and 4 receiver channels, and digitised data were 

transferred from the micro-controller unit to a computer via 

UDP packets. These packets were then decoded to form 

“frames”, matrices with 512 rows and 256 columns, which 

essentially correspond to range-time matrices with 256 radar 

chirp and 256 (after removing FFT mirroring) range bins for 

each chirp. The time for one frame to be transmitted and 

received for processing (for all 4 receiver channels) is set 

internally in the MCU as 50ms, and this is a firmware 
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parameter that cannot be modified in this version of the 

system. 

Three different types of movements and targets were 

recorded, namely a single person walking at an average speed 

of 4-5km/h (type 1), a car accelerating and decelerating (type 

2), a bicyclist following the trajectory of an eight figure (type 

3), and finally two people walking side by side (type 4). All 

activity types were performed with objects moving towards 

and away from the radar covering a distance of around 0-17 

metres, at 0 degree aspect angle (radial trajectory with respect 

to the line-of-sight of the radar), with some little variability 

for the bicyclist to turn when cycling towards and away from 

the radar.  

The radar was positioned approximately 0.7 metres 

above the ground, to correspond to the height at which 

automotive radar is usually mounted on a car. This also 

allows to capture the micro-motions contributing most to the 

MD effect, such as hands, torso and the upper leg parts from 

walking people; the body of a moving vehicle; and bicycle 

frame/pedalling legs. Around 30 minutes of data each were 

collected for the single person walking and the car, and 

approximately 15 minutes each for the bicycle and the 

multiple people class. The raw digitised data were then 

divided in blocks, which are the starting point of the 

processing steps described in the next section. 

 

Number of samples per chirp 512 

Number of chirps per frame 256 

Chirp bandwidth 1.0 GHz 

Chirp duration 25.6 μs 

Carrier frequency 76.5 GHz 

ADC Sampling Frequency 20 MHz 

TX/RX channels 1/4 

Radar field of view (azimuth and 

elevation) 

±35° at 50m / 

7.5° 

Table 1: Radar parameters for the data analysed in this 

paper 

3. Data processing and neural networks 
architecture 

As described in section 1, a lot of research has been conducted 

on target classification using the MD signature of objects. 

When the target signature is spread across many different 

range bins, the different target contributions need to be 

aggregated prior to performing STFT (Short Time Fourier 

Transform), or an alternative time-frequency distribution, and 

this is even more important in case of multiple targets 

crossing their trajectories. To address this issue and easily 

track multiple moving targets, we have implemented the 

following processing on the raw data obtained from the NXP 

radar. The different processing steps have been summarised 

in Fig. 1. 

 Perform Fast Fourier Transform on raw digitised data to 

convert them into the Range-Time domain, and apply a 

4th order Butterworth IIR high-pass filter with 0.04 Hz 

cut-off to remove stationary objects (i.e. objects with 

Doppler signature at 0 Hz or close to that value); 

 Apply Ordered Statistics CFAR (Constant False Alarm 

Ratio) algorithm [34] to perform target detection and 

reduce the undesired contribution from noise  and clutter; 

 Detect the position of the targets (i.e. the range bins they 

occupy) for a given frame and store these coordinates in 

a detection matrix; 

 Input the detection matrix frame-wise in an algorithm, 

which combines constant acceleration Kalman filtering 

and the Hungarian algorithm [35]. The former would 

produce a better estimation of the target position, as well 

as continue to output predictions, even if frames are 

temporarily lost or corrupted. The latter would constantly 

assign identities to the object detections, based on the 

estimates from the Kalman filter. The algorithm can also 

take into consideration new objects entering the radar 

field of view, or those leaving it, using markers for each 

track; 

 Concatenate several Range-Time frames and generate 

segments of micro-Doppler signatures using the object 

track position estimates, i.e. the range bins where the 

target signature is located. The duration of the overall 

micro-Doppler signature can be varied depending on the 

classification algorithm just by concatenating more or 

less frames together; 

 Use the generated micro-Doppler spectrograms to train 

and test classifiers based on neural networks. 

Using the aforementioned approach, samples of micro-

Doppler signatures have been generated by concatenating 

eight 0.25s segments to provide spectrograms that are 2 

seconds long. Examples of MD spectrograms plotted using 

the method described above for the different cases are shown 

in Fig. 2, with one spectrogram for each class of targets 

considered in this work. Even through visual inspection, it is 

possible to see some discriminant features for the different 

classes. For example, the single human (Fig. 2a) appears to 

present some peaks around the main Doppler component, as 

expected for the swinging of limbs. This effect becomes more 

blurred for multiple people (Fig. 2b), because their 

movements are not synchronised. For the car class (Fig. 2d) 

we can see a clear main Doppler shift with no major 

additional components, whereas the bicycle (Fig. 2c) presents 

an intermediate situation with a clear main Doppler 

component, plus some additional effects due to the movement 

of the legs while cycling. The STFT window size was 512 

points (equal to 2 concatenated Range-Time frames), with 95% 

overlap. Although segmentation is present as an artefact of 

the concatenation process, it does not seem to affect the 

learning capabilities of the neural network classifiers, as will 

be further demonstrated in the next section.  

After removing the unsuitable datasets where there was false 

target detection and hence no clear micro-Doppler signature, 

we generated 60 samples for movement type 1 and 2 each 

(single person walking and car), 22 samples for type 3 

(bicycle), and 44 samples for type 4 (two people walking 

together). The samples for each class are created using data 

collected at different time instances rather than continuously 

and this helps reduce the intra-class correlation between the 

samples. The data were partitioned in training and testing 

subsets to validate the neural network performance with an 

80/20% proportion, and this partition was performed 

randomly. The networks used the training data for learning, 
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and the test data for validation. Furthermore, all evaluations 

were performed using the same number of samples for each 

class, to avoid class imbalance, with the final number of 

samples governed by the class with the least datasets. Four 

types of evaluations were performed, in particular: 

 Binary classification of type 1 vs type 2, single person 

walking vs car 

 Three-class problem with single car, single person, and 

single bicycle as classes of interest 

 Three-class problem with single car, single person, and 

two people 

 Four-class problem with all the available data 

 

Figure 1: Block diagram of the multi-target classification system 

 

Figure 2 Examples of spectrograms for different targets: (a) single person walking, (b) two people walking together, (c) 

bicycle, and (d) car 
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Three different network architectures were used for the 

classification of experimental data, detailed as follows. A 

pictorial representation of the different layers in each 

architecture is provided in Fig. 3, where different 

functionalities of the layers have been highlighted in different 

colours. The input to the networks is a 3D structure 

containing the 2s long spectrogram samples for each of the 4 

receiver channels of the radar, so that the overall dimensions 

of each input samples are 4 (number of channels) x 512 

(number of Doppler bins for each spectrogram) x 120 

(number of time bins for each spectrogram, for 8 segments). 

Each spectrogram is normalised between 0 to 1, and centred 

around the mean value. 

 

Network I 

This is a VGG-like convolutional neural network, as in Fig. 

3a. Each “block” consists of a convolutional layer, with 

different number of filters of the same size, and a pooling 

layer, which reduces the dimensionality of the block output 

by a factor of 4, electing the maximum value in the kernel. 

The convolutional filters would learn features from the 

datasets, specific for each class. The addition of a dropout 

layer (20%) has been proven in literature to improve learning 

regularization [36], which is paramount for small amount of 

data like in this case. Finally, three fully connected layers are 

used, where each neural unit in the layer is connected to the 

rest. ReLU (Rectified Linear Unit) activation function has 

been used in all but the last layer, where the function used is 

Softmax. In this and in all subsequent models, Adam 

optimizer algorithm was implemented, due to its very fast 

convergence rate and reliability.   

 

 

 

 

Network II 

This architecture is shown in Fig. 3b and is based on a 

residual network, in which the input and output of a 

convolutional block are connected via a shortcut. In very deep 

networks of the VGG type, the backpropagation gradient 

tends to diminish as it propagates through the network layers, 

hence having little effect on the initial ones. This is partly 

because in a VGG type architecture, subsequent blocks have 

to learn data features anew, from the output of the preceding 

block. However, due to the shortcuts in a ResNet architecture, 

the blocks only have to learn the residual of the output from 

the preceding one. This largely improves the representation 

capability, allowing for correct classification of data with 

very similar features, as it is the case with radar spectrograms. 

In this work, the ResNet-50 architecture has been used [31]. 

 

Network III 

This architecture is based on Recurrent Neural Networks 

(RNNs) and is shown in Fig. 3b. RNNs have been used for 

years to analyse time series data, for example in speech 

processing and acoustics, and have been demonstrated to 

work very well to predict and classify sequences of data. Out 

of different types of RNNs, Long Short-Term Memory 

(LSTM) networks are mainly used in practice, because they 

can overcome the issue of vanishing/exploding 

backpropagation gradients [37] and are able to learn the 

representation of longer sequences  (around 1000 instances) 

compared to other architectures of recurrent networks. In this 

work, we have modelled each 0.25 second-long segment in a 

2-second spectrogram sample as instances from a data 

sequence, with variable length, depending on the 

requirements. The convolutional part of the network would 

extract features from single segments, which would then 

serve as input to the LSTM part, analysing their progression 

and evolution with time.  

 

Figure 3 Representation of the different network architectures: (a) convolutional neural network similar to VGG type, (b) 

convolutional residual network, and (c) combination of convolutional and recurrent LSTM network 

4. Classification results 

Initially, the effect on the classification performance of using 

data from a subset of the available 4 receiver channels is 

evaluated using 5-fold validation with the VGG-like 

convolutional network (see Fig. 3a). This was done on the 

binary classification problem of distinguishing a single 

person and a car. The results in terms of classification 

accuracy and standard deviation across the 5 fold tests are 

shown in Table 2, where the number of channels used 

increased from 1 to all 4. We can see that the results are very 

similar with little or no difference with the number of 

channels. This may be because the receiver antennas are 

mounted very close to each other in this version of the radar 

kit, hence the aspect angles on the target at ranges of a few 

meters are practically the same, so that the different channels 

do not seem to provide additional information. Nevertheless, 

all further evaluations have been performed using samples 
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containing all four channels, due to the expected increase in 

the number of hardware channels in a near future as 

technology improves. This would provide bigger data 

discrepancy, hence better network generalization for objects 

moving at different aspect angles, especially for less 

favourable trajectories for micro-Doppler based classification 

(i.e. trajectories which are tangential or close to tangential to 

the radar field of view). 

When evaluating the performance of a neural network, two 

main indicators are generally used, namely the accuracy, 

which shows the percentage of correctly classified samples, 

and the logarithmic loss measure, which is the negative 

logarithm of the network-predicted probability for a dataset 

to belong to a certain class, taking into account the true class 

label. Backpropagation algorithms strive to minimize this 

loss and forcing this to zero by adjusting the weights of the 

network layers at the training stage. By analysing how the 

loss gradient changes over time, one can judge for the 

generalization capabilities of a network, i.e. whether it 

overfits on the training data, compromising its ability to 

classify correctly new test/validation data.  

An initial test compared the VGG-like network and the 

Residual network for the binary classification problem of 

moving car vs single person walking. The validation accuracy 

of the Residual network achieved 100% (Figure 4) after only 

200 epochs with batch size of 8 datasets (i.e. the weights of 

the network have been updated every 8 input samples). The 

validation accuracy of the VGG-like network was in the range 

of 98%, as shown on Figure 4 and in Table 2. In terms of loss 

function for training and validation, Fig. 5 shows these over 

different epochs.  

When using the VGG-like CNN (Fig. 5a), both training and 

test losses fluctuate heavily, and although the test loss 

continues to decrease, its value at epoch 100 is significantly 

above the train loss, which tends to zero, and this may be a 

sign of overfitting as the network has nearly exhausted its 

capability to learn from the available data. In contrast, the 

Residual network losses exhibit an almost non-existent 

fluctuation, even using a very small number of datasets as in 

this case. Both training and validation loss continue to 

decrease, and their values at epoch 200 may be an indication 

of a significant potential for further learning, as the training 

loss has not reached values close to zero. This, combined with 

the very high accuracy score close to 100%, seems to confirm 

the assumption that the use of residual networks for this 

classification task would yield better, more generalized 

results. 

The same binary classification problem has been evaluated on 

the CNN-LSTM network architecture and the results are 

presented in Fig. 6 in terms of accuracy and loss function for 

training and testing. In this case, we have considered two 

different temporal durations of the input samples, namely 2s 

(equal to 8 micro-Doppler segments) as done previously for 

the other networks, and 0.5s (equal to just 2 segments) in 

order to reduce the latency required to provide a classification 

result.

 

Number of channels 1 2 3 4 

Test Accuracy / 

 Standard deviation 

98.33 / 2.04% 98.33 / 2.04% 97.50 / 2.04% 98.33 / 2.04% 

Table 2: 5-fold evaluation test accuracy when using a different number of radar channels for binary classification car vs 

person walking 

 

Figure 4: Neural network performance (accuracy) for (a) VGG-like network and (b) Residual network 
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Figure 5 Neural network performance (loss function) for (a) VGG-like network and (b) Residual network 

Comparing the performance of this CNN-LSTM network on 

2s long samples (Fig. 5a) with the previous architectures (Fig. 

4), we can see that the overall validation accuracy is reduced 

(approximately 92%) and there is very significant overfitting, 

as while the training loss has reached values close to zero, the 

validation loss remains stationary at a non-zero value. 

Looking at the results for 0.5s long samples, despite the 

decreased latency, the overall accuracy appears to be very 

significant, in the range of 99%. This increased accuracy 

could be related to the combined effect of having a larger 

dataset of samples for training and testing (as each 2s 

spectrograms was divided into 0.5 s segments, with a 4-fold 

increase in the dataset size), but also to the fact that the tested 

LSTM architecture might be more capable to infer relevant 

features from shorter sequences. There is some residual 

overfitting (validation loss stationary with training loss 

already close to zero), and this can be caused by the use of a 

relatively shallow convolutional layer before the LSTM layer 

in this architecture (see Fig. 3c), as this may not be able to 

learn relevant features from the input data. 

Subsequently, we have analysed three-class problems by 

adding to the binary dataset with moving car data and single 

person walking data, either bicycle data or data for two people 

walking together. These three-classes problems have been 

tested with different network architectures and some results 

are shown in Table 3. 

The results in Table 3 suggest that adding a different class of 

targets can have a very significant impact on the results, and 

in general the accuracy is reduced compared to the binary 

class scenario analysed before. The CNN-LSTM case shows 

increased accuracy when using shorter sequences (from 2s to 

0.5s) for the classification of car and single or multiple people, 

as observed in Fig. 5. This is not true for the classification 

scenario involving the bicycle, where the accuracy degrades 

from approximately 93% to 83%, and this could be due to the 

fact the bicycle and car signatures are similar in such a short 

period of time (especially as at times the cyclist was not 

pedalling but just coasting with the bicycle). The VGG-like 

network presents results around 80% for both three-class 

problems, which appears to suggest that extending the dwell 

time on target for extraction of micro-Doppler signatures 

does not provide a significant classification benefit. This may 

be due to the specific settings of the RF radar parameters and 

spectrogram extraction algorithm, which could not capture 

enough details to differentiate the spectrograms belonging to 

each target class. On average, the CNN-LSTM architecture 

appears to provide higher accuracy and therefore better 

capability to generalise on additional target classes, making it 

a promising approach. 

In terms of loss functions (not shown here for conciseness), 

the CNN-LSTM architecture suffers significantly of 

overfitting problem as already noted when commenting Fig. 

6 for the binary classification problem. This poor 

performance can be linked to the very shallow convolutional 

part (2 filters, with 5x5 kernel size), which is not able to learn 

the discriminating details between one person and two people 

walking. In order to evaluate this hypothesis, we have run 

further tests by substituting the convolutional layer of the 

CNN-LSTM in Fig. 3c with the VGG-like model in Fig. 3a 

(excluding the dropout and fully connected layers). This 

creates an alternative CNN-LSTM architecture, where the 

initial convolutional part is much deeper than the initial 

choice with just one layer. With this alternative architecture, 

we managed to achieve 87.3% test accuracy after only 200 

epochs (increase of about 3-4% with respect to the results in 

Table 3). This was achieved on a more challenging 

classification scenario, which includes all 4 classes of interest 

(moving car, single person walking, bicycle, and two people 

walking) and low latency with 0.5s long spectrograms. The 

results in terms of accuracy and loss function for training and 

testing are shown in Fig. 7. Although overfitting is still 

present, the validation loss is expected to reduce by using 

residual network approach for the convolutional part. 

For completeness, all above-mentioned tests have been 

repeated by training using a kernel (weight) and activity 

(activation function) regularising approaches applied on the 

last fully connected output layer, with a penalty of 0.01 and 

0.001 for the VGG-like and CNN LSTM networks, 

respectively. Furthermore, batch normalization layers have 

been used after each activation function. Both these are 

common strategies in the literature to help improve the 

performance, as they should in theory improve the 

generalization capabilities of the network in particular [38]. 

However, in our case these results appear to show that the 

classification accuracy has degraded, as per summary 

provided in Table 4 (with 200 epochs training). 

It can be seen that the regularization and batch normalization 

can at times improve the performance for CNNs (for example, 

for the car-person-2 people problem with 0.5s long datasets, 

the accuracy increased approximately 10% compared with 
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Table 3), but this is not always consistent (for example, with 

the other three-class problem involving the bicycle the 

accuracy degraded from 83% to 81%). Furthermore, results 

appear to become worse for the CNN-LSTM networks cases. 

However, the training history over epoch (not shown here for 

conciseness) shows a very large variability of the accuracy, 

possibly meaning that the CNN-LSTMs need more time and 

longer training to converge and exploit effectively 

regularisation and batch normalisation (as happened for the 

VGG-like network in some cases). This will be considered in 

future work, as well as investigating the most suitable hyper-

parameters values (for example the penalty ratio of the 

regularisation process) for these specific classification 

problems, with a small amount of data available for training 

effectively.

 

Figure 6 CNN-LSTM network performance (accuracy and loss function for both training and validation) when using 2s long 

inputs (a) and 0.5s long inputs (b) 

Evaluation / Network 

Type 

VGG-like CNN  

(2s long datasets) 

VGG-like CNN  

(0.5s long datasets) 

CNN-LSTM 

(2s long datasets) 

CNN-LSTM 

(0.5s long datasets) 

Car-Person-Bicycle 

classification 
79% 83% 93% 83% 

Car-Person-2people 

classification 
81% 78% 80% 84% 

Table 3: Test accuracy for 2 network architectures evaluated on 3 classes problems 

 

Figure 7 Alternative CNN-LSTM network performance (accuracy and loss function for both training and validation) for the 4-

class classification problem 
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Evaluation / Network 

Type 

VGG-like CNN 

(2s long datasets) 

VGG-like CNN 

(0.5s long datasets) 

CNN-LSTM 

(2s long datasets) 

CNN-LSTM 

(0.5s long datasets) 

Car-Person-Bicycle 

classification 
78.6% 81.1% 50% 73.5% 

Car-Person-2people 

classification 
77.8% 88.6% 44.4% 78.3% 

All-4-classes-

classification (VGG 

LSTM) 

- - - 70% 

Table 4: Test accuracy for 3 types of networks (VGG-like, CNN-LSTM, and VGG-LSTM) on all considered problems, with 

regularization and batch normalisation 

5.  Conclusions and future work 

This paper has presented results for classification problems in 

the automotive radar context using different neural network 

architectures. Although validated on a small set of 

experimental data, these proof-of-concept results 

demonstrated benefits (classification close to 100% in some 

cases) and potential shortcomings (overfitting and non-robust 

generalization) of different networks, as well as the 

importance of choosing suitable radar parameters and radar 

signal processing (proper target detection and tracking) to 

provide the best input data as possible to the networks.  

Residual networks appear to provide improved performance 

compared with simpler convolutional networks when the 

radar classification is cast as an image recognition problem 

among different spectrograms. Combinations of 

convolutional and recurrent networks have also been 

proposed. One potential problem with these networks is the 

overfitting for scenarios with low amount of data available, 

as in this paper, especially if the initial convolutional part is 

not deep enough to capture the subtle differences between 

spectrograms of different classes of targets. Further work is 

needed to characterise how classification performance could 

be improved by adding a robust residual network as 

convolutional part and multiple LSTM layers in a mixed 

CNN-LSTM architecture explored in this paper. Furthermore, 

one could consider purely recurrent network architectures 

without the convolutional part, so that the radar classification 

problem is cast as a data sequence classification (sequence of 

radar pulses), rather than reducing this to an image 

discrimination problem. This would allow exploring the 

information in different radar domains other than Doppler-

time (micro-Doppler) patterns, such as sequences of range 

profiles or even raw complex data, which would be an 

interesting innovative approach. In any case, priority for 

further work should aim at collecting a larger experimental 

dataset for the training and validation of the chosen neural 

networks, especially for the very deep ones where many 

parameters need to be tuned. This availability of radar data 

for deep learning is a known issue, for both collecting and 

properly labelling the data, and strategies such as transfer 

learning and pre-training are being explored for its mitigation 

[27]. 

In terms of radar architecture, the availability of additional 

channels in MIMO, spatially distributed architectures would 

benefit the classification performance if data from additional 

aspect angles to the targets of interest can be captured. In 

terms of radar signal processing, the detection, tracking, and 

micro-Doppler extraction presented in this paper have been 

achieved in approximately 0.55s computational time for 0.5s 

long micro-Doppler (on a Python based implementation on a 

desktop machine). This shows that the overhead latency of 

the radar processing is not very significant, with respect to the 

amount of dwell time on the target to collect data (0.5s is 

fairly close to an average gait cycle of a human walking). 

Moving away from micro-Doppler based classification, 

perhaps exploiting other sequential radar domain with 

LSTMs as mentioned before, could enable to avoid this 

minimal dwell time requirement. Implementations in C++ or 

other languages more suitable for low level programming in 

micro-controller units could also allow for faster 

classification time and reduced latency, and firmware 

improvements could speed up the data transfer from the radar 

chip to the processing unit (50ms for a single frame in this 

work).  

Additional further work could look at making the clutter 

cancellation filter adaptive, taking into account the velocity 

and the orientation of the vehicle carrying the radar, which 

for simplicity has been considered stationary in this work. 

Fusion of data from heterogeneous sensors (be it cameras, 

Lidar or other sensors) is also an interesting area for further 

work to improve classification performance and mutual 

learning of the classifiers.  

Finally, research on different architectures of networks 

should focus on evolution and predictability of their learning 

capability and performance, making sure that this adheres to 

the relevant regulations in the automotive sector for 

standardization and safety issues. 
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